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Abstract

Background: In diploid organisms, whole-genome haplotype assembly relies on the accurate identification and assignment of het-
erozygous single-nucleotide polymorphism alleles to the correct homologous chromosomes. This appropriate phasing of these alleles
ensures that combinations of single-nucleotide polymorphisms on any chromosome, called haplotypes, can then be used in down-
stream genetic analysis approaches including determining their potential association with important phenotypic traits. A number
of statistical algorithms and complementary computational software tools have been developed for whole-genome haplotype con-
struction from genomic sequence data. However, many algorithms lack the ability to phase long haplotype blocks and simultaneously
achieve a competitive accuracy.

Results: In this research we present HaploMaker, a novel reference-based haplotype assembly algorithm capable of accurately and ef-
ficiently phasing long haplotypes using paired-end short reads and longer Pacific Biosciences reads from diploid genomic sequences.
To achieve this we frame the problem as a directed acyclic graph with edges weighted on read evidence and use efficient path traver-
sal and minimization techniques to optimally phase haplotypes. We compared the HaploMaker algorithm with 3 other common
reference-based haplotype assembly tools using public haplotype data of human individuals from the Platinum Genome project. With
short-read sequences, the HaploMaker algorithm maintained a competitively low switch error rate across all haplotype lengths and
was superior in phasing longer genomic regions. For longer Pacific Biosciences reads, the phasing accuracy of HaploMaker remained
competitive for all block lengths and generated substantially longer block lengths than the competing algorithms.

Conclusions: HaploMaker provides an improved haplotype assembly algorithm for diploid genomic sequences by accurately phasing
longer haplotypes. The computationally efficient and portable nature of the Java implementation of the algorithm will ensure that it
has maximal impact in reference-sequence–based haplotype assembly applications.
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Introduction
Diploid organisms such as human, Arabidopsis thaliana, barley, and
many other eukaryotic genomes typically contain 2 homologous
copies of every chromosome, each inherited from either of the par-
ents. When there is allelic variation (wild type or mutant) at 1 ge-
nomic position between homologous chromosomes, the position
is called heterozygous. For a single heterozygous site it is possible
to quantify the number of wild-type and mutant alleles by using,
for example, variant-calling tools. However, when 2 or more het-
erozygous sites are present, it is not possible to determine whether
their alleles are on the same or different chromosomes. The pres-
ence of certain alleles from multiple genomic positions on 1 chro-
mosome is called a haplotype and may be associated with an im-
portant phenotypic trait in 1 or more individuals. In contrast, if the
alleles reside on different chromosomes, this can be connected to
a loss of function [1]. This distinction results in the need for com-
putationally efficient algorithms that can accurately phase alleles
on 1 chromosome using sequencing reads obtained from diploid
organisms [2].

There are several approaches to haplotype construction [3].
One group of construction methods relies heavily on using se-
quence information obtained from multiple related individuals
of a population. Haplotypes can then be phased and assembled

using various aspects of the genomic structure of the popula-
tion, such as linkage disequilibrium [4, 5]. Other construction
approaches in this group have focussed on using founder se-
quences and inferring haplotype phase through identity by de-
scent [6] or the use of hidden Markov models [7–9] Unfortunately,
these approaches are generally not applicable for haplotype phas-
ing and assembly of sequences from a single sample when
there are no additional genomic sequences available from related
individuals.

This research focusses on the group of reference-based
haplotype-phasing algorithms used when only DNA sequences of
an individual sample are available [1]. For an individual diploid
organism, there should be only 2 haplotypes detected. However,
owing to sequencing errors and misalignments of reads to the
reference, the total number of inferred haplotypes can poten-
tially increase exponentially. To minimize errors in the haplotype
construction, mathematical algorithms involving selection crite-
ria are required to assist in determining the appropriate phase of
the haplotypes. One strategy is to use the widely established min-
imum error correction (MEC) criterion [1, 10], where an optimal
MEC indicates the smallest set of single-nucleotide polymorphism
(SNP) changes that create a conflict-free separation of mapped
reads into 2 groups. HapCUT [11], HapCUT2 [12], and SDhaP [13]
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belong to this category because they reconstruct a pair of haplo-
types such that the fragments are maximally consistent with the
assembled haplotypes. An extension of the MEC was proposed in
WhatsHap [14], where a weighted MEC criterion was used and the
optimization of haplotype construction is achieved through dy-
namic programming. In HapCompass [15] the problem of haplo-
type construction in polyploids and diploids is defined as an undi-
rected weighted graph and an algorithm is developed that incor-
porates cycle basis local optimizations for resolving conflicting ev-
idence. HapTree [2] focusses on polyploid species and develops a
Bayesian maximum-likelihood framework for haplotype phasing
and construction. We note here that the necessity of having a spe-
cific method for polyploid species has lessened nowadays because
newer versions of genomic references (e.g., tetraploid wheat) con-
tain all homoeologous copies of 1 chromosome.

In this research we present a novel reference-based algorithm
for phasing 2 haplotypes (paternal/maternal) of a single diploid
organism by using its genomic sequence reads. The algorithm
frames the haplotype construction problem as a directed acyclic
graph (DAG) structure and determines the optimal haplotype as-
sembly using minimal path and related graph traversal algo-
rithms [16]. We call this algorithm "HaploMaker." The algorithm
attempts to phase longer DNA strands as long as any heterozy-
gous position within a strand, and ≥1 other nearby heterozygous
position, is covered by a single DNA fragment. The algorithm pro-
vides support for phasing SNPs as well as potentially important
insertion/deletion (INDELs) polymorphisms. Computationally, the
HaploMaker algorithm has reduced execution times and only re-
quires a minimal amount of memory.

