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Abstract
1. When we collect the growth curves of many individuals, orderly variation in the 

curves is often observed rather than a completely random mixture of various 
curves. Small individuals may exhibit similar growth curves, but the curves differ 
from those of large individuals, whereby the curves gradually vary from small to 
large individuals. It has been recognized that after standardization with the as-
ymptotes, if all the growth curves are the same (anamorphic growth curve set), the 
growth curve sets can be estimated using nonchronological data; otherwise, that 
is, if the growth curves are not identical after standardization with the asymptotes 
(polymorphic growth curve set), this estimation is not feasible. However, because 
a given set of growth curves determines the variation in the observed data, it may 
be possible to estimate polymorphic growth curve sets using nonchronological 
data.

2. In this study, we developed an estimation method by deriving the likelihood 
function for polymorphic growth curve sets. The method involves simple maxi-
mum likelihood estimation. The weighted nonlinear regression and least-squares 
method after the log-transform of the anamorphic growth curve sets were in-
cluded as special cases.

3. The growth curve sets of the height of cypress (Chamaecyparis obtusa) and larch 
(Larix kaempferi) trees were estimated. With the model selection process using the 
AIC and likelihood ratio test, the growth curve set for cypress was found to be 
polymorphic, whereas that for larch was found to be anamorphic. Improved fitting 
using the polymorphic model for cypress is due to resolving underdispersion (less 
dispersion in real data than model prediction).

4. The likelihood function for model estimation depends not only on the distri-
bution type of asymptotes, but the definition of the growth curve set as well. 
Consideration of these factors may be necessary, even if environmental explana-
tory variables and random effects are introduced.
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1  | INTRODUC TION

Growth in mass is terminated when anabolism and catabolism are 
balanced. Thus, a finite maximal size may be generally reasonable 
for various quantities (e.g., length and weight) of most living beings. 
Therefore, most growth models feature asymptotes (Moriguchi, 2018; 
Richards, 1959; Turner, Bradley, Kirk, & Pruitt, 1976). Such growth 
models have been successfully applied to simulate and predict the 
growth of various quantities of various living beings, for example, the 
weight of mice (Bertalanffy, 1957), the body length of fishes (Pilling, 
Kirkwood, & Walker, 2002; Russo et al., 2009), and the height and 
volume of plants (Minowa, 1983; Moriguchi, Ueki, & Inoue, 2011; 
Nagashima, Yamamoto, & Sweda, 1980; Sweda, 1988). The use of 
growth models for predicting the growth of a quantity of an individual 
can be extended for predicting the growth of the average quantity of a 
group of individuals (Hagihara, 2014; Tahar et al., 2012; Trip, Clements, 
Raubenheimer, & Choat, 2014). In this study, the term “individual” is 
used to identify the subject that corresponds to one growth curve.

When we collect growth curves of many individuals, variation 
in the curves may be identified (Madsen & Shine, 2000; Richner, 
Schneiter, & Stirnimann, 1989). Variation can often be orderly, as 
small individuals often exhibit similar curves, but the curves differ 
from those of large individuals, and the curves gradually vary from 
small to large individuals. Richner et al. (1989) reported three types 
of changes in growth curves in terms of the body weight or body 
length of carrion crows (Corvus corone) due to depression:

A Decrease of the asymptote
B Decrease of the “growth constant”1 of the logistic model
C Decrease of both the asymptote and the growth constant

Note that Type C implies correlation between the asymptote 
and the growth constant. As a result, each type implicates that we 
may observe the orderly variation in the growth curves, as shown in 
Figure 1, with a variation in the degree of depression. Madsen and 
Shine (2000) presented the long-term growth curves of the body 
length of water pythons (Liasis fuscus) to be similar to Type C, as in-
duced by reducing the growth rate due to the “silver spoon” effect. 
Trip et al. (2014) suggested that, due to the temperature-size rule, 
the average growth curves of two herbivorous fishes (Odax pullus 
and Notolabrus fucicola) in areas of high temperature, compared to 
those in areas of low temperature, featured a lower asymptote but 
faster maturity in body size. This finding suggests that Type C is rea-
sonable for this case. The variation in growth of the stand volume is 
also known to exhibit Type C variation (Nishizono, Tanaka, Hosoda, 
Awaya, & Oishi, 2008). Similarly, growth curves of the mean tree 
height of numerous sites also demonstrate orderly variation of Type 
A–C (Burkhart & Tomé, 2012; Clutter, Fortson, Pienaar, Brister, & 
Bailey, 1983; Ercanli, Kahriman, & Yavuz, 2014; Scolforo et al., 2016). 
In this context, growth curve sets of Type A is termed the anamor-
phic growth curve set, as the variation of the growth curves is caused 
by scaling the identical curve with various asymptotes (Figure 1). 
In contrast, Types B and C can be termed the polymorphic growth 
curve set (Bailey & Clutter, 1974; Ker & Bowling, 1991). Particularly, 
we use the term polymorphic growth curve set to refer to Type C in 
this study.

To estimate the growth curve set of the individuals, at least two 
situations emerge: We have chronological data of each individual 
that include the historical data series of age and size, or we have 
nonchronological data that do not include such historical data and 
only include one-time observations of many individuals (Figure 2). 

F I G U R E  1   Three types of growth curve sets with orderly variations. Upper plots present the original growth curves, and lower 
plots present the growth curves standardized with each asymptote. After standardizing with each asymptote, the curves of Type A are 
identical (b). This indicates that the variation of the original growth curves in Type A (a) is caused by scaling an identical curve with various 
asymptotes. Type B assumes that the variation of original growth curves is caused only by the variation of the parameters of the growth 
curves, except for the asymptote (e.g., k and b that appear in Equation (2)). In other words, the asymptote is assumed to be identical. As a 
result, no differences in the shape of the curves in plots c and d exist. Type C assumes variations of both asymptotes and other parameters, 
with a correlation between the asymptote and the other parameters. Type C includes Type A and Type B as special cases; however, Type C 
does not include the growth curve sets that consist of a random mixture of various curves. Type A is termed the anamorphic growth curve 
set and Type C is termed the polymorphic growth curve set in this study
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If we have chronological data, and we fit a growth curve for each 
individual, we may simply minimize the total squared error between 
the value of the actual size of each measured age and the estimated 
age (least-squares error estimation: LSE) (e.g., Kühleitner, Brunner, 
Nowak, Renner-Martin, & Scheicher, 2019; Moriguchi, 2018; Turner 
et al., 1976). Similarly, with the chronological data on multiple indi-
viduals, we can estimate polymorphic models that minimize the total 
squared error of all the individuals or similar fitting criteria (Ercanli 
et al., 2014; Nunes, Patrício, Tomé, & Tomé, 2011; Tahar et al., 2012).

It is often difficult to collect sufficient chronological data due 
to the restricted numbers of repeatedly observable individuals (e.g., 
rare species) and insufficiently recorded chronological data. Even in 
such cases, we can often identify the age of a given individual, for 
example, by counting the number of tree rings or the number of rings 
in the otolith of fish. As a result, we can often collect the nonchro-
nological data of many individuals, and we must estimate the growth 
curve set using the nonchronological data (Edminster, Mathiasen, & 
Olsen, 1991; Mitsuda, 2014; Mitsuda & Kitahara, 2015; Nishizono, 
Kitahara, Iehara, & Mitsuda, 2014).

