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Abstract: Low-protein diets (LPDs) are the mainstream treatment for inborn errors of intermedi-
ary protein metabolism (IEIPM), but dietary management differs worldwide. Most studies have
investigated pediatric populations and their goals such as growth and metabolic balance, showing a
tendency toward increasing overweight and obesity. Only a few studies have examined nutritional
status and dietary intake of adult IEIPM patients on LPDs. We assessed nutritional parameters
(dietary intake using a 7-day food diary record, body composition by bioimpedance analysis, and
biochemical serum values) in a group of 18 adult patients with urea cycle disorders (UCDs) and
branched chain organic acidemia (BCOA). Mean total protein intake was 0.61 ± 0.2 g/kg/day (73.5%
of WHO Safe Levels) and mean natural protein (PN) intake was 0.54 ± 0.2 g/kg/day; 33.3% of pa-
tients consumed amino acid (AA) supplements. A totally of 39% of individuals presented a body mass
index (BMI) > 25 kg/m2 and patients on AA supplements had a mean BMI indicative of overweight.
All patients reported low physical activity levels. Total energy intake was 24.2 ± 5 kcal/kg/day,
representing 72.1% of mean total energy expenditure estimated by predictive formulas. The protein
energy ratio (P:E) was, on average, 2.22 g/100 kcal/day. Plasmatic levels of albumin, amino acids,
and lipid profiles exhibited normal ranges. Phase angle (PA) was, on average, 6.0◦ ± 0.9◦. Fat
mass percentage (FM%) was 22% ± 9% in men and 36% ± 4% in women. FM% was inversely and
significantly related to total and natural protein intake. Data from IEIPM adults on LPDs confirmed
the pediatric trend of increasing overweight and obesity despite a low energy intake. A low protein
intake may contribute to an increased fat mass. Nutritional parameters and a healthy lifestyle should
be routinely assessed in order to optimize nutritional status and possibly reduce risk of cardiovascular
degenerative diseases in adult UCD and BCOA patients on LPDs.

Keywords: low-protein diet; nutritional status; adult; inherited metabolic disorders

1. Introduction

Low-protein diets (LPDs) are the main treatment for inborn errors of intermediary
protein metabolism (IEIPM), such as urea cycle disorders (UCDs) and branched chain
organic acidemia (BCOA).

There is a consensus on limiting the natural protein intake, both in pediatric and adult
populations, while the use of amino acid formulas in UCDs and BCOA is still discussed.
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LPDs are individualized for each patient, considering clinical status and individual toler-
ance to toxic metabolites [1]. LPDs may potentially expose patients to the risk of deficiencies
in essential micronutrients, amino acids, and fatty acids [1].

Recent guidelines [2,3] for the management of patients with UCDs and BCOA have
advised a low-protein diet and referred to the World Health Organization (WHO), Food
and Agriculture Organization of the United Nations (FAO), and United Nations University
(UNU) protein and energy requirements [4] (in adult populations, protein requirement is
0.83 g/kg/day; energy requirement is related to physical activity level and body weight).
The use of amino acid formulas is advised when protein requirements are not reached with
only natural protein, calculated as the provision of 20–30% of the total protein intake. The
amount of these formulas is still debated among different metabolic centers [2,3,5].

Another group of IEIPM treated with LPDs is aminoacidopathies such as phenylke-
tonuria (PKU), tyrosinemia type 1 (TYR-1), homocystinuria (HCU), and maple syrup urine
diseases (MSUDs); in these disorders, LPD guidelines are characterized by a very low
natural protein tolerance and a clear prescription of amino acid (AA) formulas specific to
each disease [6–9].

Some studies of dietetic treatment in IEIPM have investigated pediatric populations,
aiming to evaluate growth and metabolic balance [10,11]; in particular, in pediatric and
20-year-old adult methylmalonic and propionic acidemia patients, a higher protein prescrip-
tion was correlated with more acute metabolic decompensations, mitochondrial complica-
tions, and lower height and cognition [12]. A recent meta-analysis of aminoacidopathies
showed a significantly increased BMI in classical PKU pediatric patients compared to
healthy controls [13].