For demonstrating and benchmarking the HaploMaker algo-
rithm, we have chosen the human pedigree of 17 individuals
(2 parents, 11 children, and 4 grandparents) from 3 generations
[17], where their DNA has been sequenced and haplotypes of 2
parents have been verified using inheritance constraints in the
pedigree and the concordance of variant calls across different
methods. We compared HaploMaker results with those gener-
ated by HapCUT2, HapCompass, and WhatsHap. WhatsHap was
selected owing to its widespread use in assembling haplotypes
[18], and HapCUT2 and HapCompass were selected owing to re-
cent reports of their ability to generate accurate haplotype as-
semblies [15]. We showed that when using paired-end short reads
with 10× or 25× coverage, compared to the competitors used
in this research, the HaploMaker algorithm was capable of con-
structing longer haplotype blocks while maintaining a competi-
tively low switch error rate. Additionally, when using longer Pa-
cific Biosciences (PacBio) continuous long reads (CLRs) or more
accurate PacBio HiFi reads, HaploMaker generated substantially
longer haplotype blocks, ensuring a more complete assembled
genome.

Methods
Data preparation
Individual NA12877 paired-end reads
The paired-end FastQ files for NA12877 of the Platinum Genome
project were downloaded from [19] and the NA12877 phased VCF
file was downloaded from [20]. The FastQ files were then sam-
pled randomly to 10× and 25× genome coverages and the result-
ing 162.6 and 407.5 million paired reads from the FastQ files were
mapped to the human genome reference version 38 using Bowtie
2 [21], allowing for a 1% mismatch rate and capturing short IN-
DELs up to 20 bases (see Supplemental Material).

Individual NA12878 PacBio CLR/subreads
The sorted bam file of PacBio reads was downloaded from [22,
23]. Similar to individual NA12877, the corresponding VCF file
was downloaded from the Platinum Genome project. For mapping
of the PacBio reads we used the human genome reference hg19
downloaded from [24].

Individual NA12878 PacBio HiFi reads
High-quality PacBio reads (known as CCS or HiFi) related to in-
dividual NA12878 were downloaded from the NCBI SRA archive
(accession No. SRX5780566) [3]. For mapping of the reads we used
the human genome reference hg19 from the PacBio subread ex-
periment. The corresponding VCF file from the PacBio subread ex-
periment was also used.

Haplotype directed acyclic graph
To simplify the notation and development of the theoretical
framework, we initially focus on a single chromosome with the
understanding that the framework will apply identically to other
chromosomes. From the VCF file, assume L heterozygous alleles
or variants have been detected at various positions on the chro-
mosome, with each allele pair assigned a random phase. We now
formalize a framework for accurate phasing of these alleles using
a DAG and the aligned read sequence evidence.

Let G define a haplotype directed acyclic graph (H-DAG), such
that G = (V, E), where

I. V = {(v1
1, v1

2) , . . . , (vl
1, vl

2), . . . , (vL
1, vL

2)} defines the com-
plete set of nodes (or vertices); (vl

1, vl
2) are considered a sib-

ling pair of nodes at the lth level of the graph.
II. E = {(vδ, vδ+1)|vδ ∈ vδ

i , vδ+1 ∈ vδ+1
j , i, j = 1, 2, ∀δ = 1, . . . , L − 1}

defines the set of all possible edges between L nodes in V.

The sibling paired node structure for a H-DAG with L levels is
visually represented in Fig. 1A with the complete skeleton H-DAG
containing 2 dummy nodes at the beginning and end of the graph.
Using this node structure, and without additional read sequence
evidence, the L ordered pairs of heterozygous alleles are sequen-
tially assigned to pairs of nodes. This assignment is represented
in Fig. 1B, where, e.g., at the lth level, the pair of nodes have been
assigned alleles vl

1 = A and vl
2 = T in the skeleton H-DAG.

The definition of the H-DAG edges indicates that directed edges
can only exist between adjacent levels of the graph, ensuring that
no directed cycles are possible. Additionally, for any directed edge,
(vδ, vδ+1) ∈ E, between arbitrary adjacent levels, vδ is explicitly the
parent node of vδ+1 and vδ+1 is explicitly the child node of vδ . This
implies that directed edges can only occur left to right (low to
high levels) sequentially across the H-DAG. Without additional ev-
idence from the sequencing reads, the ambiguity of allelic phase
at any level of the graph suggests that all directed edges are possi-
ble. In the following sections we discuss using evidence from the
DNA reads to refine the rules of generating directed edges across
the adjacent levels of the H-DAG.

Continuous and discontinuous DNA fragments
Once the heterozygous alleles are assigned to the skeleton H-DAG,
the HaploMaker algorithm is ready to generate directed edges se-
quentially across the levels of the graph using evidence from the
DNA reads. To illustrate the development of this component of
the algorithm we have focussed on paired-end reads, but a similar
argument applies for longer single-end reads. During the process-
ing of the read evidence, a DNA fragment (matching left and right
paired-end reads) was considered to be continuous if it spanned
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Figure 1: (A) Skeleton of the H-DAG with L pairs of nodes and 2 dummy nodes capping each end of the graph. (B) Skeleton of the H-DAG showing the
random assignment of heterozygous pairs of alleles to each pair of nodes.

consecutive levels of the H-DAG without loss of coverage across
any of the heterozygous alleles contained in those levels. This is
exemplified in Fig. 2, where the (l − 4, . . . , l + 2) levels of the ex-
ample skeleton H-DAG from Fig. 1 are used. The paired-end reads
(arrows above nodes) are considered continuous DNA fragments
because they span ≥2 consecutive levels (l − 4, . . . , l) of the H-
DAG with read evidence indicating that they also contain the het-
erozygous alleles in those levels.

