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Gene-based tests of association (e.g., variance components and burden tests) are now
common practice for analyses attempting to elucidate the contribution of rare genetic
variants on common disease. As sequencing datasets continue to grow in size, the
number of variants within each set (e.g., gene) being tested is also continuing to grow.
Pathway-based methods have been used to allow for the initial aggregation of gene-
based statistical evidence and then the subsequent aggregation of evidence across the
pathway. This “multi-set” approach (first gene-based test, followed by pathway-based)
lacks thorough exploration in regard to evaluating genotype–phenotype associations
in the age of large, sequenced datasets. In particular, we wonder whether there are
statistical and biological characteristics that make the multi-set approach optimal vs.
simply doing all gene-based tests? In this paper, we provide an intuitive framework for
evaluating these questions and use simulated data to affirm us this intuition. A real data
application is provided demonstrating how our insights manifest themselves in practice.
Ultimately, we find that when initial subsets are biologically informative (e.g., tending to
aggregate causal genetic variants within one or more subsets, often genes), multi-set
strategies can improve statistical power, with particular gains in cases where causal
variants are aggregated in subsets with less variants overall (high proportion of causal
variants in the subset). However, we find that there is little advantage when the sets
are non-informative (similar proportion of causal variants in the subsets). Our application
to real data further demonstrates this intuition. In practice, we recommend wider use
of pathway-based methods and further exploration of optimal ways of aggregating
variants into subsets based on emerging biological evidence of the genetic architecture
of complex disease.

Keywords: rare variant analysis, statistical genetics, missing heritability, power investigation, pathway testing

INTRODUCTION

With continued dramatic growth in the amount of sequencing data available, there is a persistent
interest in exploring the role that common and rare genetic variants may have in explaining the
etiology of complex phenotypes. In particular, there is continued interest in the potential role of
rare variation in explaining some of the “missing heritability” (Manolio et al., 2009) for complex
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phenotypes given that identified causal common variants still
account for little of the total observed heritable phenotypic
variation for many traits. For example, rare variants are thought
to directly contribute to common diseases such as diabetes,
schizophrenia, and heart disease (Cirulli and Goldstein, 2010;
Bomba et al., 2017).

Within the last decade, numerous methods of summarizing
the relationships between sets of rare (and/or common) genetic
variants have been proposed. The most common and widely
used approaches conduct a single test of the null hypothesis that
none of the single-nucleotide variants within a set of interest
(typically a gene) are associated with the phenotype of interest.
There are two broad classes of such tests: burden tests [e.g.,
CMC (Li and Leal, 2008)] and variance-component tests [e.g.,
SKAT (Wu et al., 2011)], with the main distinction being whether
or not the test accounts for the potential beneficial (protective)
impact of rare variants on disease, which is the case for variance-
component tests, but not burden tests. In general terms, burden
tests may be more powerful when risk-impacting variants have
generally similar effects, whereas variance-component tests may
be more powerful when there is heterogeneity in the variant
effects (Basu and Pan, 2011; Liu et al., 2013), with a new
class of approaches attempting to optimally combine these two
broad classes (Lee et al., 2012; Greco et al., 2016), though
simulation evidence suggests that no one method is universally
most powerful (Ladouceur et al., 2012; Derkach et al., 2014).

As the amount and accessibility of sequence data has
continued to increase [e.g., the UK Biobank (Sudlow et al., 2015)],
gene-based tests of rare variants (both burden and variance-
components approaches) are being used with larger and larger
numbers of variants within the sets. While the computational
hurdles associated with testing very large sets (e.g., 100s to
1000s of variants) simultaneously are being addressed with
ongoing research (Lumley et al., 2018), less is known about the
statistical performance of burden and variance-component tests
in these situations.

