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Abstract

BACKGROUND—The electrocardiogram (ECG) is one of the most common diagnostic tools 

available to assess cardio-vascular health. The advent of advanced computational techniques 

such as deep learning has dramatically expanded the breadth of clinical problems that can be 

addressed using ECG data, leading to increasing popularity of ECG deep-learning models aimed 

at predicting clinical endpoints.

OBJECTIVES—The purpose of this study was to define the current landscape of clinically 

relevant ECG deep-learning models and examine practices in the scientific reporting of these 

studies.

METHODS—We performed a systematic review of PubMed and EMBASE databases to identify 

clinically relevant ECG deep-learning models published through July 1, 2022.

RESULTS—We identified 44 manuscripts including 53 unique, clinically relevant ECG deep-

learning models. The rate of publication of ECG deep-learning models is increasing rapidly. The 

most common clinical applications of ECG deep learning were identification of cardiomyopathy 

(14/53 [26%]), followed by arrhythmia detection (9/53 [17%]). Methodologic reporting varied; 

while 33/44 (75%) publications included model architecture diagrams, complete information 

required to reproduce these models was provided in only 10/44 (23%). Saliency analysis was 

performed in 20/44 (46%) of publications. Only 18/53 (34%) models were tested within external 

validation cohorts. Model code or resources allowing for model implementation by external 

groups were available for only 5/44 (11%) publications.
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CONCLUSIONS—While ECG deep-learning models are increasingly clinically relevant, their 

reporting is highly variable, and few publications provide sufficient detail for methodologic 

reproduction or model validation by external groups. The field of ECG deep learning would 

benefit from adherence to a set of standardized scientific reporting guidelines.

Keywords

artificial intelligence; deep-learning; electrocardiography; risk-prediction

Electrocardiograms (ECGs) are a mainstay of medical practice due to their clinical 

relevance, low cost, and wide availability. However, while ECG data can be used to 

diagnose both cardiac and noncardiac disorders, their interpretation requires significant 

training and expertise. Most modern ECG systems offer rule-based automated analysis, but 

these approaches rely on obvious, easily quantified ECG parameters such as the duration of, 

amplitude of, or intervals between segments of the cardiac cycle. These algorithms may miss 

more subtle ECG changes including those not apparent to the human eye and have limited 

ability to provide insight into more complex diagnoses.

More recently, advanced computational techniques including artificial intelligence and 

machine learning have expanded the breadth of clinical problems potentially addressable 

by ECG data. Deep-learning models, the subset of machine-learning models that rely 

on neural networks, are particularly adept at handling complex, high-dimensionality data 

like ECG waveforms, offering the potential to improve cardiac diagnoses (eg, identifying 

cardiomyopathy1,2 or valvular disease3,4) and make relevant clinical predictions (eg, future 

arrhythmia or mortality5,6). Early results from ECG deep-learning models have been 

impressive, and their popularity has increased dramatically over the past several years. 

However, there is concern that the rapid growth of this branch of research has outstripped its 

reliability. The extent to which publications provide sufficient information to allow external 

validation and replication is unclear, as is model reproducibility.

To address this issue, we performed a systematic review to identify clinically relevant 12-

lead ECG deep-learning models, describe the specific computational techniques employed 

for their creation, evaluate both the quality and consistency of the scientific reporting related 

to these models, and assess their reproducibility.

METHODS

All data relevant for these analyses are available online as part of the Supplemental 

Appendix.

IDENTIFICATION OF CLINICALLY RELEVANT 12-LEAD ECG DEEP-LEARNING MODELS.

We performed a systematic review of novel deep-learning models that made use of 

12-lead, surface ECG data to address clinically relevant problems. This review adhered 

to guidelines set out by the Cochrane Collaboration and Institute of Medicine7 and 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement8; 

abstraction flowchart is shown in Figure 1.
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We queried 2 large, open-access medical research databases, PubMed and EMBASE, 

using a standardized set of medical subject heading search terms (Supplemental Methods 

1) to inclusively identify ECG deep-learning models published through July 1st, 2022. 