In contrast, a DNA fragment was considered to be discontin-
uous if it spanned non-consecutive levels of the H-DAG. Discon-
tinuities such as this are common and can arise when the refer-
ence DNA fragment insert size exceeds the aggregate size of the
left and right paired-end read lengths. Figure 2 provides a simpli-
fied example of this where the purple end reads are considered
discontinuous because they span levels (l, l + 1, l + 2) with a dis-
continuity, indicating a lack of coverage across the (l + 1)th level.

Directed edges for continuous DNA fragments
Initially, the HaploMaker algorithm builds directed edges sequen-
tially across levels of the H-DAG spanned by the continuous frag-
ments. Owing to the initial random assignation of allelic phase to
any pair of nodes in the skeleton H-DAG, and the potential of DNA
misalignment or sequencing errors, the number of directed edges
constructed between any 2 consecutive levels of the H-DAG can
vary. Consider the node framework for arbitrary adjacent levels
δ and δ + 1 of the H-DAG and let the set of edges between these
levels be defined by Eδ . On the basis of continuous DNA fragment
evidence, 4 distinct scenarios are possible for the consecutive al-
lele pairs:

1. Unambiguous in phase: Eδ =
{(vδ, vδ+1) | vδ ∈ vδ

i , vδ+1 ∈ vδ+1
i , i = 1, 2}. This indicates that

there is read evidence that the allele pairs are in phase with no
ambiguity and this supports the generation of 2 straight directed
edges (not crossing over) from the parent nodes to child nodes.

2. Unambiguous out of phase: Eδ =
{(vδ, vδ+1) | vδ ∈ vδ

i , vδ+1 ∈ vδ+1
j , i, j = 1, 2; i �= j} . This indicates

that there is read evidence that the allele pairs are out of phase
with no ambiguity, and this supports the generation of 2 directed
edges that cross over from the parent nodes to the child nodes.

3. Ambiguous phase of 1 allele pair: Eδ =
{(vδ, vδ+1) | vδ ∈ vδ

i , vδ+1 ∈ vδ+1
j , i = 1, j = 1, 2; i = j = 2} . This

indicates that there is read evidence suggesting phase ambiguity
of the allele pair at level δ of the graph. This supports the gen-
eration of 2 directed edges using Scenario 1 and a third diagonal
directed edge from 1 parent node to a child node matching the
read evidence.

4. Ambiguous phase of both allele pairs: Eδ =
{(vδ, vδ+1) | vδ ∈ vδ

i , vδ+1 ∈ vδ+1
j , i, j = 1, 2}, indicating that there

is read evidence that suggests phase ambiguity of both allele
pairs and this supports the generation of 4 directed edges using
Scenarios 1 and 2 defined above to match the conflicting read
evidence.

Figure 2 provides a visual representation of the directed edge
types spanning the (l − 4, . . . , l) consecutive levels of an example
H-DAG with the supporting read evidence above the graph nodes.
It should be noted that the mirror version of Scenario 3 is also
possible but has been omitted for brevity.

Induced directed edges for discontinuous
fragments
After generating all the directed edges based on evidence from the
continuous DNA fragments, the H-DAG will most likely contain
discontinuities or no directed edges between some adjacent lev-
els. When paired-end read evidence indicates that there are dis-
continuous DNA fragments spanning these levels (see Fig. 2), then
the HaploMaker algorithm builds new "induced directed edges" to
connect the source node containing the heterozygous allele in the
left paired-end read to the target node containing the heterozy-
gous allele in the right paired-end read. For cases where there
are overlapping discontinuous fragments the algorithm processes
each of them sequentially by the order of their target node lev-
els (from low to high levels) and if 2 or more fragments have the
same target level then the processing is ordered by their source
node level (from high to low levels). After processing fragments
their induced edges immediately become part of the pre-existing
directed edge framework for the H-DAG.

To process an individual discontinuous fragment, we designate
the source node as the initial parent node and induce new edges
between subsequent levels of the H-DAG using a “look-ahead” pre-
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Figure 2: H-DAG with generated directed edges based on evidence from continuous DNA fragments (arrows above nodes from levels l − 4, . . . , l) that
span ≥2 consecutive levels. Purple paired-end reads are considered discontinuous because they span non-consecutive levels.

order depth first traversal approach [25, 26]. The first component
of the approach involves a single-level look-ahead algorithm that
uses knowledge of the pre-existing directed edges between the
source and target nodes to induce new edges to potential children
in the adjacent levels of the H-DAG. Once the directed edges are
built, the pre-order depth traversal algorithm then visits each of
the children, assigns them as parents, and the process is repeated
until the target level is encountered.