Even with nonchronological data, we can estimate anamorphic 
growth curve sets using the so-called guide curve method, which 
identifies the average growth curve with general nonlinear re-
gression methods (Burkhart & Tomé, 2012; Clutter et al., 1983). In 
contrast, it is also recognized that polymorphic growth curve sets 
cannot be estimated using nonchronological data (Burkhart & Tomé, 
2012; Clutter et al., 1983). Nevertheless, several researchers have 
attempted to estimate polymorphic growth curve sets using non-
chronological data. Edminster et al. (1991) proposed a method that 
first applies the guide curve method and then prepares nonaverage 
growth curves using the 95% range of the real data variance at each 
age. This procedure, however, is not statistically consistent because 
the estimation of the average growth curve is conducted under the 

assumption of an anamorphic growth curve set. Furthermore, nonav-
erage growth curves are determined using a rough estimate without 
the assumption of a model of growth curve set. Socha and Tymińska-
Czabańska (2019) proposed a method that evokes chronological 
data with the assumption that a series of percentile values of each 
age in numerous nonchronological data can be assumed to be the 
chronological data of virtual individuals. However, the chronologi-
cal data of the virtual individuals reveal quite jagged shapes that do 
not resemble actual growth curves, even using 5,105 data. Mitsuda 
(2014) attempted to estimate a polymorphic growth curve set with 
a hierarchical Bayesian model using WinBUGS. The Markov chain 
Monte Carlo sequence for the estimation was ultimately reported to 
not converge to a steady distribution, even with a sufficient burn-in 
period. Generally, these methods attempt to overcome limitations 
by not modeling the process of observing nonchronological data in a 
straightforward manner.

Although the purpose of this study is also to present a method 
to estimate a polymorphic growth curve set using nonchronologi-
cal data, we aim to establish a statistically consistent method by 
modeling the process of obtaining a nonchronological data set in 
a straightforward manner. The collection process of a nonchrono-
logical data set involves random sampling from numerous growth 
curves. Thus, the variation of the growth curves is the fundamental 
cause of the variation in the collected nonchronological data sets 
(Figure 3). Therefore, the variation of the nonchronological data 
must contain information regarding the original growth curve set, 
and the estimation of the original growth curve set may be possi-
ble by modeling the collection process of the nonchronological data. 
The proposed method is developed as a simple maximum likelihood 
estimation (MLE) approach.

The remainder of this study is structured as follows: In 
Section 2.1, the anamorphic and polymorphic growth curve sets 

F I G U R E  2   Chronological data and 
nonchronological data. Chronological 
data include the historical growth data 
of each individual. Nonchronological 
data comprise a collection of one-time 
measurements of the size and age of many 
individuals without historical information
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are formulated. In Section 2.2, the method and calculation tech-
nique are developed. In Section 2.3, the estimation design for the 
real data set of tree height is explained. In Section 2.4, the examina-
tion design of estimation ability using models with known param-
eters is presented. The results are reported in Section 3. Finally, 
in Section 4, the implications of the method on the estimation of 
growth curve sets are provided.

2  | MATERIAL AND METHODS

2.1 | Formulation of growth curve sets

First, the anamorphic and polymorphic growth curve sets were 
formulated.

2.1.1 | Anamorphic growth curve set

As shown in Figure 1, the anamorphic growth curve set has an iden-
tical curve when standardized with the asymptotes. That is, the an-
amorphic growth curve set assumes that the variation of the growth 
curves is caused by scaling an identical curve vertically with various 
asymptotes. As a result, the size of individual i at age ti can be ex-
pressed as follows:

where xi is the size of the individual at ti, Ai is the asymptote 
of the individual, f (･) is the function with values that are in the 
range of [0, 1], and θ is the parameter set that is common for all 
individuals.

For example, Richards's (1959) function is formulated as follows:

where k and b are the parameters that govern the standard shape of 
the growth curve. If k and b are common for all individuals, θ is defined 
as {k, b}. This formula has the structure of Equation (1).

With a given θ, the asymptote of individual i (Ai) can be es-
timated using xi and ti as Ai = xi/f(ti; θ). Using the estimated as-
ymptote, the growth curve of the individual can be formulated 
as x = Ai ･ f(t; θ). Thus, each observation of the size and age has a 
growth curve.

2.1.2 | Polymorphic growth curve set

The polymorphic growth curve set (Type C in Figure 1) allows 
variation in k and/or b of Equation (2). If the variation is inde-
pendent of the asymptote, we may observe a random mixture of 
various curves. This growth curve set is not a polymorphic growth 
curve set. If those parameters are correlated with an asymptote, 

we may find an orderly variation in growth curves. Example cor-
relations are b = b1 + b2 ･ ln A (Cieszewski, 2004) and k = k1 ･ Ak2 
(Ker & Bowling, 1991; Mitsuda, 2014), where b1, b2, k1 and k2 are 
parameters. As a result, the structure of the growth curve set is 
as follows:

Because f (･) includes Ai, the growth curve set includes various 
shapes of growth curves, even after their standardization with their 
respective asymptotes (i.e., polymorphic). Evidently, Equation (3) in-
cludes the anamorphic growth curve set (Equation (1)) as a special 
case. Contrarily, Equation (3) does not include Type B in Figure 1. 
However, Type B can be approximated with Equation (3) in practice 
by assuming a very narrow distribution of the asymptotes and a large 
coefficient on Ai in f (･).

2.2 | Estimation method

We assume the following for the development of the method:

1. Asymptotes distribute according to any continuous probability 
distribution

2. A given growth curve set can be formulated with Equation (3)
3. Nonchronological data were sampled randomly from the growth 

curve set.

The first and second assumptions suggest that, strictly speak-
ing, Type B of Figure 1 cannot be treated using this developed 
method. The second assumption involves that, if the asymptotes do 
not correlate with other parameters (e.g., k and b in Equation (2)), 
which suggests that the growth curves after standardization with 
asymptotes comprise a random mixture rather than orderly vari-
ation, then the proposed method is deemed inappropriate for the 
situation and random effects should instead be introduced (e.g., 
Paine et al., 2012). The third assumption implies the data has been 
sampled without sampling bias. In this case, we can consider the 
likelihood to obtain a given nonchronological data by formulating 
simple joint probability to observe the data set. The log-likelihood 
(LL) function to observe a series of sizes and ages of individuals 
can be formulated as follows:

where p(xi, ti) is the probability of observing individual i whose size is xi 
and age is ti, p(ti) is the probability of observing age ti, and p(xi| ti) is the 
conditional probability of observing size xi at age ti.

A set of growth curves can be a transition rule between the dis-
tributions of the asymptotes and the variation in the individual sizes 
at a given age (Figure 4). The transition must adhere to the following 
relationship:

(1)xi=Ai ⋅ f(ti;�)

(2)x=A ⋅ [1−exp(−kt)]b

(3)xi=Ai ⋅ f(ti;Ai,�)

(4)LL= ln
∏

i

p(xi,ti)=
∑

i

lnp(xi,ti)=
∑

i

ln[p(ti)p(xi|ti)]

(5)p(x)dx=p(A)dA
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Note that p(x) and p(A) must not be negative. Therefore, p(x) = 
p(A)∙|dA/dx| = p(A)∙|dx/dA|−1. Using this relationship, the value of p(xi| 
ti) can be calculated as follows:

where dx∕dA|ti ,Ai
 is the value of the derivative of the growth model with 

respect to an asymptote with ti and Ai. As a result, the LL value can be 
calculated as follows:

The first summation in the right side of Equation (7) is constant, as 
it is determined with only the variation of t in the data. Therefore, the 
summation can be neglected from the model estimation. The LL value 
will be maximized by optimizing the second and third summations.

Equation (7) implies that the guide curve method using simple 
weighted nonlinear regression is reasonable for the anamorphic 
growth curve set, and when the lognormal distribution can be assumed 
as the distribution of asymptotes, nonweighted LSE after logarithmic 
transformation is also reasonable. The statistical consistency in the use 

of these general methods is the reason that the anamorphic growth 
curve set can be estimated using nonchronological data (Burkhart & 
Tomé, 2012; Clutter et al., 1983). For more detail, see Appendix 1.