Briefly, manuscripts with references to both electrocardiography and deep learning, artificial 

intelligence, convolutional networks, or neural networks were targeted. Additional search 

filters included requirements for the English language, original research manuscripts (not 

reviews), and full-text availability.

Two independent reviewers screened potential abstracts using Rayyan, a semiautomated 

online abstract screening and documentation program.9 Discrepancies were discussed until 

consensus was achieved. We then selected abstracts for full-text review if they met the 

following inclusion criteria: 1) reference to the development of novel deep-learning models; 

2) specified standard clinical 12-lead ECGs as a primary input into these models (rather than 

ambulatory electrocardiography or wearable devices); and 3) models were derived from a 

primarily adult population.

We then doubly screened full-text publications and included them for further analysis 

if they met the above inclusion criteria. At this stage, we identified a high volume 

of nonclinically focused ECG deep-learning models published in primarily low-impact 

journals.10 To maintain the clinical focus of our review, we applied 3 additional exclusion 

criteria during review of full texts: 1) articles published in journals with overall H-index 

<40 as of July 1st, 2022; 2) articles that developed and tested their models exclusively using 

heavily mined, open-access ECG datasets such as the PhysioNet/Computing in Cardiology 

Challenge (CINC) ECG datasets11; and 3) obvious nonclinical focus (eg, use of ECG 

deep learning for the purposes of biometric identification or signal denoising). Here, newer 

journals published by reputable publishing groups that had not yet achieved our H-index 

criteria were included regardless.

The validity of our abstract screening was qualitatively verified by correct identification of 

several known “gold standard” ECG deep-learning manuscripts.1,2,5,12,13

DATA EXTRACTION.

For those full-text manuscripts identified above, 2 independent reviewers extracted data on 

the studied population, the methods and results of the proposed ECG deep-learning models, 

as well as the rigor and approach to reporting of these methods and results using a standard 

set of definitions and in accordance with the checklist for systematic reviews of prediction 

modeling studies.14

Collected fields included size and clinical characteristics of the cohorts, how the dataset was 

divided for the purposes of model development and training, details related to the design of 

the ECG deep-learning models, the outcomes predicted by the ECG deep-learning models, 

model performance reporting, and finally availability and reproducibility of the ECG deep-

learning models. Models were considered reproducible if the publication included: 1) a 

diagram of model architecture (ie, a visual depiction of the connections between model 

layers); 2) specific definition of the kernel size and number of convolutional filters at each 

convolutional layer; and 3) specific definition of the techniques and hyperparameters used 
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for model development including the type of activation function layers, the loss function, 

the learning rate, the training optimizer, and mini-batch size. A full list of extracted 

characteristics is presented in the Supplemental Methods. Risk of model bias was assessed 

using the previously validated short-form of the Prediction Model Risk of Bias Assessment 

Tool (PROBAST).15 This tool, designed for critical appraisal of bias in prediction models, 

consists of 6 distinct fields reflecting methodologic approaches to: 1) outcome assessment; 

2) events per predictor variables; 3) continuous predictors; 4) missing data; 5) univariable 

analysis; and 6) over-fitting/optimism (Supplemental Methods).

In this systematic review, we defined the following types of datasets: 1) the training dataset, 

defined as the set of ECGs or patients that were used directly for training of model weights; 

2) the validation dataset, defined as the set of ECGs or patients that were used as an 

internal cross-check during model training for the purposes of hyperparameter tuning, model 

selection, or to define scheduled changes to the learning rate or early stopping; 3) the 

development dataset, defined as the combination of training and validation datasets; 4) the 

testing dataset, defined as the dataset used to assess the performance of the model developed 

within the development dataset; and 5) the overall cohort, defined as the combination of 

development and testing datasets. An external testing dataset was defined as a dataset 

comprised of data from either a distinct location or from a temporally distinct time span.