During chronic management of IEIPM, protein adequacy should be carefully moni-
tored, and clinical status and biochemical markers (prealbumin, albumin, and plasmatic
amino acids) should be measured routinely [1]. IEIPM clinicians and dietitians should be
vigilant toward appropriate weight gain during pediatric age and the risk of long-term
overweight and obesity [1].

In European metabolic centers, the implementation of newborn screening has in-
creased the number of treated patients and their life expectancy [14], raising the issue of
evaluating long-term complications in adults.

Nutritional outcomes in adult UCD and BCOA patients treated with LPDs have not
been systematically studied, and there is a lack of studies investigating physical activity
levels as well as overweight or obesity status and cardiovascular risk parameters [15].

Data from adults with PKU on LPDs showed a high prevalence of obesity and over-
weight risk, in particular in women [15–17].

Since growth outcomes in pediatric UCD and BCOA patients are not ideal even if
protein and energy intake meet recommendations [10], it is necessary to better comprehend
how nutritional parameters in adult patients can influence the risk of obesity and cardio-
vascular diseases. Little is known about the long-term effects of LPDs on nutritional status
in IEIPM adult patients, especially in comparison to healthy individuals.

Given that data from the literature are still lacking in adult patients, we performed
a retrospective study to assess nutritional status in a cohort of adults affected by UCDs
and BCOA. We assessed anthropometrics, dietary intake, and body composition, and
we investigated the relationship of these parameters to nutritional outcomes to better
understand the possible long-term nutritional implications of LPDs.

2. Materials and Methods

We retrospectively assessed data from adult patients affected by UCD and BCOA who
were followed at the Inherited Metabolic Rare Diseases Adult Centre of the University
Hospital of Padova.

No exclusion criteria were applied.
The complete medical history and the physical assessment were recorded from

each patient.
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The nutritional assessment included a 7 day food diary record, in which the amount
of every meal’s food component was expressed in grams. These data were then analyzed
by Metadieta® software (Meteda—METEDA S.r.l.Via S. Pellico, 4 63074 San Benedetto del
Tronto (AP),Italy) to calculate the average dietary intake over the 7-day period. The Dietetic
Reference Values (DRVs) of the European Food Safety Authority (EFSA) were considered
for requirements of macro- and micronutrients [18]. Energy requirements were estimated
by using Harris and Benedict’s predictive formula for resting energy expenditure (REE),
then increased by physical activity level (PAL). For single amino acid requirements, we
referred to WHO reports (mg/kg/day) [4].

A mechanical scale with movable weights and an altimeter by Seca® (weight precision: 50 g;
height precision 0.5 cm) were used for the weight and height assessments, respectively.

Body composition was evaluated by measurement of impedance parameters (resis-
tance and reactance) by an Akern® BIA 101 New Edition (sinusoidal 50 kHz waveform
current, intensity 0.8 A). Bioimpedance measurement was assessed after fasting. Qualitative
and quantitative body composition was elaborated by BODYGRAM™ and compared with
normal Caucasian population values [19], in particular for fat mass (FM), free fat mass
(FFM), and phase angle (PA), and derived data such as the free fat mass index (FFMI) and
the fat mass index (FMI) [20].

Blood tests were collected at the same time as clinical and nutritional assessments
by venous puncture after fasting for at least 12 h. The serum parameters were deter-
mined as follows: albumin, transthyretin, total protein, amino acid profile, transaminases,
glucose, triglycerides (TG), total cholesterol (TC), HDL cholesterol (HDL-C), and LDL
cholesterol (LDL-C)).

Data analyses were performed using Microsoft® Excel 2019 and Prism 9. A descriptive
statistical study of the sample was completed by using the parameters of centralization
(mean and median) and dispersion (standard deviation, maximum, and minimum), accord-
ing to variable type.

T-tests were used to compare means of different subgroups, and Pearson’s test was
used to establish correlations between FM% and total protein intake, natural protein intake,
and BMI (p value < 0.05, confidence interval 0.95).

3. Results

We recorded data from 18 adult patients with UCDs and BCOA.

3.1. General Characteristics, Dietray Intake, Biochemical Parameters and Body Composition
3.1.1. Subject Characteristics

The general characteristics of the subjects are summarized in Table 1.