2.2.1 | Calculation procedure

To estimate the parameters of the polymorphic growth curve sets, 
Equation (7) must be used directly. The first summation is ne-
glected, as it is a constant. The second summation of the right side 
of Equation (7) is the LL term of the asymptotes with respect to their 
distribution. Note that the asymptote of individual i (Ai) can be cal-
culated using xi, ti, and θ; and for a given θ, the maximal value of 
Equation (7) is provided when using the maximum value of the sec-
ond summation. Therefore, for a given θ, the distribution of asymp-
totes should be estimated using the MLE.

The maximal values of the second and third summations of the right 
side of Equation (7) for a given θ value can be calculated as follows.

1. Calculate Ai based on xi, ti, and θ for all i. For the anamorphic 
growth curve sets, Ai could be calculated as xi/f(ti; θ). For the 
polymorphic growth curve sets, an analytical solution may not 
be found. Therefore, find the solution of Ai of xi – Ai ･ f(ti; 
Ai, θ) = 0 using an efficient numerical solver, for example, 
Brent's (1973) method.

2. Calculate the third summation of the right side of Equation (7). 
The derivative may be found using computer algebra systems.

3. Estimate the distribution of the asymptotes using the MLE and let 
the maximal log-likelihood value be the value of the second sum-
mation in Equation (7).

Note that we need to carefully select the optimization tech-
niques to optimize θ because the fitting problem for the growth 
curve sets is a nonlinear optimization problem without convexity. 
Similar to other fittings on nonlinear models, the fitting may not be 
achieved using simple downhill optimization techniques.

2.3 | Fitting to a real data set

We present the application of the developed method using a real 
data set.

2.3.1 | Data set

We use the data set of the tree heights of cypress (Chamaecyparis 
obtusa Sieb. & Zucc.) and larch (Larix kaempferi (Lamb.) Carrière) 
trees in the Nagano region of Japan. The data set was collected by 
Katakura, Yamanouchi, and Furukawa (2005) to estimate the growth 
curve sets of the tree heights of the two species in the region. The 
data set includes nonchronological sets of the mean tree heights and 
stand-ages of 133 cypress tree sites and 310 larch tree sites. The age 

(6)p(xi|ti)=p(Ai) ⋅

(|||||
dx

dA

||||ti ,Ai

|||||

)−1

(7)
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�

i
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F I G U R E  4   The relationship between the distributions of the 
asymptotes and the individual sizes at a given age. The dotted lines 
in the PDF plots denote the growth curves in the size-age plot. 
The set of growth curves determines the relationship between the 
distributions, with the constraint that the areas in green must be 
equal to one another (Equation (5))
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distribution in the data set of each species is generally uniform and 
ranges from 11–110 years old for the cypress trees and 11–118 years 
old for the larch trees.

They collected the topographic features and the type of soil for 
several sites. Although using the information as additional explana-
tory variables may assist in explaining the variation in the data set, 
the variables were not used because our purpose is rather clearly 
to assess the modeling ability of the developed method. Ontogeny 
may essentially be the integration of unobservable effects; there-
fore, we prefer to assume that the features are unobserved. The 
previous research (Katakura et al., 2005) also provided anamorphic 
growth curve sets for the two species without using this specific 
information, as similar estimates based on this principle are often 
conducted (Mitsuda & Kitahara, 2015; Nishizono et al., 2014).

2.3.2 | Instance models

Although any polymorphic growth curve set that is differentiable with 
respect to the asymptote can be assumed, we have not tested numer-
ous candidates given the purpose of this study. Instead, we present 
an application using four models, namely the combination of the two 
growth curve sets and two distribution types for the asymptotes.

The growth curve sets to be tested are as follows:

Equations (8) and (9) with respect to the asymptotes can be de-
rived as follows:

where E = exp(–kAlt). Equation (8) is a major anamorphic growth curve 
set based on Richards's (1959) function (e.g., Clutter et al., 1983). 
Equation (9) is a polymorphic growth curve set that is occasionally 
assumed (Ker & Bowling, 1991; Mitsuda, 2014). The polymorphic 
growth curve set includes the anamorphic growth curve set as a 
case of l = 0.

One type of distribution of asymptotes is the lognormal distri-
bution. Another is the generalized gamma distribution (Stacy, 1962), 
and its probability density function is defined as follows:

where Γ(∙) is the gamma function, λ is the scale parameter, and both τ 
and ψ are shape parameters. The generalized gamma distribution in-
cludes the gamma distribution with τ = 1 and the Weibull distribution 

with ψ = 1. The lognormal distribution is approximated using ψ → ∞ 
(Prentice, 1974).

With the combination of the growth curve sets and the 
distributions of the asymptotes, we define four models: ana-
morphic-lognormal (AL), anamorphic-generalized-gamma (AG), poly-
morphic-lognormal (PL), and polymorphic-generalized-gamma (PG).

The lower and upper bounds in the search for the optimal value 
of each parameter are determined experimentally with repeated 
trials, thereby allowing the optimal parameter set to be included. 
For AL and AG, the ranges of k and b are [10−12, 0.1] and [0.01, 5], 
respectively. For PL and PG, Al can be a very large value with a large 
l. This causes difficulty in determining the candidate range of k. To 
avoid this issue, we replace Equation (5) with the following formula 
at optimization:

where 25 is the roughly estimated average value of the asymptotes. 
The ranges of k′, b, and l are [10−12, 0.1], [0.01, 5], and [–10, 10], respec-
tively. We then calculate the value of k as k′/25l.

2.3.3 | MLE calculation

To detect the parameter set that maximizes the log-likelihood value, 
we use the particle swarm optimization technique (PSO; Kennedy 
and Eberhart, 1995), which is an efficient optimization algorithm for 
general optimization problems with continuous variables and fixed 
ranges. For more detail, see Appendix 2. 95% confidence intervals 
of the parameters are also estimated using the empirical bootstrap-
ping method (Efron, 1979, 1981) with 1,001 resamples from the data 
source and application of the MLE for each resampled data set.

2.3.4 | Comparison

We report the AIC values (Akaike, 1973) of each model. Although 
the model with a minimum AIC value has the strongest support, the 
models with AIC values that differ from the minimum AIC value by 
<2 also are supported (Burnham & Anderson, 2004). When the mod-
els with AIC values differ from the minimum AIC value by discrepan-
cies larger than 10, the models can be considered to have essentially 
no support (Burnham & Anderson, 2004).

We also conduct the likelihood ratio test between compara-
ble models using the χ2 distribution and negative log-likelihood 
(NLL) values. The likelihood ratio test can be applied to com-
pare the goodness of fit of models with a “nested” relationship 
(Lewis, Butler, & Gilbert, 2011; MacKenzie et al., 2018). Therefore, 
the likelihood ratio test cannot be conducted between the AG 
and PL models because of their nonnested relationship. Lewis 
et al. (2011) presented an approach to perform the likelihood ratio 
test between nonnested models for count data with a simulative 
calculation that employs the test criterion. However, in our case, 

(8)xi=Ai ⋅ [1−exp(−kti)]
b

(9)xi=Ai ⋅ [1−exp(−kA
l

i
ti)]

b

(10)dx

dA
= [1−exp(−kt)]b

(11)dx

dA
=A

l
klbtE(1−E)b−1+ (1−E)b

(12)PDF(x|� , � , �)= �

Γ(� ) ⋅�

(
x

�

)��−1

exp
[
−
(
x

�

)�]

(13)xi=Ai{1−exp[−k
�(Ai∕25)

lti]}
b
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we focus on the differences in the goodness of fit between the 
anamorphic and polymorphic growth curve sets and between the 
lognormal and generalized gamma distributions. Therefore, we use 
the ordinary likelihood ratio test and AIC values to conduct the 
model comparisons.