Owing to the simplistic nature of the H-DAG framework, the
look-ahead algorithm to find potential children nodes and induce
new edges can be easily defined for any 2 adjacent levels within
the source node and target node defined by the discontinuous
fragment. Suppose read evidence indicated that the source node
was vl

i , with source node sibling vl
j, i, j ∈ 1, 2 j �= i, and traversal

was required to target node vm
k , where m − l > 1 and k ∈ 1, 2. Addi-

tionally, let Elm be the set of pre-existing directed edges between
levels l and m of the H-DAG. During the recursive depth traversal,
consider a parent node vδ

i where i ∈ 1, 2 and l ≤ δ < m; then we
can define an edge-inducing algorithm between adjacent levels δ

and δ + 1 that respects pre-existing edges and ambiguity of read
evidence, namely:

getPotentialChildren (parent node vδ
i , sibling node vδ

j)
if vδ

j has an observed allele AND has directed edges to both child
nodes at level δ + 1 then

update Elm to include directed edges from parent node vδ
i to

both nodes at level δ + 1
else if vδ

j does not have an observed allele OR has 0 or 1 edge to
child nodes at level δ + 1 then

for any child node at level δ + 1 with no parent AND is not the
sibling of the target node

update Elm to include a directed edge from the parent node vδ
i

to that child node.
end for
end if
Given pre-existing edges in the H-DAG, Fig. 3 presents vari-

ous examples of how the "getPotentialChildren" algorithm induces
new edges between a source node and target node. In Fig. 3A, a
previously known directed edge exists between alleles T and C
at the l and l + 1 levels of the graph, suggesting that there is un-
ambiguous phase of the allelic pairs between these levels. The
getPotentialChildren algorithm indicates that we then require a
directed edge from the source node with allele A at level l to al-
lele T at the l + 1 level to match the unambiguous phase. Using
pre-order depth traversal, the node containing allele T becomes
the new parent node and a single induced directed edge is gen-

erated from T to the target node containing allele G to align with
the read evidence from the discontinuous fragment. In Fig. 3B the
pre-existing directed edges indicate that there is phase ambiguity
of the allelic pairs between levels l and l + 1. The getPotentialChil-
dren algorithm then induces directed edges from the source node
containing allele A to both nodes at level l + 1. The pre-order depth
traversal algorithm then sequentially assumes that each node at
level l + 1 is a parent node and generates a directed edge from
each of the nodes to the target node. Figure 3C follows identically
to Fig. 3B due to the phase ambiguity of the allelic pairs between
levels l and l + 1 and Fig. 3D follows identically from Fig. 3A.

The combined pre-order depth traversal, along with the get-
PotentialChildren method, is then repeated for each discontinu-
ous DNA fragment along the H-DAG. Once complete, the H-DAG
has obtained maximum connectivity between levels based on the
complete DNA evidence from continuous and discontinuous frag-
ments. Within this final H-DAG, disconnected levels may still exist
where there is lack of read evidence to generate directed edges.
As a consequence the H-DAG may be partitioned into several sub-
graphs based on distinct genomic "blocks," where each block con-
tains consecutive levels of the original H-DAG with ≥1 directed
edge between each level. Without loss of generality an H-DAG
block will be defined as a sub-graph Gb = (Vb, Eb) containing Lb

levels. The remaining algorithmic sections discuss an approach
for the numerical estimation of edge weights in a general H-DAG
block as well as the path traversal optimization technique to ap-
propriately phase the heterozygous alleles within each block.

Estimating directed edge weights
For each of the directed edges within an H-DAG block, we now
derive a locally based probabilistic edge weight function based
on cumulative DNA evidence and ambiguity of allelic phase be-
tween adjacent levels. Let vδ

i ∈ Vb be a source node within an H-
DAG block and eδ

i j = (vδ
i , vδ+1

j ) ∈ Eb, 1 ≤ δ < L, i, j ∈ 1, 2 be an ex-
isting directed edge between any 2 adjacent levels. We then define
n(eδ

i j ) to be its edge counter, initialized at 1, and incremented by
1 every time eδ

i j is spanned by a DNA fragment. This initializa-
tion provides a convenient mechanism for ascribing a minimum
numerical value for induced directed edges generated from dis-
continuous DNA fragments.

We then define a general probabilistic edge weight function as

wδ
i j = Pr

(
eδ

i j

)
=

n
(
eδ

i j

)
∑

k n
(
eδ

ik

) , (1)
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Figure 3: Various H-DAG possibilities with induced directed edges linking the discontinuous purple DNA fragment from the source node containing
allele A at level l to target node containing allele G at level l + 2. Black edges are pre-existing directed edges; blue edges are new induced directed edges
using the getPotentialChildren algorithm.

where the denominator
∑

k n(eδ
ik ) represents the sum of the ex-

isting edge counters emitting from the source node. When there
is only 1 directed edge emitting from the source node, e.g., where
there is an unambiguous phase between adjacent pairs, the nu-
merator and denominator of this edge weight become identical
and wδ

i j = 1. This immediately indicates that edge weights <1 are
derived from adjacent phase-ambiguous allelic pairs only.

To exemplify the ambiguous allele pairs case for continuous
DNA fragments, consider the l − 1 and l levels of the H-DAG in
Fig. 3. The source node vl−1

2 containing allele A emits 2 directed
edges, el

21 and el
22. Let n(el

21) and n(el
22) indicate their associated

edge counts based on the cumulative read evidence for the exis-
tence of each directed edge. Using equation (1) the 2 edge weights
are simply estimated by the local probabilities

wl
21 = n

(
el

21

)

n
(
el

21

) + n
(
el

22

) , wl
22 = n

(
el

22

)

n
(
el

21

) + n
(
el

22

)

and have the property, wl
21 + wl

22 = 1. Similarly, in Fig. 3C between
the l and l + 1 levels of the H-DAG there are induced edges formed
between a discontinuous DNA fragment, and the 2 edges emitting
from source node vl

1 indicate some phase ambiguity between the
allele pairs. Because there are no DNA fragments spanning the
edges, the counters n(wl+1

12 ) and n(wl+1
11 ) would both remain at their

initial value of 1. Using equation (1), this immediately indicates
that the induced edge weights are wl+1

12 = wl+1
11 = 0.5 and this

probabilistic value would be assigned to all pairs of induced edges
emitting from the same parent node between adjacent levels in
the H-DAG.