For almost two decades, the class of pathway analysis methods
[e.g., GSEA; (Subramanian et al., 2005)] have been proposed as
methods for aggregating gene-based summary statistics across
multiple genes within a biologically defined set (e.g., a pathway).
Although many of the original pathway analysis methods were
developed for use on gene-expression data, the application of
these methods to sequencing data has been proposed (Wu
et al., 2010; Wu and Zhi, 2013) and applied specifically to
analyze rare variants (Aslibekyan et al., 2014; Moore et al., 2016;
Richardson et al., 2016; Larson et al., 2017). These approaches
first conduct gene-based tests of association and then use
methods to aggregate the gene-level test statistics (Petersen et al.,
2011; Aslibekyan et al., 2014; Valcarcel et al., 2016). While
these preliminary analyses have demonstrated that pathway
analysis is a valid approach for sequencing data, there has
been little systematic evaluation of the performance of pathway-
based methods in conjunction with gene-based tests (burden
and variance-components). A crucial question is whether, for a
given set of single-nucleotide variants (SNVs) from a functional
pathway, a pathway-based strategy may outperform a gene-
based testing strategy with a multiple testing correction, which

is currently seen in the literature (Neuhaus and Kalbfleisch,
2006; Kim et al., 2017; Oh et al., 2019; Shivakumar et al., 2019).
Importantly, as the numbers of variants within gene-based “sets”
continue to increase, a multi-set testing strategy may become
more theoretically and computationally appealing.

More generally, a gene-based testing strategy can be thought
of as a single-set testing strategy—the evidence of association
for each variant in the set of interest with the phenotype can
be summarized with a single value (e.g., the p-value from
SKAT applied to all rare variants within a gene of interest).
Alternatively, pathway methods can be thought of as a multi-
set testing strategy—first, the variants in the set of interest are
grouped into mutually exclusive subsets, evidence of phenotypic
association is aggregated for each subset, and finally, the evidence
for each subset is aggregated to a single test statistic for the entire
set. While historically the subsetting process involved genes and a
secondary aggregation step involved pathways (sets of genes with
biologically related function), other subsetting approaches are
possible. For example, the subsets could involve each exon/intron
in the single-set test and the gene at the aggregation level, with
numerous other alternative grouping strategies possible (Moore
et al., 2013). Thus, the conceptual contrast is between a single-
set testing strategy (all variants in one single set) and a multi-set
testing strategy (variants are first grouped, evidence of phenotype
association is evaluated for each group, and then the evidence is
aggregated across the groups).

In this paper, we will provide a general framework for
exploring single-set vs. multi-set testing strategies for tests on sets
of rare variants. Simulation will be used to explore our proposed
testing strategy in several distinct hypothetical scenarios, and we
demonstrate the utility of our approach in an application to a real
dataset. Our goal is to evaluate under which conditions single-set
vs. multi-set testing strategies may be statistically advantageous.
Ultimately, we will make practical suggestions for researchers
considering testing sets of 100s to 1000s of genetic variants.

MATERIALS AND METHODS

Terminology
The multi-set (alternatively called, “pathway-based”) approach
we explore here requires a test statistic that aggregates
information at the single-set (or gene) level, and a secondary
aggregation statistic that aggregates multiple, single-set statistics
at the “pathway” level. While we use the terms “gene” and
“pathway” here, it is important to note that our investigation is
focused on the broader question of whether or not to conduct
a single test of all variants of interest (single-set or gene-based
only strategy) or a multi-set strategy (subsets of all variants tested
individually first with a single-set strategy, and then aggregated
using a pathway based statistic).

We note that the historically used terminology “pathway-
based method” and “gene-based method” is somewhat limiting.
“Gene-based” tests can be conducted on any set of variants,
for example, individual exons, introns, windows of the genome,
regulatory binding sites, etc., Similarly, “pathway-based” methods
do not need to be run at the pathway level (set of biologically
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related genes). More broadly, “pathway-based” methods can be
conducted to aggregate any set of individual set-based statistics,
including p-values. For example, a “pathway-based” method
could be used to aggregate all of the intron and exon level set-
statistics. To support these broader definition and interpretation,
we will use the terms “multi-set” and “single set” throughout the
remainder of the paper.