The numbers of model parameters are 4 for AL, 5 for AG and PL, 
and 6 for PG. These values are used to calculate the AIC values and 
the degrees of freedom for the likelihood ratio test.

2.4 | Model reproductivity test

Whether the method has ability to reproduce “true” models is 
tested using the models estimated for the cypress and larch data 
as the “true” models. Similar to parametric bootstrapping (Genest 
& Rémillard, 2008), we repeatedly execute the following procedure:

1. Generate virtual data from the true models. The number of 
data is 100 or 200.

2. Using the virtual data, we attempt to estimate the models without 
information on the parameters of the true models.

These procedures are executed 1,001 times independently, and 
the estimated growth curves and those of the true models are com-
pared. The estimation method in the second procedure is that ex-
plained in Section 2.3. Not only are the original models estimated 
with properly modeled cases (e.g., the case in which both the “true” 
model and the estimator are PG), we also test how the prediction of 
the growth curves biases when nonproper models (e.g., the case in 
which the “true” model is PG but the estimator is PL) are assumed. 
We evaluate the range of estimations of three growth curves using 
either the median, 2.5th, or 97.5th percentile asymptotes.

3  | RESULTS

3.1 | Application with real data set

The χ2 statistics of the likelihood ratio tests are reported in Table 1. 
The estimated parameters and fitting criteria are shown in Table 2. 

The relationship of the original data, and the growth curves with the 
median, 2.5th, and 97.5th percentile asymptotes of the estimated 
models are shown in Figure 5.

For the cypress data, the likelihood ratio tests between AL and 
PL and between AG and PG indicate that the latter models have 
better fittings at a 0.1% significance level, respectively (Table 1). 
Contrarily, between AL and AG and between PL and PG, a signifi-
cant difference in goodness-of-fit was not suggested using the likeli-
hood ratio test at the 10% level. As shown in Table 2, the AIC values 
of PL and PG were much smaller than those of AL and AG, albeit 
the AIC values are similar for AL and AG and for PL and PG. The 
AIC value of the PL model is the smallest of the four. The PG model 
can also be supported, because the difference of its AIC value 
compared with that of the PL model was <2. The 95% confidence 
intervals of l for both PL and PG do not include zero. The upper 
values of the 95% confidence intervals of ψ for both AG and PG are 
large, that is, they tend to approximate lognormal distributions. In 
Figure 5, both growth curves of AL and AG for the cypress data with 
the 2.5th and 97.5th percentile asymptotes are underestimated and 
overestimated, respectively, compared with the original data dis-
tribution, especially for older age. Thus, the models with the ana-
morphic growth curve set involve underdispersions, that is, the data 
set exhibits less dispersion compared to the model prediction. This 
underdispersion was not found for the PL and PG models, which 
assume the polymorphic growth curve set.

For the larch data, the likelihood ratio test suggested that the 
PL model has a better fit compared to the AL model at the 1% 
significant level (Table 1). However, no significant difference was 
found between PG and AG at the 10% level. When comparing 
the AL and AG models and subsequently the PL and PG models, 
the latter models have better fits at the 0.1% significance level. 
Because the NLL of the PG model is slightly smaller than that of 
AG, the AIC values of the PG and AG models are the same, al-
though much smaller than those of AL and PL (Table 2). The 95% 
confidence intervals of l for both the PL and PG models include 
zero, while the upper values of the 95% confidence intervals of 
ψ for both the AG and PG models are much lower than the re-
spective cases with the cypress trees. In Figure 5, all estimated 
growth curves of the AG and PG models seem to be approximately 
equivalent.

TA B L E  1   χ2 statistics of the likelihood 
ratio tests

Model

Cypress Larch

AL AG PL PG AL AG PL PG

AL — — — — — — — —

AG 2.26 — — — 28.80*** — — —

PL 18.78*** —a  — — 7.65** —a  — —

PG 19.13*** 16.87*** 0.35 — 30.77*** 1.97 23.12*** —

Note: Significance level: **: 1%, ***: 0.1%. No symbol indicates no significant difference at the 
10% level. Degree of freedom: 1 for tests between AL-AG, AL-PL, AG-PG, and PL-PG. 2 for tests 
between AL-PG.
aTest was not conducted because of nonnested relationship. 
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3.2 | Model reproductivity

Because the PG model provided good fitting results for the two spe-
cies, the MLE-estimated PG models of the cypress and larch were 
used as the “true” models (Cypress-PG and Larch-PG). The models 
were estimated assuming AG, PL, and PG as the estimator. The re-
sults are shown in Figure 6.

When using the PG model (i.e., proper model) as the estimator, 
the median estimation of each growth curve overlaps the curves 
of the true models (Plots i-l in Figure 6). This is common for both 
n (number of data) = 100 and n = 200 cases, whereas the cases of 
n = 200 demonstrate narrower 95% confidence intervals for each 
growth curve. Similar results can be found for the case in which the 
PL model was used as the estimator for the Cypress-PG (Plots e,f in 
Figure 6) model. This is natural, as the distribution of the asymptotes 
of the Cypress-PG model approximates a lognormal distribution; 
consequently, the PL model can approximate the PG model for this 
case. Similarly, the growth curves of the Larch-PG model could be 
reproduced with small bias using AG as the estimator (Plots c,d in 
Figure 6), given the similar AIC values in the previous analysis.

In contrast, when estimating the Cypress-PG model using the AG 
model as the estimator, the confidence intervals of the estimations 
for the curves with the 2.5th and 97.5th percentile asymptotes failed 
to include the curves of the true model (Plots a,b in Figure 6). In this 
case, an increase in the number of data (n = 100 to n = 200) did 
not improve the bias. Estimation of the Larch-PG model using PL as 
the estimator also demonstrated biases (Plots g,h in Figure 6); the 
median estimations for the growth curves with the 2.5th and 97.5th 
percentile asymptotes tended to be overestimated, whereas the me-
dian estimation for the curves with the median asymptote tended to 
be underestimated.

4  | DISCUSSION

In the application process using real data, the AL model was found 
to be not supported for both species. The nonweighted LSE value 
of log-transformed size can be used to estimate the AL model 
(Appendix 1); however, this finding indicates that the LSE method is 
not effective for the data of both species. For the larch data, the AG 
model and the PG model exhibited the lowest AIC values; but the PG 
model demonstrated negligible differences in estimating the growth 
curve sets compared to the AG model (Figure 5). This indicates that 
relying on the assumption of the anamorphic growth curve set for 
the larch data is reasonable. Contrarily, for the cypress data, the AIC 
values of the PL and PG models were much smaller than those of 
the AL and AG models. In fact, compared to the estimated growth 
curves using the 2.5th and 97.5th percentile asymptotes for AL and 
AG, real data suggest less variation than expected based on the es-
timated model at old age (Figure 5), that is, the models displaying 
underdispersion. Reasonable variation in size at old age must be 
observed if the models are deemed correct; therefore, the models 
are not supported. Contrarily, the growth curves of the PL and PG TA

B
LE

 2
 

Es
tim

at
ed

 p
ar

am
et

er
s 

an
d 

fit
tin

g 
cr

ite
ria

Sp
ec

ie
s

M
od

el

G
ro

w
th

 c
ur

ve
 s

et
Lo

gn
or

m
al

G
en

er
al

iz
ed

 g
am

m
a

Fi
tt

in
g 

cr
ite

ria

k
b

l
μ

σ
λ

ψ
τ

N
LL

A
IC

Cy
pr

es
s

A
L

0.
04

63
[0

.0
23

4,
 0

.0
73

1]
1.