Table 1. Patients’ general characteristics: sex (55.5% men 44.4% women); age (years); disease (OMIM;
33.3% organic acidemias, 66.7% urea cycle disorders); body mass index (kg/m2); energy intake
(kcal/kg/day); natural protein intake (g/kg/day); protein equivalent intake (g/kg/day, only 33.3%
of subjects); total protein intake (g/kg/day); physical activity level (sedentary, active or moderately
active, vigorous); type of feeding (orally feeding and/or tube feeding).

Patient Sex Age Disease
Body
Mass
Index

Energy Intake
(kcal/kg/day)

Natural
Protein
Intake

(g/kg/day)

Protein
Equivalent

Intake
(g/kg/day)

Total
Protein
Intake

(g/kg/day)

Physical
Activity Level

Type of
Feeding

1 M 19

Methylmalonic
acidemia—

Cobalamin C type
OMIM 277400

24.4 27.3 0.89 – 0.89 Sedentary Orally
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Table 1. Cont.

Patient Sex Age Disease
Body
Mass
Index

Energy Intake
(kcal/kg/day)

Natural
Protein
Intake

(g/kg/day)

Protein Equivalent
Intake

(g/kg/day)

Total
Protein
Intake

(g/kg/day)

Physical
Activity Level

Type of
Feeding

2 F 21
Glutaric aciduria

type 1
OMIM 231670

23.5 15.5 0.56 – 0.56 Sedentary Orally

3 M 39
Ornithine

transcarbamylase
OMIM 300461

27.0 18.7 0.38 – 0.38 Sedentary Orally

4 F 21 Citrullinemia
OMIM 215700 28.8 18.6 0.33 0.10 0.43 Sedentary Orally

5 M 28 Propionic acidemia
OMIM 606054 25.2 28 0.45 0.35 0.80 Sedentary Orally

6 M 34
Argininosuccinic

aciduria
OMIM 207900

24.4 22.6 0.59 – 0.59 Sedentary Orally

7 F 38
Argininosuccinic

aciduria
OMIM 207900

30.8 16.2 0.32 – 0.32 Sedentary Orally

8 M 36

Methylmalonic
acidemia—

Cobalamin B type
OMIM 607568

28.1 20.9 0.45 0.20 0.65 Sedentary Orally

9 F 26
Argininosuccinic

aciduria
OMIM 207900

27.1 27.9 0.39 0.12 0.51 Sedentary Orally

10 F 26

Methylmalonic
acidemia—

Cobalamin B type
OMIM 607568

23.9 27.4 0.74 – 0.74
Sedentary—

mobilization on
wheelchair

Orally

11 M 19
Argininosuccinic

aciduria
OMIM 207900

20.7 31.2 0.66 – 0.66 Sedentary Orally

12 M 17
Argininosuccinic

aciduria
OMIM 207900

21.2 26 0.61 – 0.61 Sedentary Orally

13 F 34
Argininosuccinic

aciduria
OMIM 207900

18.1 34.2 0.64 – 0.64 Sedentary Orally

14 F 35 Arginase deficiency
OMIM 207800 27.4 21.3 0.43 0.36 0.79 Sedentary Orally

15 M 18
Argininosuccinic

aciduria
OMIM 207900

24.5 22.7 0.44 – 0.44 Sedentary Orally

16 M 28 Citrullinemia
OMIM 215700 32.1 21.8 0.34 – 0.34 Sedentary Orally

17 F 39 Isovaleric acidemia
OMIM 243500 21.4 21 0.81 – 0.81 Sedentary Orally

18 M 32
Ornithine

transcarbamylase
OMIM 300461

20 33.7 0.62 0.16 0.79 Sedentary Orally

Medium
values 28.6 24.9 23.7 0.54

0.22 referred to
subjects on AA

supplementation
(33.3%)

0.61

All individuals were Caucasian on LPDs; they each had a pediatric diagnosis based
on clinical symptoms, and none were detected using NBS. A total of 33.3% of patients were
affected by organic acidemias and 66.7% by UCDs. Their median age was 28.6 ± 8 years.
Pharmacological and nutritional therapy started between 0 and 7 years of age. All patients
were fed orally. None of the individuals experienced acute metabolic decompensation
during the two years preceding the evaluation. All patients reported low physical activity
level (PAL) and hypokinetic lifestyle; one subject presented difficulty in ambulation.
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The median BMI was 24.9 ± 3.8 kg/m2; 55.6% of individuals presented normal BMI
(18.5 < BMI < 24.9 kg/m2), 27.7% were overweight (25 < BMI < 29.9 kg/m2), 11.1% presented
obesity I grade (30 < BMI < 34.9 kg/m2), and 5.5% were underweight (BMI < 18.5 kg/m2).