Implementation of the Single-Set Method
Using the Sequence Kernel Association
Test
As the primary test of association between genetic data and
phenotypes, we will explore a generic version of a variance
component test of association. We use a mathematically
equivalent version of the Sequence Kernel Association Test
(SKAT) at the subset (or “gene”) level, which allows for
more straightforward exploration of the behaviors of the
SKAT/variance components statistic (Liu et al., 2013). We define
our variance component (VC) test statistic as follows:

VC = ‖ F+ − F− ‖

where F+ is th e vector of allele frequencies in the set of
variants of interest for the cases, and F− is the same quantity for
controls. For an individual rare variant h = 1,2. . .,l, an element
of F+ is defined as the count of rare alleles among the cases
divided by the number of possible alleles in the cases, 2NA,
where NA is the number of cases. Thus, for a matrix of l SNVs
for N individuals, ‖ F+ − F− ‖ tests the null hypothesis of no
difference in the allele frequencies between the cases and controls
for the l variants in the set.

In addition to the generic variance component test, we also
explored the behavior of a generic burden test and saw a similar
behavior to what we observe in Section 3 (detailed results for
burden test not shown).

Implementation of the Multi-Set Method
Multi-Set Testing Strategy
Like the single-set testing strategy, the multi-set testing strategy
evaluates a matrix of rare allele counts over l SNV sites and N
individuals. However, the test also requires a division of variants
into m mutually exclusive and exhaustive subsets of variants.

The testing strategy proceeds as follows:

1) Break the SNV data into m mutually exclusive and exhaustive
subsets

2) Calculate the single-set statistic t on each of the m subsets
so that we have t1, t2 . . . tm. In this case, we use the SKAT-
equivalent statistic described in 2.2. Combine test statistics
t1, t2 . . . tm using an aggregating statistic, T (see section
“Choices of Aggregating Statistics”).

3) Permute case–control status P times and recalculate single-
set statistics on each set, to obtain test statistics of the
randomly permuted data sk1, sk2 . . . skm for permutation k ∈
{1, 2, . . . P}. Then, compute the aggregating statistic on the
single-set statistics computed on the permuted data, Tk.

4) Compute the p-value for the aggregating statistic by
comparing T to T1,. . .,TP.

Choices of Aggregating Statistics
We consider three different choices of aggregating statistics.

Fisher’s method
Fisher’s method combines m p-values into a test statistic with a

χ2
2m distribution with the following formula: T = −2

m∑
i=1

ln(pi),

where pi is the p-value corresponding to the single-set statistic ti,
computed on the ith subset of variants.

Sumstat
SUMSTAT is defined as T =

m∑
1
tj (Tintle et al., 2009a,b), where

ti is the single-set statistic computed on the ith subset of variants.

Bonferroni correction
For a set of m p-values, p1, p2, . . . pm,
T = Min(p) = min(p1, p2, . . . pm), where, pi is the p-value
corresponding to the single-set statistic ti, computed on the
ith subset of variants and the aggregating test is considered
statistically significant if Min(p) is less than 0.05/m.

We consider the aggregation methods in relation to each
other as well as in comparison to testing all the causal
variants in a single set, without sub-setting variants (the “gene-
based” method).

Simulations
We investigated the power of our proposed testing strategy in
several related scenarios. In all scenarios, we considered a total
of l = 1024 SNVs, and N = 1000 individuals, evenly split into
500 “cases” and 500 “controls.” In all scenarios, 128 of the total
1024 SNVs (12.5%) were causal with risk ratio of 1.15, while the
remaining 896 SNVs were non-causal (risk ratio of 1).

We considered four separate simulation scenarios. The two
primary attributes varied in our simulations were (a) equal (or
unequal) numbers of variants in each subset and (b) equal (or
unequal) proportions of causal variants in each of the subsets.
We looked at four primary simulation scenarios: one for each
of the combinations of equal/unequal numbers of variants and
equal/unequal proportions of causal variants (2 × 2 factorial
design). A summary of simulation scenarios is provided in
Table 1.