STATISTICAL ANALYSIS.

Model summary statistics were performed using Python (v3.9.13) and the open-source 

Pandas (v1.5.3) data analysis library.

RESULTS

IDENTIFICATION OF CLINICALLY RELEVANT 12-LEAD ECG DEEP-LEARNING MODELS.

We identified 53 distinct, clinically relevant 12-lead ECG deep-learning models included 

in 44 published manuscripts (Central Illustration, Table 1); summary statistics of these 

models are presented in Supplemental Table 1. Manuscripts that were excluded during 

full review are shown in Supplemental Table 2. These manuscripts were published by 

groups throughout the world, the most prolific countries being the United States (19/44, 

43%), China (8/44, 18%), Japan (5/44, 11%), and the Netherlands (5/44, 11%). The rate 

of publication of manuscripts related to ECG deep learning is escalating (Figure 2), with 

none published before 2018 and more than 30 published after January 1, 2022. The most 

common clinical applications of these models were identification of cardiomyopathies 

(14/53 [26%]), prediction of abnormal clinical, laboratory, or imaging findings (11/53 

[21%]), and arrhythmia detection (9/53 [17%]). Four groups published comprehensive deep-

learning models that simultaneously predicted a large number of clinical diagnoses. The type 

of problems that models were designed to solve were largely classification (46/53, 86.8%), 

though a few models attempted to make predictions of future events (4/53, 9.4%), and 2 

models generated regressions of a continuous variable.
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ECG DEEP-LEARNING MODEL DESIGN AND IMPLEMENTATION.

While, by definition, all models incorporated 12-lead surface ECGs as an input source, 

only 22 (41.5%) used the full 10-second (27/53, 61.4%) 12-lead (39/53, 88.6%) waveforms. 

Common alternative approaches were inclusion of 8 orthogonal ECG leads (10/53, 22.7%) 

or use of <2.5s worth of waveform data (22/53, 41.5%) such as specific segments containing 

median beats (2/53, 4.5%) or ectopic beats (3/53, 6.8%). The majority of ECG waveform 

data was sampled at 500 Hz frequency (34/53, 77.3%). In addition to ECG data, 9 of 53 

models (17.0%) required additional clinical factors such as age and sex for generation of 

model predictions. Two models (4.5%) incorporated ECG images rather than raw voltage 

waveform data.

Diagrams showing model architecture were included in 33/44 (75%) of publications. The 

number of convolutional layers was highly variable across models, ranging from as low as 2 

to as many as 125 layers. The organization of these convolutional layers also varied. While 

the most common organizational strategy used standard, sequential convolutional layers 

(23/53, 43.4%), residual connection blocks (17/53, 32.1%) including blocks of densely 

connected residual connections (4/53, 7.5%), and causal dilation blocks (3/48, 5.6%) were 

also commonly employed. Elements of recurrent neural networks (long short-term memory 

units) were occasionally added synergistically with convolutional layers (5/53, 9.4%).

ECG DEEP-LEARNING MODEL DEVELOPMENT AND PERFORMANCE ASSESSMENT.

The majority of models were derived from retrospective cross-sectional datasets (37/53, 

69.8%), while around one-third were derived from outcome-enriched case-control cohorts 

(16/53, 30.2%). Most models (51/53, 96%) included at least some description of the ECG 

dataset from which they were developed or tested, but descriptions were inconsistent. The 

most common strategies used for describing datasets were presenting: 1) only information 

related to the overall cohort (18/53, 34.0%); 2) information related to the development 

and testing datasets (14/53, 26.4%); or 3) complete information related to the training, 

validation, and testing datasets (17/53, 32.1%). For the 50 models reporting sufficient 

information for its estimation, overall dataset sizes ranged broadly between 80 ECGs and 2.5 

million ECGs. Patient age (40/53, 75.5%) and sex (43/53, 81.1%) were largely reported for 

these datasets, but patient race (5/53, 9.4%) was rarely reported. Most, but not all, models 

included at least some information regarding the incidence of the outcome to be predicted 

(46/53, 86.8%).