76
[1

.0
4,

 2
.8

6]
—

3.
06

[2
.9

6,
 3

.2
3]

0.
19

4
[0

.1
66

, 0
.2

16
]

—
—

—
32

7.
0

66
2.

0

AG
0.

04
13

[0
.0

17
2,

 0
.0

72
0]

1.
50

[0
.8

1,
 2

.8
3]

—
—

—
11

.9
[0

.0
0,

 2
8.

0]
4.

73
[0

.5
46

, 3
,2

50
.1

]
2.

47
[0

.1
0,

 9
.9

4]
32

5.
9

66
1.

7

PL
0.

01
90

[0
.0

06
2,

 0
.0

68
9]

1.
16

[0
.9

2,
 2

.3
4]

8.
29

[0
.4

3,
 1

0.
00

]
3.

25
[3

.0
0,

 3
.3

3]
0.

03
1

[0
.0

23
, 0

.1
46

]
—

—
—

31
7.

6
64

5.
2

PG
0.

02
78

[0
.0

06
2,

 0
.0

67
1]

1.
22

[0
.9

2,
 2

.3
0]

3.
85

[0
.4

3,
 1

0.
00

]
—

—
8.

70
[0

.0
0,

 2
4.

2]
30

.9
8

[2
.0

8,
 1

.5
9 
･ 

10
5 ]

3.
25

[0
.1

0,
 1

0.
0]

31
7.

4
64

6.
8

La
rc

h
A

L
0.

04
71

[0
.0

33
2,

 0
.0

61
4]

1.
35

[0
.9

8,
 1

.8
0]

—
3.

26
[3

.2
1,

 3
.3

3]
0.

16
1

[0
.1

46
, 0

.1
75

]
—

-
—

81
0.

1
1,

62
8.

3

AG
0.

04
67

[0
.0

34
4,

 0
.0

61
3]

1.
29

[0
.9

8,
1.

72
]

—
—

—
24

.9
[1

6.
4,

 2
8.

5]
1.

70
[0

.7
2,

 4
.8

6]
5.

48
[3

.2
4,

 9
.9

6]
79

5.
7

1,
60

1.
5

PL
0.

04
88

[0
.0

01
6,

 0
.0

60
9]

1.
32

[0
.7

2,
 1

.8
0]

0.
75

[−
0.

10
, 1

0.
00

]
3.

26
[3

.2
2,

 3
.4

8]
0.

12
3

[0
.0

29
, 0

.1
64

]
—

—
—

80
6.

3
1,

62
2.

6

PG
0.

04
52

[0
.0

31
7,

 0
.0

60
0]

1.
30

[0
.9

8,
 1

.7
5]

0.
27

[−
0.

15
, 0

.8
0]

—
—

24
.1

[1
5.

7,
 2

9.
6]

2.
03

[0
.8

2,
 5

.5
6]

5.
48

[3
.2

4,
 9

.9
7]

79
4.

8
1,

60
1.

5

N
ot

e:
 T

he
 v

al
ue

s 
in

 th
e 

br
ac

ke
ts

 a
re

 th
e 

95
%

 c
on

fid
en

ce
 in

te
rv

al
s 

of
 e

ac
h 

pa
ra

m
et

er
 th

at
 w

er
e 

de
te

rm
in

ed
 w

ith
 th

e 
em

pi
ric

al
 b

oo
ts

tr
ap

 m
et

ho
d.



9108  |     MORIGUCHI

models considerably explain the variation in size at old age. As a re-
sult, the use of the polymorphic growth curve sets was strongly sup-
ported for the cypress data.

In the reproduction test of the “true” models, the overlap of me-
dian estimations on the growth curves of the true (PG) models using 
the proper (PG) model or compatible models (PL for the cypress 

F I G U R E  5   Original data and growth curves estimated with MLE. Solid lines indicate the growth curves with median asymptotes. Dotted 
lines indicate the growth curves with 2.5th and 97.5th percentile asymptotes. Shadows indicate the 95% confidence interval of each curve
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data and AG for the larch data) indicates that the proposed method 
demonstrates reasonable estimation ability. Naturally, the method 
provides biased estimation when suitable models are not used (i.e., 
AG for cypress and PL for larch). The biases are not improved with an 
increase in the number of samples (Plots a,b in Figure 6). In practice, 
we usually do not know the “true” model of the growth curve sets. 
The proposed method provides a way to compare various models 
to identify a relatively appropriate model for given nonchronolog-
ical data. The appropriate model should be identified through the 
comparison between candidate models. Therefore, even with the 
proposed method, preparation of many models with possible distri-
bution types for asymptotes and growth curve sets and selection of 
the best models using the fitting criteria are necessary steps.

The assumptions of the proposed method presented in 
Section 2.2 are similar to those of the estimation techniques pro-
posed by Edminster et al. (1991) and Socha and Tymińska-Czabańska 
(2019). Edminster et al. (1991) first applied the guide curve method, 
which can essentially be applied for only the anamorphic growth 
curve set, and then nonaverage growth curves were roughly es-
timated given the variation of the real data of each age class. 
Socha and Tymińska-Czabańska (2019) assumed that a series of 
percentile values of each age in a given data set can be treated as 
virtual chronological data of virtual individuals. With the virtual 

chronological data, the estimation method for chronological data 
was applied. These two methods assume that the growth curve sets 
fundamentally determine the variation in the data set, similar to our 
method. These methods, however, introduced a special assumption, 
which is that the average growth curve can be estimated using an 
ordinary method for the anamorphic growth curve set, or the series 
of percentile values of all ages in a given data set can be treated as 
virtual chronological data to use an ordinary fitting method.

Mitsuda (2014) attempted to prepare a polymorphic growth 
curve set with a hierarchical Bayesian model using nonchronologi-
cal data, but reported that the Markov chain Monte Carlo sequence 
for the estimation did not converge. This attempt did not take into 
account that both the distribution of the asymptotes and the growth 
curve set determines the variation of individual sizes at a given age 
(Equation (6)). We instead developed a method that is statistically 
straightforward by modeling the sampling process of nonchronolog-
ical data.

For the polymorphic growth curve sets, Equation (6) does not 
simply scale the distribution of the asymptotes, but also changes the 
shapes of the distribution of the sizes at a given age. This may lead to 
a potential issue: What is the essential distribution of the individual 
sizes? In other words, why do we assume that the asymptotes obey 
well-known distributions? In fact, the method we developed can use 

F I G U R E  6   Estimation of growth curves using virtual data generated by PG models for cypress and larch. n indicates the number of 
data per estimation. Red lines indicate the growth curves of the original models with 2.5th, median and 97.5th percentile asymptotes. Blue 
shadows indicate the 95% confidence interval of each curve. Blue dotted lines are the median estimation for each curve
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any distribution function as the asymptotes, because it was devel-
oped without specification of the function. Similarly, the distribution 
of the sizes at a given standard (finite) age can be used, instead of the 
distribution of asymptotes, to develop the method with a few mod-
ifications (Appendix 3). However, it may be impossible to identify 
such a “fundamental” distribution type for a “fundamental” age. This 
is the reason that we assumed that the distribution of asymptotes 
obeys a well-known distribution in the application: there is no reason 
to assume a special distribution and standard ages.

For simplicity, we estimated the growth curve sets of the data 
sets without topographical variables, as ontogeny integrates the 
effects. However, it is possible that environmental parameters 
explain the differences in the parameters of the growth curve 
sets (θ) and the distribution of the asymptotes (Mitsuda, 2014; 
Nishizono et al., 2014; Nunes et al., 2011). The LL value proposed in 
Equation (7) may be simply extended by adding the dependencies 
of θ and the distribution parameters of the asymptotes on the ex-
planatory variables. Estimation methods, including random effects, 
may also be developed by customizing the LL value in Equation (7). 
Our study indicates that, in both cases, the estimation of the poly-
morphic growth curve sets requires the use of the LL value that 
takes into account that a growth curve set regulates the observed 
data distribution.