Specifically, in Scenario #1, we considered different values of
m (the number of subsets), ranging from 1 to 128 (8 to 1024
variants per subset), while maintaining the same proportion of

TABLE 1 | Summary of simulation scenarios investigated.

Proportion of causal
variants per set is the
same in all sets

Proportion of causal
variants per set differs
across sets

Equal numbers of
variants per set

Scenario #1 Scenario #3

Unequal numbers of
variants per set

Scenario #2 Scenario #4
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causal variants (1/8) in each subset and equally distributing the
variants across each of the m subsets. In Scenario #2, we fixed the
proportion of causal variants at 1/8 in each subset, set m = 2, and
then explored different set sizes for the two subsets, including
set sizes of 8, 16, 32, 64, 128, 256, and 512 SNVs in the smaller
set, with all remaining variants in the other set. Scenario #3 was
similar to Scenario #1 in that we varied the number of subsets, m,
and had equal numbers of variants in each subset, but we varied
the distribution of the causal variants so that 1/8, 1/4, 1/2, or 3/4
of the total sets contained 100% of the causal variants. Finally,
in Scenario #4 we considered both unequal set sizes and unequal
proportions of causal variants across the sets, a more realistic
scenario. In particular, we considered divisions with m = 2 and
128, 356, 384, or 512 variants in the smaller subset and then
varied the distribution of causal variants so that the smaller set
contained none, some, or all of the 128 causal variants, with the
proportion causal dependent on the size of the smaller set. For
a single power estimate, we performed 1000 simulations for that
combination of parameters to yield a max margin of error of 3.5%
(power = 50%) and margin of error of 1.4% when the type I error
rate is 0.05. Power was calculated as the percent of simulations
significant at the 0.05 alpha level.

Prior to running simulations for our factorial design, we
evaluated the type I error rate of our method by setting the risk
ratios for all SNVs to one. The resulting estimate of type I error
for SUMSTAT had a range of 3.8%–5.4%, while for Fisher’s it was
4.0%–5.7%, showing empirical control of the type I error rate at
the nominal level of 0.05.

Application to Real Data
To investigate the performance of the multiset testing approach
on real data, we used imputed genetic data from 1856 participants
of the Framingham Heart Study Offspring cohort (dbGaP Study
Accession: phs000007.v29.p10). We extracted SNPs from the free
fatty-acid receptor (FFAR) family of genes (FFAR1–FFAR4), the
fatty-acid desaturase family (FADS1–3), and the elongation of
very long chain protein 2 (ELOVL2) gene. One of the genes in
the free fatty-acid receptor family, FFAR4, has a protein product
(G-protein coupled receptor 120) known to have an effect on
the metabolism and tasting of fats (Cartoni et al., 2010; Song
et al., 2017), and so we utilized our method to test rare SNVs
in this collection of genes for their association with obesity
[dichotomized as obese (BMI greater than 30 kg/m2) vs. not obese
(BMI less than or equal to 30 kg/m2)] in the cohort. We tested for
association with obesity category on two different gene sets: FFAR
genes alone, and the entire set. Genetic data was filtered after
imputation for a MAF < 0.05, imputationR2 greater than 0.4, and
imputed dosages in the ranges (0.2, 0.8) and (1.2, 1.8) were called
missing while the remaining genotype dosages were rounded to
the nearest whole number. The remaining SNVs were separated
into sets defined by gene, and this division of the total SNVs
resulted in decidedly unequal set sizes (Table 2), ranging from
15 SNVs in FFAR1 and FFAR3 to 322 SNVs in ELOVL2, a more
than 20-fold difference in set size. Given the existing evidence of
the impact of FFAR4 on obesity, we also hypothesized that the
proportion of causal variants would be unequal between subsets.
Unequal set sizes and unequal distribution of causal variants

TABLE 2 | P-values produced by multi-set testing as compared to
single-set testing.