3.1.2. Dietary Intake

The LPDs included low-protein foods in 61% of patients; 33.3% consumed amino
acid (AA) supplements specific to disease, and 66.7% followed LPDs with only natural
protein intake.

All AA formulas used contained additional micronutrients and carbohydrates (mal-
todextrins).

The mean daily natural protein (NP) intake was 0.54 ± 0.18 g/kg/day; the mean
protein equivalent (PE) provided by amino acid supplements was 0.22 ± 0.13 g/kg/day
(for those on AA supplements). As reported in Figure 1a, the mean total protein in-
take was 0.61 ± 0.18 g/kg/day and, compared to WHO Safe Levels for adult subjects
(0.83 g/kg/day), it provided 73.5% of recommended values [4].
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Figure 1. Description of protein intake: (a) total protein intake of all subjects (0.61 g/kg/day) and 
WHO Safe Levels (0.83 g/kg/day); (b) protein intake in patients without amino acid 
supplementation (0.58 g/kg/day) and WHO Safe Levels (0.83 g/kg/day); (c) protein intake in patients 
with amino acid supplementation (natural protein intake = 0.44 g/kg/day, equivalent protein intake 
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Figure 1. Description of protein intake: (a) total protein intake of all subjects (0.61 g/kg/day) and
WHO Safe Levels (0.83 g/kg/day); (b) protein intake in patients without amino acid supplementation
(0.58 g/kg/day) and WHO Safe Levels (0.83 g/kg/day); (c) protein intake in patients with amino acid
supplementation (natural protein intake = 0.44 g/kg/day, equivalent protein intake = 0.22 g/kg/day,
and total protein intake = 0.66 g/kg/day) and WHO Safe Levels (0.83 g/kg/day).
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The group of patients on LPDs with just NP showed an NP intake of 0.58 ± 0.18 g/kg/day
(Figure 1b). Patients on LPDs with AA supplements presented an NP intake of 0.44 ±0.1 g/kg/day
and a total protein intake of 0.66 ±0.16 g/kg/day, closer to WHO Safe Levels [4] (Figure 1c).

Patients affected by BCOA showed a total protein intake (0.74 ±0.12 g/kg/day) higher
than that of UCD patients (0.54 ± 0.16 g/kg/day), given that both group of patients
received AA supplementation at the same rate (33.3% of UCD and OA patients).

Patients on AA supplements presented a mean BMI of 26.1 ± 3.2 kg/m2; patients
without AA supplements presented a mean BMI of 24.3 ± 4 kg/m2.

Total daily energy intake (TDEE) was 24.2 ± 5.4 kcal/kg/day, representing 72.1% of
the mean total energy expenditure estimated by reference standards. The group of patients
on LPDs with just NP presented a TDEE of 23.2 kcal/kg/day, and the group with AA
supplements showed a TDEE of 26.3 kcal/kg/day, without significant differences between
the two.

The protein–energy ratio (P:E) was, on average, 2.22 g/100 kcal/day.
The mean intake of single essential AAs from natural protein food is reported in

Figure 2, compared to reference values [4].
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Figure 2. Essential amino acid intakes from natural protein foods compared to reference values
(mg/kg/day).