The most common metric used for assessing the performance of ECG deep-learning models 

in testing datasets was the area under the receiver operator curve (AUROC), reported 

for 44/53 (83.0%) of the models. Median AUROCs by category of model prediction are 

presented in Supplemental Table 3. Other metrics reported with high frequency were 

sensitivity (35/53, 66.0%), specificity (30/53, 56.6%), accuracy (24/53, 45.3%), and F1 

statistic (the harmonic mean of precision and recall) (18/53, 34.0%). Of note, specific 

criteria for selecting the operating threshold at which sensitivity, specificity, and accuracy 

were ascertained were reported in only 23/44 (52.3%) publications. Few publications 

assessed model calibration (6/44, 13.6%). Fewer than half of publications performed 
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saliency analysis (20/44, 45.5%), with the most popular approach being gradient-based class 

activation mapping (Grad-CAM) (14/20, 70.0%).

MODEL REPRODUCIBILITY.

Only 18 of the 53 ECG deep-learning models (34.0%) were tested in external testing 

cohorts. Among the few models reporting this metric for both hold-out testing and external 

testing, AUROC held up well, actually increasing by a median value of 0.022 [IQR: −0.001 

to 0.032]. However, risk of bias, as assessed by short-form PROBAST, was elevated for all 

models with median score of 2 [IQR: 2–3].

Published details required for recreation of model training were frequently incomplete, 

with only 10/44 (22.7%) publications reporting the complete information required for 

reproduction of the described models. Only 5 publications (11.4%) included freely available 

code or online resources that would allow for model testing by an external group. While 

a few publications stated explicitly that model code would not be shared (4/44, 9.1%), the 

majority either provided nonspecific statements that code could potentially be shared upon 

request (16/44, 36.4%) or provided no statement regarding code availability (19/44, 43.2%).

DISCUSSION

In this systematic review, we identified over 40 unique publications including more than 

50 distinct, clinically focused, ECG deep-learning models. These publications propose 

solutions to a wide variety of clinical problems, ranging from the highly specific 

identification of individual genetic mutations to the more comprehensive, automated 

prediction of a wide array of ECG abnormalities. The heterogeneity of these models is 

not limited to their applications; modeling techniques, the types of datasets used to develop 

and test these models, and the approaches used to assess model performances vary widely as 

well. While this variability demonstrates the strength and versatility of ECG deep learning, 

it also highlights the absence of a standardized approach for the scientific reporting of these 

models.

CLINICAL APPLICATIONS OF ECG DEEP-LEARNING.

Deep learning has proven to be particularly well suited for extracting meaningful clinical 

information from high-dimensional, relational data such as ECG voltage waveforms. As 

testament to this, many of the ECG deep-learning models that we identified were able to 

make diagnoses that would not previously have been possible based on ECG alone. One of 

the most common and clinically relevant applications of these models is to identify patients 

within the general population who are likely to have cardiac conditions such as hypertrophic 

cardiomyopathy,12 aortic stenosis,4 or aortic regurgitation.3 Models of this type have the 

potential to expand the role of ECG in screening for cardiac disease.

Another interesting clinical application illustrated by several models identified in this 

review involved the potential to predict abnormal downstream test results such as elevated 

pulmonary capillary wedge pressure during invasive right heart catheterization,51 presence 

of scar on cardiac magnetic resonance imaging,21 and reduced ejection fraction on 

echocardiography.2,26,36 These types of ECG deep-learning models have the potential to 
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help guide resource allocation. For example, focusing testing on those patients with a high 

likelihood of abnormal results may increase the rate of significant findings identified per test 

performed, in turn leading to decreased costs and reduced burden of unnecessary testing.