Multi-set
p-value

(Fisher’s)

Multi-set
p-value

(SUMSTAT)

Multi-set
Bonferroni
p-value1

Single-set
p-value

FFAR gene family (4
genes)

0.051 0.037 0.019 0.064

Fatty acid gene
family (8 genes)

0.017 0.033 0.013 0.05

1Emphasized p-values are those that reach their respective significance levels. For
Bonferroni, the p-value illustrated is the smallest p-value across the genes tested.
The significance level must be adjusted to 0.05/4 = 0.0125 and 0.05/8 = 0.00625
for the two testing scenarios, respectively, meaning that even though the illustrated
p-value is the smallest, this finding would not hold up to multiple testing penalties.
Bold here denotes reaching statistical significance.

among sets are extremely plausible in the analysis of real data,
and while the true distribution of causal variants in our entire set
of SNVs is unknown, we certainly see unequal set sizes in our real
data application.

RESULTS

Equal Proportions of Causal Variants
Across Subsets (Scenarios #1 and #2)
Results from simulation Scenario #1 are illustrated in Figure 1. In
short, when subsets are equally sized and the proportion of causal
variants in each subset is held constant, the power of the Fisher’s
and SUMSTAT multi-set approaches are similar, though slightly
lower, than the power of a single-set approach. Importantly, this
holds true even as the number of subsets increases. However,
multi-set testing using a Bonferroni correction for multiple
testing loses power rapidly as the number of sets increases.

Figure 2 illustrates the results from Scenario #2, which
explored test behavior when the proportion of causal variants
was the same in both subsets, but subsets were of different sizes.
In this case, the difference in size between the two subsets had
little impact on power even as the ratio of set sizes ranged from
1:128 to 1:1. SUMSTAT and Fisher’s both gained some power as
set sizes became more equal, and Bonferroni lost power slightly,
but the overall change was small. Notably, however, power was
less than a single-set approach in all cases. The decrease in power
as compared to a single set could be explained by considering
the aggregating methods to be weighting the two sets equally
in creating the final p-value when in fact their size and number
of causal variants are unequal. When variants are distributed
equally, dividing into unequal subsets results in down weighting
the signal of the causal variants in the larger subset.

Unequal Proportions of Causal Variants
Across Subsets (Scenarios #3 and #4)
Varying the distribution of causal variants but maintaining equal
set sizes in Scenario #3 shows that the Fisher’s and SUMSTAT
multi-set and single-set approaches maintain steady power curves
(Figure 3). In general, the Bonferroni approach yields low
power for large numbers of sets. However, in a few unique
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FIGURE 1 | Multi-set approaches using aggregation statistics have improved power over multi-set testing with a Bonferroni correction as the number of subsets
increases.

FIGURE 2 | Relative subset size has little impact on the power of multi-set
approaches when the proportion of causal variants is equally distributed
between two sets.

cases the Bonferroni approach yields better power than other
methods. When causal SNVs are aggregated together, the power
of Bonferroni peaks at the set division that corresponds to testing
all causal variants in one single set. Since Bonferroni uses the
minimum p-value across the sets as the primary test statistic, this
scenario maximizes power.

In Scenario #4 (depicted in Figure 4), distributing causal
variants between two equal sets had no impact on power (4a).

However, as we moved non-causal SNVs to the larger set and
causal SNVs to the smaller set, power increased for all multi-set
methods (Figures 4B–D).

Results of Application to Real Data
The results of applying a multi-set approach to rare variants
in the fatty acid gene family are presented in Table 2,
contrasting with a Bonferroni adjustment and a single-set
approach. Bold and italicized p-values are those that reach the
alpha < 0.05 significance level. While the Bonferroni p-values are
the smallest overall, they do not reach their respective cutoffs for
significance after accounting for multiple testing. Out of the four
approaches we investigated through simulation (Section “Choices
of Aggregating Statistics”) only the multi-set approaches (Fisher’s
and SUMSTAT) identified an association between rare variants in
the sets of fatty acid genes and obesity.

While there is preexisting knowledge surrounding the FFAR4
gene’s association with fat tasting and metabolism, the smaller
p-value for Fisher’s method when including the whole pathway
as compared to the FFAR family alone indicates possible
associations outside the FFAR family. Given that Fisher’s is a
p-value-based aggregation method, a natural “post hoc” analysis
after determining significance at the pathway level is to look at
the p-values from each gene (Table 3).