In this paper, we did not consider the mortality of individuals. 
Although this may not serve as a bias in our application case, given 
that we used mean tree height data of a particular region, this may 
serve as potential bias when being applied to the data set of individ-
uals with nonnegligible mortality rates. Even for this case, an appli-
cable likelihood function may be developed with further extension 
in a future study.
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ymptotes. Because the sizes of the two individuals at t are −A･f(t; θ) 

and (−A + rσ′)･f(t; θ), respectively, the ratio is always 1:1 ± r(σ′/−A) for all 
r values. 

R E FE R E N C E S
Akaike, H. (1973). Information theory and an extension of the 

maximum likelihood principle. In Selected papers of Hirotugu 
Akaike (pp. 199–213). New York, NY: Springer. https://doi.
org/10.1007/978-1-4612-1694-0_15

Bailey, R. L., & Clutter, J. L. (1974). Base-age invariant polymorphic site 
curves. Forest Science, 20(2), 155–159. https://doi.org/10.1093/fores 
tscie nce/20.2.155

Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. 
The Quarterly Review of Biology, 32(3), 217–231. https://doi.
org/10.1086/401873

Brent, R. P. (1973). Algorithms for minimization without derivatives (207pp). 
Englewood Cliffs, NJ: Prentice Hall. Retrieved from https://maths 
-people.anu.edu.au/~brent /pub/pub011.html

Burkhart, H. E., & Tomé, M. (2012). Modeling forest trees and stands 
(457pp). Dordrecht, The Netherlands: Springer. https://doi.
org/10.1007/978-90-481-3170-9

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: 
Understanding AIC and BIC in model selection. Sociological Methods 
& Research, 33(2), 261–304. https://doi.org/10.1177/00491 24104 
268644

Chaitou, H., & Nika, P. (2012). Exergetic optimization of a thermoacous-
tic engine using the particle swarm optimization method. Energy 
Conversion and Management, 55, 71–80. https://doi.org/10.1016/j.
encon man.2011.10.024

Cieszewski, C. J. (2004). GADA derivation of dynamic site equations with 
polymorphism and variable asymptotes from Richards, Weibull and 
other exponential functions. International conference on forest mea-
surements and qualitative methods and management (pp. 248–261). 
Athens, GA: Plantation Management Research Cooperative.

Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, G. H., & Bailey, R. L. 
(1983). Timber management: A quantitative approach (333pp). New 
York, NY: John Wiley and Sons, Ltd.

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constric-
tion factors in particle swarm optimization. In Proceedings of the 2000 
congress on evolutionary computation. CEC00 (Cat. No. 00TH8512) 
(Vol. 1, pp. 84–88). IEEE. https://doi.org/10.1109/CEC.2000.870279

Edminster, C. B., Mathiasen, R. L., & Olsen, W. K. (1991). A method for 
constructing site index curves from height-age measurements applied to 
Douglas-fir in the Southwest (Vol. RM-510). Fort Collins, CO: USDA 
Forest Service Rocky Mountain Forest and Range Experiment 
Station. Retrieved from https://archi ve.org/detai ls/metho dforc onstr 
u510edmi

Efron, B. (1979). Bootstrap methods: Another look at the 
Jackknife. The Annals of Statistics, 7(1), 1–26. https://doi.
org/10.1007/978-1-4612-4380-9_41

Efron, B. (1981). Nonparametric estimates of standard error: The jack-
knife, the bootstrap and other methods. Biometrika, 68(3), 589–599. 
https://doi.org/10.1093/biome t/68.3.589

Ercanli, İ., Kahriman, A., & Yavuz, H. (2014). Dynamic base-age invari-
ant site index models based on generalized algebraic difference ap-
proach for mixed Scots pine (Pinus sylvestris L.) and Oriental beech 

https://doi.org/10.5061/dryad.g4f4qrfn4
https://doi.org/10.5061/dryad.g4f4qrfn4
https://orcid.org/0000-0003-4827-7263
https://orcid.org/0000-0003-4827-7263
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1093/forestscience/20.2.155
https://doi.org/10.1093/forestscience/20.2.155
https://doi.org/10.1086/401873
https://doi.org/10.1086/401873
https://maths-people.anu.edu.au/%7Ebrent/pub/pub011.html
https://maths-people.anu.edu.au/%7Ebrent/pub/pub011.html
https://doi.org/10.1007/978-90-481-3170-9
https://doi.org/10.1007/978-90-481-3170-9
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1016/j.enconman.2011.10.024
https://doi.org/10.1016/j.enconman.2011.10.024
https://doi.org/10.1109/CEC.2000.870279
https://archive.org/details/methodforconstru510edmi
https://archive.org/details/methodforconstru510edmi
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1007/978-1-4612-4380-9_41
https://doi.org/10.1093/biomet/68.3.589


     |  9111MORIGUCHI

(Fagus orientalis Lipsky) stands. Turkish Journal of Agriculture and 
Forestry, 38(1), 134–147. https://doi.org/10.3906/tar-1212-67

Fourie, P. C., & Groenwold, A. A. (2002). The particle swarm op-
timization algorithm in size and shape optimization. Structural 
and Multidisciplinary Optimization, 23(4), 259–267. https://doi.
org/10.1007/s0015 8-002-0188-0

Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap 
for goodness-of-fit testing in semiparametric models. Annales De 
L'institut Henri Poincaré, Probabilités Et Statistiques, 44(6), 1096–1127. 
https://doi.org/10.1214/07-AIHP148

Hagihara, A. (2014). Deriving the mean mass–density trajectory by rec-
onciling the competition–density effect law with the self-thinning 
law in even-aged pure stands. Journal of Forest Research, 19(1), 125–
133. https://doi.org/10.1007/s1031 0-013-0393-2

Ishigame, A., & Yasuda, K. (2008). Swarm intelligence: Particle swarm 
optimization. Journal of Japan Society for Fuzzy Theory and Intelligent 
Informatics, 20(6), 829–839. https://doi.org/10.3156/jsoft.20.6_829

Katakura, M., Yamanouchi, M., & Furukawa, H. (2005). A study of long 
rotation management for artifictial stands of Japanese cypress and 
Japanese larch. Bulletin of the Nagano Prefecture Forestry Research 
Center, 19, 1–16.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. 
Proceedings of International Conference on Neural Networks, 
(1942–1948). Perth, Australia: IEEE. https://doi.org/10.1109/
ICNN.1995.488968.