Finally, one of the most difficult (but potentially most clinically valuable) applications 

of ECG deep learning was for differentiation of alternative diagnoses with clinically 

similar ECG manifestations, such as discriminating between patients with drug-induced 

vs hereditary long QT syndromes,35 identifying the location of accessory pathways in 

Wolff-Parkinson-White syndrome,29 and differentiating left vs right-sided culprit vessel 

during inferior ST-segment elevation myocardial infarctions.43 Models developed for these 

purposes are only relevant for those patients suffering from the index condition (eg, a patient 

must have Wolf-Parkinson-White to identify the site of an accessory pathway), but have the 

potential to help guide strategies during invasive procedures or clarify otherwise difficult 

diagnostic dilemmas.

Models designed for each of the 3 classes of clinical application described above 

demonstrated excellent discrimination, and the size of the ECG dataset used for model 

development seemed to have little impact on performances. Model performances were 

much more dependent on the specific outcomes being predicted. Outcomes with more 

obviously manifested ECG abnormalities resulted in excellent results (eg, the presence or 

absence of atrial fibrillation), while those with subtler ECG changes (eg, aortic stenosis) 

were more difficult to predict. As the clearest example of this, Han et al45 presented 3 

alternative models predicting coronary artery calcium scores on computerized tomography. 

While high-burdens of coronary calcium might be associated with other structural and 

electrophysiologic changes that manifest on ECG, a low-calcium burden may be found in 

patients with otherwise normal ECGs. This was clearly reflected by the performances of 

their models: the model predicting calcium score >1,000 had a good AUROC of 0.803 while 

the model predicting calcium score >100 had AUROC of only 0.718. These difficulties with 

detection of subtle ECG changes may in part be overcome through the use of very large 

datasets. The Mayo and Geisinger groups in particular have demonstrated the possibility 

of predicting future events such as mortality5 and incident atrial fibrillation6 using deep-

learning models trained on millions of ECGs.

As the popularity of these ECG deep-learning models has grown, the barriers for entry into 

this field of research have contemporaneously decreased. The costs of computer hardware 

such as graphical processing units continue to drop, and a number of freely available, 

relatively easy to use deep-learning code libraries are now available. Further, researchers 

interested in ECG deep-learning models now have access to several large, open-source, 

online ECG databases. Of particular importance, PhysioNet has published data from nearly 

90,000 ECGs as part of its annual CINC competition.11 This important step forward in the 

democratization of ECG deep learning has proven to be a double-edged sword, however. 

Since its publication, many research teams have made use of the PhysioNet/CINC dataset 

as a ‘toy’ problem for demonstrating the value of technical innovations or novel deep-

learning techniques. This has resulted in an overabundance of ECG deep-learning models 

demonstrating incremental improvements in the diagnosis of more readily identified clinical 

entities such as atrial fibrillation or myocardial infarction. While these computer-science and 
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engineering-focused publications are essential for advancing the field of deep learning as a 

whole, we made the purposeful decision to exclude these ECG deep-learning models and 

instead focus our systematic review on those models with more direct clinical relevance.

LACK OF STANDARDIZED SCIENTIFIC REPORTING/REDUCED OPTIONS FOR EXTERNAL 
REPRODUCIBILITY.

Because of the inherent complexity of deep-learning models and the innumerable possible 

variations in their development and design, an accurate, detailed description of methods is 

critical. However, our systematic review identified both a lack of standardization across the 

field as well as variable detail of methodologic reporting among individual publications. 

Even basic definitions varied substantially between manuscripts. For example, a cohort 

comprised of patients that did not contribute data during model development and which 

is subsequently used for assessing model performance might be described as a “hold-out 

testing” cohort (as we have defined for this review) in 1 manuscript or as a “validation” 

cohort in another. This lack of shared language can make it difficult to discern which 

models have undergone true external testing and which may be subject to bias or overfitting. 