In the individual gene-level results, considering alpha < 0.05,
we find that two subsets, or genes (ELOVL2 and FFAR2),
have raw p-values that reach statistical significance, with only
borderline statistical evidence for FFAR4 (p = 0.081). Our
hypothesis based on preexisting biological information was that
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FIGURE 3 | Multi-set aggregation statistics Fisher’s and SUMSTAT yielded power similar to a single set test, whereas Bonferroni showed generally worse power for
large number of subsets, with some specific cases where Bonferroni improved power. (A) Power curves when subsets are equally sized and causal variants are
distributed among only 1/8 of the total subsets. (B) When casual variants are distributed among 1/4 of the subsets. (C) When causal variants are distributed among
1/2 of the subsets. (D) When causal variants are distributed among 3/4 of the subsets.

FFAR4 would show a strong association with dichotomized
obesity phenotype, but in fact just testing FFAR4 would not result
in a significant finding (Table 3). In addition, neither testing
the entire pathway as a single set nor testing the pathway as
individual genes and applying a Bonferroni correction identifies
this association. However, expanding to test the whole pathway
using a multi-set approach does detect significant associations
at the pathway level, allowing us to examine more closely the
individual gene tests, identifying potentially novel associations
between FFAR2 and ELOVL2 with obesity.

DISCUSSION

In this manuscript, we demonstrate that a multi-set testing (or
“pathway-based”) approach shows similar or improved power
when compared to single-set (or “gene-based”) methods. In
particular, when the proportion of causal variants is similar across
all sets, all methods (single-set and multi-set methods) performed
similarly as the number of subsets increased, with the exception
of the Bonferroni method, which suffers from the increased
multiple testing penalty. In contrast, when the proportion of

causal variants tends to be aggregated into certain subsets, multi-
set approaches can lead to increases in statistical power with
particularly large increases in power when the subsets containing
causal variants have few variants overall.

Uninformative vs. Informative
Sub-Setting
The behavior illustrated in this manuscript suggests that the key
to understanding the benefits of a multi-set testing approach
is related to the informativeness of the sub-setting procedure.
An uninformative sub-setting strategy will maintain equal
proportions of causal variants across the subsets as was illustrated
in Scenarios #1 and #2 of the simulations. Uninformative sub-
setting is an approach which breaks down a larger set of variants
into approximately “randomly selected” subsets of variants for
testing. In this strategy, any causal variants in the set will be
distributed approximately randomly across the subsets and, thus,
the proportion of causal variants will be similar across the
subsets, even if the size of some subsets is larger than others.
As we demonstrated in simulation Scenarios #1 and #2, multi-
set testing strategies like the Fisher’s and SUMSTAT methods
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FIGURE 4 | Varied distribution of causal variants into unequal subsets demonstrates increased power for multi-set methods as the proportion of causal variants
increases in the smaller set. (A) Power curves when the SNVs are divided into two equal subsets, and the proportion causal in one subset is varied from 0 to 1/4. (B)
Power curves when SNVs are divided into two unequal subsets, and the proportion causal in the smaller set is varied from 0 to 1/3. (C) Power curves when SNVs
are divided into two subsets, one three times the size of the other, and the proportion causal in the smaller set is varied from 0 to 1/2. (D) Power curves when SNVs
are divided into two subsets, one seven times the size of the other, and proportion causal in the smaller set is varied from 0 to 1.

TABLE 3 | Rare variant set sizes in application to real data.

Gene name FFAR1 FFAR2 FFAR3 FFAR4 FADS1 FADS2 FADS3 ELOVL2

Number of rare variants 15 20 15 248 108 247 94 322

Single-set p-value from simplified SKAT 0.659 0.013 0.529 0.081 0.388 0.255 0.403 0.033

Bold denotes reaching statistical significance.

perform similarly to the single-set testing approach in this case,
though with a modest decrease in power.