Ker, M. F., & Bowling, C. (1991). Polymorphic site index equations for 
four New Brunswick softwood species. Canadian Journal of Forest 
Research, 21(5), 728–732. https://doi.org/10.1139/x91-103

Kühleitner, M., Brunner, N., Nowak, W. G., Renner-Martin, K., & Scheicher, 
K. (2019). Best fitting tumor growth models of the von Bertalanffy-
PütterType. BMC Cancer, 19(1), 1–11. https://doi.org/10.1186/s1288 
5-019-5911-y

Lewis, F., Butler, A., & Gilbert, L. (2011). A unified approach to model se-
lection using the likelihood ratio test. Methods in Ecology and Evolution, 
2(2), 155–162. https://doi.org/10.1111/j.2041-210X.2010.00063.x

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., 
& Hines, J. E. (2018). Fundamental principals of statistical inference. 
In Occupancy estimation and modeling (pp. 71–111). London, UK: 
Elsevier. https://doi.org/10.1016/B978-0-12-40719 7-1.00004 -1

Madsen, T., & Shine, R. (2000). Silver spoons and snake body sizes: 
Prey availability early in life influences long-term growth rates of 
free-ranging pythons. Journal of Animal Ecology, 69(6), 952–958. 
https://doi.org/10.1111/j.1365-2656.2000.00477.x

Minowa, M. (1983). A theoretical approach to forest growth modeling 
(II): Further discussion on the self-thinning model. Journal of the 
Japanese Forestry Society, 65(4), 135–142. https://doi.org/10.11519 /
jjfs1 953.65.4_135

Mitsuda, Y. (2014). Development of a new method for modeling site 
index using the digital stereo aerial photo-derived spatial distribution 
of canopy height. FORMATH, 13, 41–59. https://doi.org/10.15684 /
forma th.13.41

Mitsuda, Y., & Kitahara, F. (2015). Preliminary analysis on site index of 
Sugi (Cryptomeria japonica) planted forests using the national forest 
inventory data in Kyushu island. FORMATH, 14, 20–26. https://doi.
org/10.15684 /forma th.14.003

Moriguchi, K. (2018). An approach for deriving growth equations for 
quantities exhibiting cumulative growth based on stochastic inter-
pretation. Physica A: Statistical Mechanics and Its Applications, 490, 
1150–1163. https://doi.org/10.1016/j.physa.2017.08.142

Moriguchi, K., Ueki, T., & Inoue, H. (2011). A method for estimating a 
self-thining parameter of a Gompertz function. Journal of the Japanese 
Forest Society, 93(3), 113–122. https://doi.org/10.4005/jjfs.93.113

Nagashima, I., Yamamoto, M., & Sweda, T. (1980). A theoretical stem 
taper curve (I). Journal of the Japanese Forestry Society, 62(6), 217–
226. https://doi.org/10.11519 /jjfs1 953.62.6_217

Nishizono, T., Kitahara, F., Iehara, T., & Mitsuda, Y. (2014). Geographical 
variation in age-height relationships for dominant trees in Japanese 
cedar (Cryptomeria japonica D. Don) forests in Japan. Journal of 
Forest Research, 19(3), 305–316. https://doi.org/10.1007/s1031 
0-013-0416-z

Nishizono, T., Tanaka, K., Hosoda, K., Awaya, Y., & Oishi, Y. (2008). 
Effects of thinning and site productivity on culmination of stand 
growth: Results from long-term monitoring experiments in Japanese 
cedar (Cryptomeria japonica D. Don) forests in northeastern. Japan. 
Journal of Forest Research, 13(5), 264–274. https://doi.org/10.1007/
s1031 0-008-0082-8

Nunes, L., Patrício, M., Tomé, J., & Tomé, M. (2011). Modeling dominant 
height growth of maritime pine in Portugal using GADA methodol-
ogy with parameters depending on soil and climate variables. Annals 
of Forest Science, 68(2), 311–323. https://doi.org/10.1007/s1359 
5-011-0036-8

Paine, C. E. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., 
Hector, A., & Turnbull, L. A. (2012). How to fit nonlinear plant 
growth models and calculate growth rates: An update for ecolo-
gists. Methods in Ecology and Evolution, 3(2), 245–256. https://doi.
org/10.1111/j.2041-210X.2011.00155.x

Pilling, G. M., Kirkwood, G. P., & Walker, S. G. (2002). An improved 
method for estimating individual growth variability in fish, and the 
correlation between von Bertalanffy growth parameters. Canadian 
Journal of Fisheries and Aquatic Sciences, 59(3), 424–432. https://doi.
org/10.1139/f02-022

Prentice, R. L. (1974). A log gamma model and its maximum like-
lihood estimation. Biometrika, 61(3), 539–544. https://doi.
org/10.2307/2334737

Richards, F. J. (1959). A flexible growth function for empirical use. Journal 
of Experimental Botany, 10(2), 290–301. https://doi.org/10.1093/
jxb/10.2.290

Richner, H., Schneiter, P., & Stirnimann, H. (1989). Life-history conse-
quences of growth rate depression: An experimental study on car-
rion crows (Corvus corone corone L.). Functional Ecology, 3(5), 617. 
https://doi.org/10.2307/2389577

Robinson, J., & Rahmat-Samii, Y. (2004). Particle swarm opti-
mization in electromagnetics. IEEE Transactions on Antennas 
and Propagation, 52(2), 397–407. https://doi.org/10.1109/
TAP.2004.823969

Russo, T., Baldi, P., Parisi, A., Magnifico, G., Mariani, S., & Cataudella, 
S. (2009). Lévy processes and stochastic von Bertalanffy mod-
els of growth, with application to fish population analysis. Journal 
of Theoretical Biology, 258(4), 521–529. https://doi.org/10.1016/j.
jtbi.2009.01.033

Schutte, J. F., & Groenwold, A. A. (2005). A study of global optimization 
using particle swarms. Journal of Global Optimization, 31(1), 93–108. 
https://doi.org/10.1007/s1089 8-003-6454-x

Scolforo, H. F., de Castro Neto, F., Scolforo, J. R. S., Burkhart, 
H., McTague, J. P., Raimundo, M. R., … Sartório, R. C. (2016). 
Modeling dominant height growth of eucalyptus plantations with 
parameters conditioned to climatic variations. Forest Ecology 
and Management, 380, 182–195. https://doi.org/10.1016/j.
foreco.2016.09.001

Shi, Y., & Eberhart, R. C. (1999). Empirical study of particle swarm opti-
mization. In Proceedings of the 1999 congress on evolutionary compu-
tation-CEC99 (Cat. No. 99TH8406) (pp. 1945–1950). IEEE. https://doi.
org/10.1109/CEC.1999.785511

Socha, J., & Tymińska-Czabańska, L. (2019). A method for the devel-
opment of dynamic site index models using height-age data from 
temporal sample plots. Forests, 10(7), 542. https://doi.org/10.3390/
f1007 0542

Stacy, E. W. (1962). A generalization of the gamma distribution. The 
Annals of Mathematical Statistics, 33(3), 1187–1192. https://doi.
org/10.2307/2237889

https://doi.org/10.3906/tar-1212-67
https://doi.org/10.1007/s00158-002-0188-0
https://doi.org/10.1007/s00158-002-0188-0
https://doi.org/10.1214/07-AIHP148
https://doi.org/10.1007/s10310-013-0393-2
https://doi.org/10.3156/jsoft.20.6_829
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1139/x91-103
https://doi.org/10.1186/s12885-019-5911-y
https://doi.org/10.1186/s12885-019-5911-y
https://doi.org/10.1111/j.2041-210X.2010.00063.x
https://doi.org/10.1016/B978-0-12-407197-1.00004-1
https://doi.org/10.1111/j.1365-2656.2000.00477.x
https://doi.org/10.11519/jjfs1953.65.4_135
https://doi.org/10.11519/jjfs1953.65.4_135
https://doi.org/10.15684/formath.13.41
https://doi.org/10.15684/formath.13.41
https://doi.org/10.15684/formath.14.003
https://doi.org/10.15684/formath.14.003
https://doi.org/10.1016/j.physa.2017.08.142
https://doi.org/10.4005/jjfs.93.113
https://doi.org/10.11519/jjfs1953.62.6_217
https://doi.org/10.1007/s10310-013-0416-z
https://doi.org/10.1007/s10310-013-0416-z
https://doi.org/10.1007/s10310-008-0082-8
https://doi.org/10.1007/s10310-008-0082-8
https://doi.org/10.1007/s13595-011-0036-8
https://doi.org/10.1007/s13595-011-0036-8
https://doi.org/10.1111/j.2041-210X.2011.00155.x
https://doi.org/10.1111/j.2041-210X.2011.00155.x
https://doi.org/10.1139/f02-022
https://doi.org/10.1139/f02-022
https://doi.org/10.2307/2334737
https://doi.org/10.2307/2334737
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.1093/jxb/10.2.290
https://doi.org/10.2307/2389577
https://doi.org/10.1109/TAP.2004.823969
https://doi.org/10.1109/TAP.2004.823969
https://doi.org/10.1016/j.jtbi.2009.01.033
https://doi.org/10.1016/j.jtbi.2009.01.033
https://doi.org/10.1007/s10898-003-6454-x
https://doi.org/10.1016/j.foreco.2016.09.001
https://doi.org/10.1016/j.foreco.2016.09.001
https://doi.org/10.1109/CEC.1999.785511
https://doi.org/10.1109/CEC.1999.785511
https://doi.org/10.3390/f10070542
https://doi.org/10.3390/f10070542
https://doi.org/10.2307/2237889
https://doi.org/10.2307/2237889