Minimum weighted path
Once the calculation of all edge weights is complete, a min-
imum weighted path can be algorithmically determined. Let
Pb = {p1, p2, . . . , pt} be the complete set of distinct paths
through the block. For any path pk ∈ Pb, a unique set of nodes
Vb:k ⊂ Vb, such that Vb:k = {v1

k, v2
k, . . . , vLb

k }, are visited across
the Lb levels, where, at any level of the sub-graph, lb say, vlb

k

is 1 of the nodes from the pair (vlb
1 , vlb

2 ). Similar to the com-

plete graph, for the purpose of optimization, the sub-graph is
also capped at each end with dummy nodes (Startk, Endk). As
the path pk traverses across a unique set of nodes, it also
comprises a unique set of directed edges defined by Eb:k ⊂
Eb, where Eb:k = {(Startk, v1

k ), (v1
k, v2

k ), . . . , (vLb−1
k , vLb

k ), (vLb
k , Endk )} =

{(Startk, v1
k ), e1

k, . . . , eLb−1
k , (vLb

k , Endk )}. We define the likelihood of
this path as

Q (pk ) = Pr (pk ) =
∏Lb−1

lb=1
Pr

(
elb

k

)
=

∏Lb−1

lb=1
wlb

k , (2)

where wlb
k = Pr(elb

k ), the local probability or weight of the directed
edge that traverses from level lb − 1 to level lb of the H-DAG block.
Determining the appropriate phase of the haplotype within the H-
DAG block is then equivalent to finding the path with maximum
likelihood over the complete set of paths.

For the purpose of utilizing a known path traversal algorithm
we can equivalently frame this optimization as a minimization
problem. Let Sb = {s1, s2, . . . , st} be a set of values for the com-
plete set of path traversals through the H-DAG block such that
S (pk ) = − log Q(pk ). Determining the optimal path through the
H-DAG block is then equivalent to finding the minimum negative
log-likelihood path over the complete set of paths, namely,

minsk∈Sb
{S (pk ) , k = 1, . . . , t; S (pk ) =

∑Lb−1

lb=1
vlb

k }, (3)

where vlb
k = − log(wlb

k ) ≥ 0 ∀ k, lb define the directed edge weights
used in the optimization algorithm. Optimization of equation (3)
can then equivalently be viewed as finding the path of minimum
weight through the H-DAG block. Because the H-DAG block has no
directed cycles it can be immediately topologically sorted and we
can then use an established backtracking algorithm to perform
the optimization [16]. This backtracking algorithm is also known
to be efficient, requiring O(n(Eb) + n(Vb)) linear time, where n(Eb)
and n(Vb) are the number of directed edges and nodes in the H-
DAG block.

After the backtracking algorithm completes, the first haplotype
is obtained by traversing through the H-DAG block on the min-
imum weighted path and selecting 1 node at each level on the
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Figure 4: Workflow schematic of the HaploMaker algorithm.

path. The corresponding second haplotype is then obtained by
traversing the minimum weighted path and selecting the alter-
nate allele (the allele not on the path) at each level of the H-DAG.
The backtracking algorithmic process is then repeated for each
H-DAG block. The algorithm halts once the minimum weighted
path is obtained for the final H-DAG block containing the right-
hand dummy node for the chromosome. Figure 4 presents a flow
chart of the complete HaploMaker algorithm for each chromo-
some from the initial variant calling through to the repeated con-
struction of 2 sequences for each haplotype block.

Algorithm accuracy and statistics
To assess the accuracy of the algorithms to correctly phase the
alleles for each haplotype, we used the well-known “switch er-
ror” accuracy measure. For any haplotype, the switch error is de-
fined as the number of times the predicted haplotype allele is dis-
concordant with the true allele obtained from the phased VCF
file. The switch error is then averaged as the number of errors
per megabase pair. As HaploMaker attempts to construct longer
haplotypes through inducing new edges, other useful statistics
for comparing algorithms were also calculated. These included
the well-known N50, the mean haplotype length in megabase
pairs, and maximum haplotype length achievable with each algo-
rithm. An R-based computational implementation of these statis-
tics (comparison.R) is available at [27].

Results
Individual NA12877 paired-end reads
The human reference genome version 38 was used to map 162.6
million (10×) and 407.5 million (25×) paired-end reads from
NA12877 individuals with 83.6% and 83.9% of reads, respectively,
aligned concordantly. The mean gap-compressed sequence dis-
similarity rate was estimated at 0.25%, and this was similar to
previous reports of heterozygosity levels in humans [28]. A total
of 1.86% of reads contained small INDELs of ≤20 bp. The me-
dian insert size (DNA fragment length) was estimated to be 316
bp. The sorted BAM file, along with the NA12877 phased VCF file,
was then given as input to HaploMaker and the comparative hap-
lotype construction software, HapCompass, HapCUT2, and What-
sHap (see Supplemental Material for execution commands). All

algorithms were computationally conducted using a cloud-based
Linux instance with 2 cores and 32 GB RAM. HaploMaker and Hap-
Compass were the most computationally expedient, with Hap-
CUT2 and WhatsHap taking longer to execute.