Informative sub-setting means that certain subsets contain
higher proportions of causal variants than others. Thus, the
subsets are helping to aggregate some of the true underlying
signals in the data. Subsets are no longer “randomly” distributing
variants to the sets. Multi-set approaches can significantly
outperform single-set approaches in this situation by leveraging
the additional statistical information provided by the sets
being tested—even when there is no a priori knowledge of
which subsets of variants are the ones containing the causal
variants. In practice, this additional statistical information is

likely to be contributed by using prior biological information to
aggregate variants into subsets. As we demonstrated in simulation
Scenarios #3 and #4, and the real data applications, multi-set
testing strategies like the Fisher’s and SUMSTAT methods, and
even the Bonferroni approach in some cases, outperform the
single-set testing approach in this situation. These results are
in line with prior work demonstrating that high proportions of
causal variants in a set lead to high power (Derkach et al., 2014).

Given this insight, then, in practice, the choice of biologically
informative subsets is paramount. Further research is needed to
explore alternative subset approaches (e.g., genes, exons/introns,
functional similarity, window based) and identify subset
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approaches that generate optimally sized and informative subsets
for multi-set approaches. To date the nearly exclusive focus on
gene-based tests is likely limiting our ability to elucidate the
genetic architecture of complex diseases.

Bonferroni and Multi-Set Testing
Penalties
The conservative nature of the Bonferroni approach to multiple
testing is well-known. Our inclusion of this approach was
not simply to confirm these well-known results. Instead, the
inclusion of the Bonferroni approach was to illustrate that other
approaches to multi-set testing (e.g., Fisher’s and SUMSTAT),
which appropriately control for multiple testing, have relatively
little downside compared to a single-set approach when sub-
setting is uninformative and large gains when subsets are
informative. However, it is important to note that both the
Fisher’s and SUMSTAT approaches do have some loss of power
as compared to a single-set approach in the uninformative case.
Thus, Fisher’s and SUMSTAT have an improved method of
multiple testing penalty as compared to Bonferroni, but there
is still a penalty for using them vs. a single-set approach when
subsets are uninformative.

Limitations
While our simulation settings do not consider all possible
situations, they systematically (via the 2 × 2 factorial approach)
provide an intuitive sense of the behavior of certain classes
of tests in illustrative situations considering two important
factors related to multi-set test power. Similarly, we acknowledge
numerous other choices of test statistics (e.g., gsSKAT, GSEA,
etc.) which may have advantages in certain practical situations
(e.g., correlated genes). Furthermore, complexities of genetic
data (e.g., multilevel sets; widely varying set sizes; linkage
disequilibrium; variant weighting; related individuals) and
genome-wide significance levels were not considered here. Our
work to date provides a firm, intuitive foundation on which to
build more complex investigations and real data applications,
now having a basis on which to predict test behavior. Thus, while
further investigations across a wide variety of additional scenarios
are needed, and certain scenarios may gain particularly from
particular choices of statistics, our investigation provides a broad
and intuitive framework with which to anticipate test behavior, as
is illustrated in our real data application. Furthermore, emerging
approaches like a parametric bootstrap to assess genome-wide
significance (Lin, 2019), among others (Povysil et al., 2019), are
outside the scope of this manuscript. Finally, we considered large
numbers of subsets of variants; however, exploring even larger
numbers of subsets may be necessary to explore whether there is
a limit to the patterns we observed in these most extreme cases.

Conclusion
As the number of variants that are regularly identified and
annotated as part of standard tests of genetic association
increases, little is known about the behavior of standard “gene-
based” (single-set) statistics in these settings. Our results suggest
that there may be little downside and potentially a large upside
(statistically improved power) to multi-set testing strategies even
outside of traditional “pathway” based testing. Thus, considering
subsets consisting of gene “subparts” (e.g., exons and introns;
gene windows, etc.) may improve statistical power to elucidate
disease etiology. However, future research is necessary in order
to identify optimally informative ways to define subsets which
provide maximal statistical power across a wide range of disease.
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