Mean leucine, isoleucine, and valine intakes were lower than requirements [4], as well
as mean intakes for lysine, methionine, and threonine. Mean tryptophan and phenylalanine
intakes were closer to reference values. Only 27.8% of patients met branched-chain AA
(BCAA) reference values. In the group of patients with just NP (Figure 3a), the BCAA
median intake was lower than requirements (leucine intake = 41.1 mg/kg/day, isoleucine
intake = 22.4 mg/kg/day, and valine intake = 24.9 mg/kg/day). In the AA supple-
mentation group, instead, the median BCAA intake exceeded the requirements (leucine
intake= 67.9 mg/kg/day, isoleucine intake = 32 mg/kg/day, and valine intake = 41.9 mg/kg/day),
while median BCAA intake from NP was lower than requirements (Figure 3b). BCAA
intake from natural proteins was significantly lower in patients with AA supplementation
than in those with only NP intake (p = 0.01).
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Figure 3. Branched-chain amino acid (BCAA) intakes compared to reference values (mg/kg/day) in
a group of patients with just NP intake (a) and in a group of patients with AA supplementation (b).

The averages total carbohydrate and fat percentages of energy intake were, respec-
tively, 47.3% (of which sugars were 14.4% and fiber was 14 g/day) and 31.1% (EFSA
reference intake (RI) range for total carbohydrates: 45–60% of energy intake; EFSA RI
range for total fat: 20–35% of energy intake) [18]. In patients with AA supplementation,
the energy distribution was as follows: fat: 27%; carbohydrates: 44.9% (sugars 20.4% and
fiber 15 g/day); in patients without supplementation: fat: 33%; carbohydrates: 48.5%
(sugars 13%, fiber 13.4 g/day). The sugar percentage of energy intake was significantly
higher in patients with AA supplementation (p = 0.03).

For those on AA supplements, AA formulas provided, on average, 8% of the total
energy intake (140 kcal/day, maltodextrins 20.7 g, lipids 0 g, and protein equivalent 14.2 g).

All patients received micronutrient supplementation from vitamins and mineral sup-
plements and/or AA-specific supplements enriched in micronutrients. The micronutrient
supplementation used was specific to patients on LPDs but not to those of adult age.
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3.1.3. Biochemical Parameters

All patients’ biochemical parameters are summarized in Table 2.

Table 2. Biochemical parameters and reference values.

Parameter Sample Median Value ± SD Reference Values

Albumin 41.8 ± 3.5 g/L 35–52 g/L

Total protein 72.7 ± 4.5 g/L 64–83 g/L

Transthyretin 278 ± 70.2 mg/L 200–400 mg/L

Total cholesterol 4.5 ± 1.7 mmol/L 2.00–6.19 mmol/L

HDL cholesterol 1.1 ± 0.3 mmol/L 0.3–0.8 mmol/L

Triglycerides 1.2 ± 0.6 mmol/L <1.69 mmol/L

Glucose 4.8 ± 0.6 mmol/L 3.7–5.6 mmol/L

Regarding BCAA plasmatic levels, 56% of patients were within reference values for
leucine, 72% for isoleucine, and only 39% for valine.

A total of 83% presented phenylalanine and threonine within reference values, and 78%
for methionine.

AA plasmatic levels are reported in Table 3. Interestingly, the median BCAA plasmatic
levels in patients with AA supplementation were lower than reference values; instead,
the median BCAA plasmatic levels of patients without AA supplementation were within
reference range values, even though we did not find a statistically significant difference
between the two subgroups.

Table 3. Plasmatic amino acid levels and reference values, in all subjects and in the two different
groups with and without AA supplementation (µmol/L).

Sample Median
Value ± Standard

Deviation

Patients on AA
Supplementation

(39%)

Patients without AA
Supplementation

(61%)

Reference
Values

Leucine 80.8 ± 33.1 76 ± 36.5 83.2 ± 36.5 78–160

Isoleucine 66 ± 73.9 35.3 ± 15 81.3 ± 15 34–84

Valine 145.6 ± 62.8 136.8 ± 69.2 150 ± 69.2 143–352

Lysine 132.7 ± 68.6 156.2 ± 69.1 121 ± 69.1 111–248

Methionine 41.7 ±52.2 22,7 ± 6,7 51.2 ± 6.7 14–49

Threonine 108.6 ± 35.8 110.8 ± 32.7 107.4 ± 32.7 72–168

Phenylalanine 45.6 ± 9.9 41 ± 12.3 47.9 ± 12.3 39–74

3.1.4. Body Composition

With regard to BIA analysis, the phase angle (PA) was 6.0◦ ± 0.9◦ (women: 5.7◦ ± 0.7◦;
men: 6.2◦ ± 0.9◦), as reported in Figure 4a with reference values [20].
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women 5.5 ± 0.7); (b) fat mass percentage (men 22 ± 9; women 36 ± 4); (c) free fat mass index
(men 19 ± 1.5; women 17 ± 1); (d) fat mass index (men 5.7 ± 3; women 10 ± 2).