An R script (comparison.R), available at [27], was used to pro-
cess the output of the 4 haplotype algorithms. The switch error
rate, the N50 of haplotype blocks, and other useful statistics were
extracted and are presented in Table 1. The table demonstrates
that HaploMaker had the lowest switch error rate compared to the
other algorithms. For 10× data, HaploMaker, HapCompass, and
WhatsHap generated equivalent maximum haplotype lengths of
2,770 bp. For 25× data, HaploMaker and HapCompass generated
larger haplotype blocks (≤26,188 bp) compared to the other 2 algo-
rithms. The table also indicates that HapCompass and WhatsHap
had substantially higher switch error rates compared to Haplo-
Maker and HapCUT2. Although HapCUT2 had a competitively low
switch error rate, it also had shorter and fewer haplotype blocks.

Table 1 also indicates that the increase in read coverage to 25×
had a negligible effect on the accuracy of all 4 algorithms with
only a slight increase in the switch error rate. However, comparing
the N50 and the mean and maximum haplotype length, increas-
ing coverage definitively generated longer haplotype blocks, with
HaploMaker and HapCompass generating the highest mean hap-
lotype lengths. Maximum haplotype lengths exceeded 9 times the
maximum haplotype length obtained from 10× read coverage.

To more rigorously assess the changes in accuracy as the hap-
lotype block size increased, Figs 5 and 6 present the mean switch
error rate of each of the algorithms against a class of haplotype
lengths (in number of base pairs). The absolute numbers of hap-
lotypes in each haplotype length class obtained from the 4 al-
gorithms are given in Supplementary Tables S1 and S2 for the
10× and 25× read coverages, respectively. The figures revealed
that, as haplotype blocks became longer, HaploMaker maintained
a competitively low switch error rate compared to the other 3
algorithms, indicating that the HaploMaker algorithm preserves
accuracy as the size of haplotypes increases. The switch error
rate obtained from the HapCUT2 algorithm remained competi-
tive against HaploMaker for shorter haplotype block lengths. How-
ever, when the haplotype block length increased to 1,500 and 3,000
bp at 10× and 25× coverage, respectively, the switch error rate
of HapCUT2 became higher than that of HaploMaker. WhatsHap
and HapCompass were the least competitive across all haplotype
block size lengths.

Individual NA12878 PacBio CLR/subreads
The total number of PacBio reads was 64 million, and their median
and mean length was 3,611 and 5,005 bp, respectively. A total of
92% of reads contained INDELs, and their size varied from 1 up to
10,000 bp. The original alignment to the hg19 human genome ref-
erence was performed using BLASR [29] by the authors [22] with
sequencing coverage estimated to be 65×. The sequencing error
rate of PacBio subreads was reported to be ∼14% [30]. Owing to the
lack of long-read PacBio-specific settings in HapCompass, we only
compared HaploMaker with HapCUT2 and WhatsHap. We used a
cloud-based instance of 4 cores and 32 GB of RAM. The computa-
tional implementation of the HaploMaker algorithm executed in
a similar amount of time to HapCUT2 and 2.5 times faster than
WhatsHap.

An R script (comparison2.R), available at [27], was used to pro-
cess the output of the 3 haplotype-phasing algorithms. Table 2
contains the switch error rate, the N50 of haplotype blocks, and
other useful statistics. The table indicates that HaploMaker was
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Table 1: Comparison of various statistics obtained from the output of the 4 haplotype-phasing algorithms applied to individual NA12877
10× and 25× coverage short paired-end reads

Read coverage Algorithm
Switch error rate

(per Mb) N50 (bp)
Haplotype length (bp) Running time

(min)
Mean Maximum

10× HaploMaker 32.1 326 251 2,770 10
HapCompass 143.9 329 246 2,770 10
HapCUT2 43.0 296 181 2,310 15
WhatsHap 84.2 329 252 2,770 35

25× HaploMaker 38.0 496 331 26,188 25
HapCompass 157.9 494 326 26,188 30
HapCUT2 47.6 420 269 5,985 30
WhatsHap 77.2 459 307 14,339 135

Figure 5: Comparison graph showing the average switch error rate for different haplotype length classes across all 4 haplotype-phasing algorithms
applied to individual NA12877 using 10× short paired-end reads.

superior in generating longer haplotype blocks while maintaining
a competitively low switch error rate. In particular, the N50 and
mean haplotype length obtained from the HaploMaker algorithm
was ≥30% longer than HapCUT2 and 300% longer than What-
sHap. These increased haplotype lengths obtained from Haplo-
Maker also ensured greater coverage of the total human reference
genome.

Compared to HaploMaker, HapCUT2 had a significantly lower
switch error rate and it maintained this reduced rate through-
out the partitioned class of haplotype lengths (Fig. 7). In this fig-
ure we only compared blocks ≤250 kb because HaploMaker was
the only algorithm to be able to generate longer blocks >250 kb
(see Supplementary Table S3). Table S3 indicates almost a 2-fold
increase in the number of short haplotype block lengths gener-
ated by HapCUT2 compared to HaploMaker, suggesting that for
sequencing reads with high error rates, the HaploMaker algorithm
trades off some accuracy while it attempts to generate longer hap-
lotype blocks.