Further confounding the evaluation of bias in these models, the method by which operating 

thresholds for evaluation of sensitivity, specificity, and accuracy were selected was defined 

for only around half of models.

Unlike traditional clinical predictive models, where publishing prognostic formulas is 

required for their clinical deployment,52 the reproducibility and possibility for external 

testing of ECG deep-learning models are much more limited. As few as 1 in 5 ECG 

deep-learning models were described in sufficient detail to enable an experienced external 

research group to recreate their development and design. Further compounding this issue, 

only around 10% of manuscripts published code or provided online resources facilitating 

external model testing. While a larger contingent of publications (w35%) did declare that 

data or models could theoretically be shared upon specific request to the corresponding 

author, such statements place the burden of obtaining code on external groups, and there 

is no mechanism for their enforcement. Concerns regarding protection of intellectual 

property and/or the potential for future commercialization may contribute to decreased 

public availability.

These findings emphasize the need for a standardized set of guidelines for the scientific 

reporting of deep-learning models that includes descriptions of both the details required 

for model recreation (eg, architecture diagrams as well as those hyperparameters included 

in Supplemental Methods 2) and characteristics of the cohorts in which those models 

were developed and tested (eg, cohort size, age, sex, race, and event rates). Unfortunately, 

previously published guidelines designed for traditional clinical predictive models are ill-

equipped for this purpose. The TRIPOD checklist for transparent reporting of traditional 

clinical predictive models53 does not provide adequate standards for descriptions of deep-

learning model design, standardized definitions for the ways in which model validation and 

testing should be performed, or expectations regarding the public availability of published 

models. Bias assessment using PROBAST15 systematically overestimates deep-learning 

model bias due to the extremely low ratio of the numbers of outcome events to model 
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parameters (eg, model weights) inherent to these models, and does not take cohort size, 

cohort composition (eg, case/control vs cross-sectional cohorts), or methods for selecting 

operating thresholds into consideration. These limitations to existing standards have been 

recognized, and updated versions of both TRIPOD and PROBAST specifically for use with 

machine learning are currently under development.54 Of note, while standardized reporting 

of model details will allow for enhanced model interpretation and reproducibility, the 

specific values of those reported model parameters require problem-specific optimization 

and may therefore be different for different use cases. Finally, while explorations of 

model explainability are an important part of assessing the mechanisms by which models 

make their predictions, current techniques for saliency analysis have demonstrated poor 

performance on clinical tasks.55 Thus, their role in standardized reporting of deep-learning 

models remains unclear.

STUDY LIMITATIONS.

Although we applied a systematic approach to identify novel, clinically relevant ECG deep-

learning models, our search was limited to the PubMed and EMBASE research databases. It 

is possible that there are models and/or validation studies published in alternative databases 

that we failed to include. Likewise, while our decision to exclude manuscripts published in 

journals with lower H-index was purposeful to maintain the clinical focus of our review,10 

it is possible that models with true clinical relevance could have been accidentally excluded; 

these criteria may also increase bias resulting from higher-performing models being selected 

for publication.

CONCLUSIONS

ECG deep-learning models are increasingly directed at clinically relevant endpoints and 

have demonstrated excellent performance over a wide range of diagnostic and predictive 

purposes. Their reporting is highly variable, however, and few publications provide the 

means for methodologic reproduction or model testing by external groups. The field of ECG 

deep learning would benefit from adherence to a standardized set of scientific reporting 

guidelines.
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ABBREVIATIONS AND ACRONYMS

AUROC area under the receiver operator curve

ECG electrocardiogram
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE:

ECG deep-learning models are increasingly relevant for the practice of clinical 

cardiology and medical research.