Fat mass (FM) percentage was 36 ± 4 FM% in women and 22 ± 9 FM% in men, which
are higher than reference values [19] (Figure 4b).

The FM index (FMI) was calculated in relation to height squared: 10 ± 2 kg/m2 in
women and 5.7 ± 3 kg/m2 in men (Figure 4c). FM% and FMI were, on average, higher than
normal reference values [19], especially in the group of patients with AA supplementation
(FM% = 27 ± 10).

The FFM index (FFMI) related to height squared was 17.4 ± 1 kg/m2 in women
and 19 ± 1 kg/m2 in men (Figure 4d).

Correlations between natural and total protein intake (g/kg/day) and FM% are shown
in Figure 5a,b: our patients’ trends revealed that the increase in total protein intake corre-
sponded to a decrease in FM% (r = −0.560, p = 0.037), as well as to a decrease in natural
protein intake (r = −0.599, p = 0.024).

A positive correlation between BMI and FM% was found (r = 0.843, p < 0.001)
(Figure 5c).
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Figure 5. Correlations between body composition and protein intake and BMI: (a) FM% and total
protein intake; (b) FM% and BMI; (c) FM% and natural protein intake.
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4. Discussion

Our study evaluated anthropometrics, dietary intake, and body composition in adult
patients with UCDs and BCOA on LPDs since a pediatric age. Adults with UCDs and
BCOA represent a new growing population due to newborn screening and progress in
medicine that have allowed these patients to become adults [14]. Both LPDs and drugs have
helped to extend life expectancy, but, until now, few studies have investigated nutritional
status and dietary adequacy in these patients, who must continue lifelong treatment with
LPDs [21].

In our patients, natural and total protein average intake were lower than WHO Safe
Levels, but plasmatic levels of albumin and prealbumin were within the range in all
individuals. Energy intake was lower than total daily energy intake (TDEE) estimated by
predictive equations in all subjects, both in patients with or without AA supplementation,
with no significant difference in median TDEE between the two subgroups. Despite this,
the high prevalence of overweight and obesity and no acute metabolic decompensation
during periods of observations is reminiscent of a positive energy balance. Moreover, total
and natural protein intake were inversely related to FM%, confirming data observed by
Evans et al. in a pediatric population [10]. TDEE was calculated by REE from predictive
equations multiplied by PAL indicated for standard lifestyles [18]. In our sample, REE from
the predictive equation could have been influenced by a low FFMI, affected by low protein
intake, and by a PAL lower than standard levels [21]. The TDEE obtained from predictive
equations for REE and PAL is further derived from healthy individuals and it may not be a
proper reference in these special subjects.

Another factor involved in energy intake being lower than reference values may be an
under-reported dietary intake by patients.

Despite AA supplements promoting a higher protein intake, patients treated with AA
supplements showed a higher prevalence of overweight or obesity than those fed only
with natural protein. Dividing the cohort of patients into two subgroups, with or without
AA supplementation, we noted higher BMI, FM%, and plasmatic AA levels (in particular
BCAA) in the AA supplementation group, without significant differences in energy intake.
Therefore, we questioned what is the best practice in protein prescription, considering not
only total protein intake closer to required reference values but also the protein source
(natural food vs. AA supplements). As suggested by Francini-Pesenti et al. [21], we
hypothesized that, together with a different elemental protein source, a lower natural
protein intake can lead to a lower FFMI and a higher FM% in this group by promoting
overweight or obesity. A positive energy balance during LPDs can be explained using the
protein leverage model that postulates the overconsumption with fats and carbohydrates
in response to a reduction in protein intake and vice versa [22].

The higher levels of BMI and FM% observed in patients treated with AA supplements
may also be due to different protein sources. Whole protein intake also induces satiety
through bioactive peptides derived from intestinal protein digestion [23], which are not
produced in the case of AA ingestion.