9112  |     MORIGUCHI

Sweda, T. (1988). A theoretical stem taper curve (II). Journal of the 
Japanese Forestry Society, 70(5), 199–205. https://doi.org/10.11519 
/jjfs1 953.70.5_199

Tahar, S., Marc, P., Salah, G., Antonio, B. J., Youssef, A., & Miriam, P. (2012). 
Modeling dominant height growth in planted Pinus pinea stands in 
northwest of Tunisia. International Journal of Forestry Research, 2012, 
1–12. https://doi.org/10.1155/2012/902381

Trip, E. D. L., Clements, K. D., Raubenheimer, D., & Choat, J. H. 
(2014). Temperature-related variation in growth rate, size, matu-
ration and life span in a marine herbivorous fish over a latitudinal 

gradient. Journal of Animal Ecology, 83(4), 866–875. https://doi.
org/10.1111/1365-2656.12183

Turner, M. E., Bradley, E. L., Kirk, K. A., & Pruitt, K. M. (1976). A theory 
of growth. Mathematical Biosciences, 29(3–4), 367–373. https://doi.
org/10.1016/0025-5564(76)90112 -7

How to cite this article: Moriguchi K. Estimating polymorphic 
growth curve sets with nonchronological data. Ecol Evol. 
2020;10:9100–9114. https://doi.org/10.1002/ece3.6528

APPENDIX 1

Special cases for the anamorphic growth curve sets
For the anamorphic growth curve sets, due to Equation (1), dx/dA = f(t; θ). Therefore, Equation (6) can be simply derived as follows:

Additionally, anamorphic growth curve sets imply a constant coefficient of variation with respect to t (Burkhart & Tomé, 2012).2 It indicates 
that the distribution of individual sizes at a given age is prepared by simply scaling the distribution of the asymptotes with f(t; θ). Therefore, 
Equation (7) includes the fitting criterion of simple nonlinear regression weighting data with 1/f(t; θ) for the anamorphic growth curve sets.

The nonweighted LSE after the log-transform of the individual sizes is also included when assuming a lognormal distribution as the distribu-
tion type of the asymptotes. In this case, the second summation of the right side of Equation (7) is derived as follows:

where μ and σ are the location and scale parameters, respectively. For the anamorphic growth curve sets, the logarithmic values of the individual 
sizes are as follows (see Equation (1)):

Using Equation (A3), the third term of the right side of Equation (A2) can be formulated as follows:

Because dx/dA =f (t;�) for the anamorphic growth curve set, the third summation of Equation (7) is calculated as follows:

Using Equations (A2), (A4), and (A5), the second and third summations of the right side of Equation (7) are as follows:
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Note that the third term of the right side of Equation (A6) is constant for a given dataset. The first and second terms of the right side of 
Equation (A6) are the LL function of the normal distribution with respect to ln Ai whose parameters can be identified by minimizing the second  
summation of the right side. As is well known, 

∑

i

(lnAi)∕n and 
√∑

i

{(lnAi)−�}2∕n are the MLE values of μ and σ, respectively.
Furthermore, let us define the “base” curve with exp(�) ⋅ f(ti;�). Using Equation (A3), the log-transformed estimation value (x

⋀

i) of the base 
curve at ti is given as follows:

Eliminating lnf(ti;�) from Equations (A3) and (A7), lnAi−�= lnxi− lnx
⋀

i is derived. Therefore, the following relationship is noted:

As a result, the maximization of Equation (A6) implies the minimization of the right side of Equation (A8), that is, LSE after the log-transform 
of size, xi.

In this case, the LSE is derived under the assumption that the variation in size at a given age is caused by the variation in the asymptotes. 
Note that the LSE estimation of the growth curve of an individual using the chronological data assumes that the discrepancy between actual 
and estimated sizes is the estimation error. Similarly, if all individuals must follow an identical growth curve, LSE estimation for the curve using 
nonchronological data of many individuals is consistent. Thus, LSE can be a consistent method for these two cases; however, the assumptions 
on the variation in the growth curves are fundamentally different, and the cases should be distinguished.

APPENDIX 2

Particle swarm optimization
PSO allows many particles to seek the optimum condition by simulating the dynamics of swarms through the reciprocal communication be-
tween particles. Each particle moves in the search space according to the inertia of the particle, the memory of the best position of the particle, 
and the information of the best position of all the particles. It is known that the PSO can provide high optimization ability for multidimensional 
optimization problems (Chaitou & Nika, 2012; Ishigame & Yasuda, 2008; Robinson & Rahmat-Samii, 2004; Shi & Eberhart, 1999). The original 
model controls the velocity and positions of each particle as follows:

where m identifies a particle; k indicates the simulation time; V is the velocity vector; r and s are random numbers generated with the standard 
uniform distribution ([0, 1]), respectively; X is the position of the particle; P is the best position of the particle as of yet; Q is the best position of all 
the particles; and w, c1, and c2 are given parameters. In our case, the numbers of dimensions of V, P, X, and Q are the same as the dimension of θ.

Various derived techniques exist (Eberhart & Shi, 2000; Ishigame & Yasuda, 2008). This study employed Fourie and Groenwold's (2002) 
method, which has been reported to be an efficient method compared to alternatives (Ishigame & Yasuda, 2008; Schutte & Groenwold, 2005). 
The method adaptively changes w and the maximum velocity of each particle as follows:

where α, β, and h are parameters; Vmax is the maximum velocity vector; and f (･) is the function to be minimized. We use NLL as this function. The 
initial maximum velocity is given as follows:

where XU and XL are the vectors of the upper and lower bounds of the variables, respectively; and γ is a parameter.
According to Fourie and Groenwold (2002), the γ value and the initial w value are set to 0.4 and 1.4, respectively. Schutte and Groenwold 

(2005) recommended using c1 = c2 = 2, h = 10, and α = β = 0.99 as the parameters of the PSO for good optimization performance. Although 
Schutte and Groenwold (2005) reported that the use of 20 particles is reasonable to balance computational costs and reliability, 56 particles 
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were used to increase reliability. The PSO stops when the number of iterations reaches 1,000 or the difference between the minimum and 
median values of the NLL in the particles becomes less than 10−8.

APPENDIX 3

Using the distribution of sizes at a given age, rather than that of asymptotes
Instead of using a distribution of asymptotes, we can develop a method that uses a distribution of sizes at a given standard age. With a definite 
standard age established, let X be the size of individuals at the standard age. Even for this case, the following equation emerges (see explana-
tion for Equation (5)):

Similar to Equation (6), the value of p(xi|ti) can be calculated as follows:

Because dx/dX = dx/dA ∙ dA/dX = dx/dA ∙ (dX/dA)−1, the value of dx/dX can be calculated with the formula of dx/dA. The LL value can be 
formulated simply by replacing A of Equation (7) with X.
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