Individual NA12878 PacBio HiFi reads
A total of 1.5 million PacBio HiFi reads with a mean length of 10 kb
were mapped to the human genome reference hg19 using the
pbmm2 aligner from PacBio [31]. The mean gap-compressed se-
quence identity was 98.6%, and this was closer to human genome
polymorphism compared to the PacBio subreads. Sequencing cov-
erage was estimated ∼5× and the accuracy of HiFi reads was
∼99.8%. This is much higher than the accuracy of traditional
PacBio subreads [32], and as a consequence the algorithms are
expected to construct more accurate haplotype blocks. All 3 al-
gorithms were executed using identical hardware used to analyse
the PacBio subread data. Because there were much fewer reads
compared to previous experiments, all 3 algorithms had reduced
execution times. HaploMaker completed in 5 minutes, with Hap-
CUT2 and WhatsHap completing in 14 and 18 minutes, respec-
tively (see Supplemental Material for execution commands).

An R script (comparison3.R), available at [27], was used to pro-
cess the output of the 3 haplotype-phasing algorithms. and Table 3



8 | GigaScience, 2022, Vol. 11, No. 1

Figure 6: Mean switch error rate for different haplotype length classes across all 4 haplotype-phasing algorithms applied to individual NA12877 using
25× short paired-end reads.

Table 2: Comparison of various statistics obtained from the output of the 3 haplotype-phasing algorithms applied to individual NA12878
PacBio subreads

Algorithm
Switch error rate

(per Mb) N50 (bp)

Mean
haplotype
length (bp)

Total genome
coverage (Gb)

Maximum
haplotype
length (bp)

Running time
(min)

HaploMaker 27.4 46,787 25,490 1.73 351,891 90
HapCUT2 2.0 37,251 19,560 1.66 299,882 167
WhatsHap 21.0 14,828 4,737 1.23 265,020 415

contains the switch error rate and other useful output statistics.
Owing to the sequence accuracy of the HiFi reads, the switch error
rates of all 3 methods were significantly lower compared to the
switch error rates obtained from analysing the PacBio subreads
and paired-end read data sets. Despite reduced sequencing cov-
erage, HaploMaker managed to construct ≥2 times longer mean
haplotype lengths and N50 than the competing algorithms. As a
result HaploMaker assembled a 1.54-Gb genome compared to 1.34
and 1.14 Gb genomes generated from the 2 other algorithms, a
gain of ≤35% coverage of the human genome.

Figure 8 presents the switch error rate of each of the algo-
rithms against the haplotype length, with the number of haplo-
type lengths in each class given in Supplementary Table S4. In
the figure we only compared blocks ≤180 kb because HaploMaker
was the only algorithm able to generate longer blocks >180 kb
(see Supplementary Table S4). The figure indicates that both Hap-
loMaker and WhatsHap maintained low switch error rates across
all length classes, with HaploMaker being more accurate. Hap-
CUT2 had the lowest switch error rate up to 120 kb but then
generated a significantly larger switch error rate (10× worse) for

>120 kb haplotypes compared to the other 2 algorithms. Simi-
lar to the PacBio subread experiment, WhatsHap and HapCUT2
generated substantially more shorter haplotype blocks than Hap-
loMaker. However, in contrast to the subread experiment, Hap-
loMaker maintained a low switch error rate, suggesting that the
quality of HaploMaker’s haplotype-phasing algorithm is dramati-
cally increased when the accuracy of the sequencing reads is im-
proved.

Discussion
In this research we presented an improved reference sequence–
based haplotype construction algorithm, HaploMaker, that ac-
curately assembles haplotypes of diploid genomic sequences by
framing the problem as an edge-weighted DAG and phasing hap-
lotypes using optimal path traversal algorithmic techniques. The
novel strategy of inducing new directed edges based on read evi-
dence to resolve disconnected levels of the H-DAG enabled Hap-
loMaker to accurately phase longer genomic regions compared
to other leading reference-based sequence algorithms, HapCUT2,
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Figure 7: Comparison graph showing the average switch error rate of different haplotype length groups for 3 haplotype-phasing algorithms applied to
individual NA12878 PacBio subreads.

Table 3: Comparison of various statistics obtained from the output of the 3 haplotype-phasing algorithms applied to individual NA12878
PacBio HiFi reads

Algorithm
Switch error rate

(per Mb) N50 (bp)

Mean
haplotype
length (bp)

Total genome
coverage (Gb)

Maximum
haplotype
length (bp)

Running time
(min)

HaploMaker 2.6 31,698 15,340 1.54 315,905 5
HapCUT2 1.4 14,081 6,816 1.34 140,731 14
WhatsHap 4.5 12,542 4,369 1.14 183,560 18

HapCompass, and WhatsHap. For PacBio CLR data, the longer
haplotype lengths generated by HaploMaker resulted in an in-
creased switch error rate compared to the other algorithms, sug-
gesting that HaploMaker trades off accuracy for haplotype length
when read sequencing error is high. However, when longer and
more accurate PacBio HiFi reads were used, the mean haplotype
block lengths assembled were substantially greater using Hap-
loMaker with, negligible sacrifice in accuracy. In all experiments
analysed here, longer block lengths generated by the algorithm
also ensured greater coverage of the genome. From a computa-
tional standpoint, the HaploMaker algorithm was shown to scale
well, with a substantial reduction in computing time when longer,
more computationally intensive PacBio reads were used. It is also
important to note that the phasing of INDEL polymorphisms has
been incorporated into the HaploMaker algorithm and it main-
tained a highly competitive accuracy. This is a crucial aspect of
the algorithm because INDELs were the major source of switch
errors from the haplotype construction software compared here
and this issue is also exacerbated when read sequences, such as
PacBio subreads, have a high sequencing error rate [12].