Another factor possibly influencing the higher BMI in the subgroup with AA supple-
mentation is the energy source of AA supplements, which is often an elemental type of
sugar (maltodextrins) as sugar percentage of energy intake in this group of patients was
significantly higher.

In the case of MMA/PA patients, overweight could be due to the leucine load of
AA supplements, which can represent an anabolic factor promoting increases in BMI and
FM% [24], and is also supported by abnormal BCAA ratios in these patients [5]. Recent
data from a European Multicentre registry showed that methylmalonic and propionic
patients treated with amino acid formulas presented with abnormal plasmatic BCAA
ratios, in contrast to the good effects of BCAA-enriched amino acid formulas in UCD
patients [5]. In our sample, BCAA plasmatic levels were lower than recommended in many
of our patients, especially patients with AA supplementation. In particular, the leucine
plasmatic levels in this subgroup were lower than reference values despite a leucine intake
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(67 mg/kg/day) higher than requirements (48 mg/kg/day). Given the key role of BCAA
intake in maintaining a higher FFM, the intake in these patients (both by PN and AA
formulas) should be taken into consideration [25]. Moreover, EAA intake and plasmatic
levels should be routinely monitored in patients on LPDs, considering the frequent intake
of vegetable foods in LPDs, which are good for their low protein content but can result in
low biological values and BCAA content.

A P:E ratio of 1.5–2.9 g/100 kcal/day was indicated by Evans et al. [10] for optimal
outcomes in a pediatric population, which are correlated to nutritional status and body
composition; in adult populations, a clear definition of good outcomes is lacking [26], and
therefore, an optimal P:E ratio cannot be identified.

Another difficulty in dealing with adults affected by UCD and BCOA is that WHO
Safe Levels for protein intake refer to normal populations with normal levels of physical
activity and good representation in FFM, while our patients presented lower PAL and
FFM. The role of a lower PAL in altered body composition is also confirmed by recent data
from a pediatric population [11]. Whereas reduced protein intake is an essential aspect of
metabolic treatment for these patients, the maximum tolerance of protein intake (g/kg)
should be tailored to promote FFM together with maintaining good metabolic control.
Moreover, as suggested by Rocha et al. for PKU [27], PAL should be routinely assessed and
improved in order to obtain a higher FFM. From pediatric data, moderate or vigorous PAL
can also lead to higher bone mineral density and FFM [11].

In addition to low PAL and increased BMI, biochemical metabolic parameters such as
serum glucose and lipid profiles should be considered to assess degenerative cardiovascular
disease risk in the adult population. To assess the prognostic value of overweight in IEIPM
patients, its protective effect should also be considered, indicated by the term obesity
paradox [28,29]. There are no current studies aimed at evaluating the relationship between
BMI and life expectancy in IEIPM adult patients treated with LPDs.

Vitamin and mineral supplements specific to LPDs are needed [2,3,6–9], but most of
these supplements are designed for pediatric ages and are not well-tailored for adulthood.

A strength of this study is that data belong to a single Inherited Metabolic Rare
Diseases Adult Centre that follows patients since their transition from a pediatric age and
reports the precise intake of consumed (not prescribed) LPDs. An important limitation of
this study is the small number of patients examined, due to the low prevalence of adult
patients affected by these diseases. Long-term outcomes (i.e., cardiovascular events) could
not be examined because our patients were still young (mean age 28 years) and more
follow-up is needed. In addition, nutritional compliance with prescribed LPDs and feeding
behaviors such as food selectivity and satiety levels were not assessed.

Further studies on nutritional adequacy and nutritional status are needed in adult
patients with UCDs and BCOA. We know with certainty that numbers of metabolic patients
are growing and their nutritional needs and outcomes are changing over time. Protein
intake should meet recommendations [2,3] and AA supplementation should be used
when protein needs are not met with natural foods. Periodic assessments of nutritional
status, recognition of FFM, intake of macro- versus micronutrients, and risk factors for
cardiovascular diseases must be included in routine evaluation in adult centers. Long-term
follow-up may give insights into the effects of lifelong LPDs. A new challenge will be
better understanding how LPDs can affect sarcopenic processes in elderly UCD and BCOA
individuals who have been on LPDs since a pediatric age.
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