Graph-based frameworks have been widely adopted for popu-
lation and reference-based haplotype assembly of genomes [7, 15,

33]. In this research we focussed on defining the problem as a sim-
plistic DAG that removes the bulk of the complexity that many
graph-based haplotype-phasing algorithms contain [15, 34]. The
look-ahead edge-inducing algorithm contained in HaploMaker
bears resemblance to the divide and conquer strategy used in the
spectral graph–based approach of [33] except HaploMaker recon-
nects pairs of vertices when there is sufficient read evidence to do
so, resulting in longer haplotype blocks. When read sequencing er-
ror is high this generation of longer haplotypes comes at the cost
of reduced accuracy, and we are currently exploring small amend-
ments to the HaploMaker algorithm to ensure that the accuracy
remains competitive.

The length of assembled haplotypes depends on level of
genome heterozygosity, DNA read/fragment length, and coverage
of sequencing used. The human genome has a significantly lower
level of heterozygosity compared to other diploid organisms such
as A. thaliana [35]. Therefore we can expect shorter assembled
haplotypes from human genomic sequences. In our example, us-
ing DNA fragments (insert size) of 316 bp and a paired-end se-
quencing coverage of 10× and 25×, the HaploMaker algorithm
achieved a maximum haplotype length of 2,770 and 26,188 bp,
respectively. While these lengths are short relative to the total
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Figure 8: Mean switch error rate of different haplotype length groups for 3 haplotype-phasing algorithms applied to individual NA12878 PacBio HiFi
reads.

length of a human chromosome, it is sufficient to enable PCR
primer and CRISPR/Cas9 guide RNA-based experiments where a
short homologue-specific sequence around a genomic position is
required [36, 37]. In contrast, when using PacBio with read lengths
of 5 kb average, the HaploMaker algorithm managed to assemble
haplotypes up to 350 kb. This result emphasizes the importance of
sequencing longer reads if a greater haplotype length is required
[1].

We have demonstrated the ability of the HaploMaker algorithm
to accurately assemble human diploid genomic sequences, and
its potential is now being explored for other areas of related ge-
nomic sequence research. For example, the algorithm could be
used to assemble haplotypes for genomes from tetraploid and
hexaploid species, such as wheat, as long as there are sepa-
rate reference sequences for each of the homoeologous copies
of the chromosomes [1]. In cases where a set of genomic se-
quences have been generated from a population of related indi-
viduals, we are exploring the use of the base algorithm of Haplo-
Maker for discovering the most recurring haplotypes among the
population.

Conclusion
By framing the haplotype assembly problem as a DAG and using
a novel edge-inducing strategy for discontinuous DNA fragments,
the HaploMaker algorithm was able to accurately phase long hap-
lotype blocks using short or long sequence reads. The algorithm
was shown to be highly efficient and also has potential to have
an impact in similar genomic sequence research areas where ac-
curate haplotype phasing or selection is required. To ensure the
portability of the HaploMaker algorithm across varying comput-
ing architectures it has been implemented in Java and is available
under MIT license from [27].

Data Availability
The 2 FastQ files and the sorted BAM file relating to the NA12877
individuals are accessible through the NCBI SRA [38]. The VCF files
relating to the individuals NA12877 and NA12878 are publicly ac-
cessible through the Figshare repository [39]. The human genome
reference and its Bowtie2 index were downloaded from the link
within [40].

The Bowtie read alignment software version 2.4.1 was down-
loaded from [41]. Comparative haplotype assembly software, Hap-
Compass version 0.8.2, was downloaded from [42] and required
Java 1.8 or higher to execute. HapCUT2 1.3.3 was compiled from
[43] and for execution required installation of high-throughput se-
quencing tools library htslib from [44]. WhatsHap version 1.1 (lat-
est) depends on Python version 3.6 or higher and C++ compiler
and was installed using pip. pbmm2 version 1.7 was downloaded
and installed from [31].

Availability of Source Code and
Requirements
The HaploMaker source code and Java executable (MFbio.jar file)
are publicly accessible from [27] under MIT license. The result-
ing haplotype output files for all 4 algorithms are accessible from
Figshare [39]. R code to process the output files and generate re-
ports is located at [27] in comparison.R, comparison2.R, and com-
parison3.R.

An archival copy of the code and supporting data is available
via the GigaScience database, GigaDB [45].

Project Name: HaploMaker
Project Home Page: https://github.com/mfruzan/HaploMaker
Operating System: Platform independent
Programming Language: Java

https://github.com/mfruzan/HaploMaker
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Requirements: Java 1.8 or higher
License: MIT
RRID:SCR_021928
Biotools ID: haplomaker

Additional Files
Supplemental Material Contains execution commands for map-
ping sequences to the human genome, execution commands for
all haplotype phasing algorithms, Tables S1-S4.
Supplementary Table S1. Frequency of haplotypes across four
haplotype length classes obtained from the four haplotype phas-
ing algorithms applied to individual NA12877 10x coverage short
paired end reads.
Supplementary Table S2. Frequency of haplotypes across four
haplotype length classes obtained from the four haplotype phas-
ing algorithms applied to individual NA12877 25x coverage short
paired end reads.
Supplementary Table S3. Frequency of haplotypes across four
haplotype length classes obtained from the three haplotype phas-
ing algorithms applied to individual NA12877 PacBio subreads.
Supplementary Table S4. Frequency of haplotypes across four
haplotype length classes obtained from the three haplotype phas-
ing algorithms applied to individual NA12877 PacBio HiFi reads.
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