TRANSLATIONAL OUTLOOK:

Development of a standardized set of guidelines for the scientific reporting of deep-

learning models is critical.
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FIGURE 1. PRISMA Flowchart
Flowchart showing abstract and manuscript screening, as well as ECG deep-learning 

model identification. ECG = electrocardiogram; PRISMA = Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses.
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FIGURE 2. Histogram of Increasing Electrocardiogram Deep-Learning Publication Rate
Blue = publications that included external testing datasets; red = publications with models 

tested in hold-out testing datasets only.
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CENTRAL ILLUSTRATION Systematic Review of ECG Deep-Learning Models Demonstrated 
Excellent Performances but Variable Approaches to Scientific Reporting
ECG = electrocardiogram.
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TABLE 1

Characteristics of ECG Deep-Learning Models

PMID
First 

Author
Publication 

Year Outcome(s)

Overall 
Dataset 

Size

Total Number 
of Sequential 
Convolutional 

Layers AUROC

External 
Testing 
Cohort?

Mean 
AUROC 

in 
External 
Cohort

3013345216 Attia 2018 Dofetilide toxicity NR 7 NR No -

306173182 Attia 2019 LVEF <35% 97,829 7 0.93 No -

3094284517 Galloway 2019 Hyperkalemia 1,626,680 11 0.883 Yes 0.856

3137839213 Attia 2019
Silent atrial 
fibrillation 649,931 19 0.87 No -

3145097718 Attia 2019 Patient age 774,783 9 NR No -

Patient sex 774,783 9 0.973 No -

None19 Li 2019
HF stages (From 2s 
ECG) 17,190 3 NR No -

HF stages (From 5s 
ECG) 6,876 3 NR No -

3208128012 Ko 2020
Hypertrophic 
cardiomyopathy 67,001 NR 0.96 No -

323937995 Raghunath 2020 Mortality (at 1 y) 2,338,833 7 0.876 No -

3240629620 van de Leur 2020
Multi-class triage 
category 337,819 35 0.93 No -

3300694721 Gumpfer 2020
Myocardial Scar on 
CMR 114 5 NR No -

3332809422 Zhu 2020
21 distinct ECG 
rhythms 180,940 13 0.983 Yes 0.995

3339227423 Jiang 2020 Left atrial dilation 3,391 7 0.949 No -

3526587724 Kashou 2020

66 distinct 
cardiology 
diagnoses 2,499,522 33 0.98 No -

3526589325 Nakamura 2020 PVC origin 464 2 0.908 No -

334019211 van de Leur 2021 PLN mutation 1,806 14 0.95 No -

3356521726 Sun 2021 LVEF <50% 26,792 NR 0.713 No -

3356605927 Bos 2021 LQT syndrome 9,085 10 0.90 No

Specific LQT 
mutation 9,085 10 0.944 No -

335885846 Raghunath 2021
Atrial fibrillation (at 
1 y) 1,151,037 6 0.85 No -

Atrial fibrillation (at 
1 y) 564,573 6 0.83 Yes 0.85

3360737828 Lopes 2021 PLN mutation 13,622 9 0.90 No -

337488524
Cohen-
Shelly 2021 Aortic stenosis 258,607 62 0.85 No -

3385024529 Nishimori 2021
Accessory pathway 
location NR 4 NR Yes NR

3391756330 Chang 2021 Digoxin toxicity 177,127 82 0.912 No -

3412676231 Khurshid 2021
Left ventricular 
hypertrophy 37,142 10 0.653 Yes 0.621
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PMID
First 

Author
Publication 

Year Outcome(s)

Overall 
Dataset 

Size

Total Number 
of Sequential 
Convolutional 

Layers AUROC

External 
Testing 
Cohort?

Mean 
AUROC 

in 
External 
Cohort

3422509532 Jo 2021
9 distinct ECG 
rhythms 56,942 11 0.976 Yes 0.966

3430809133 Lin 2021
Thyrotoxic periodic 
paralysis 588 82 0.986 No -

3434700734 Hughes 2021
38 distinct cardiac 
diagnoses 351,657 34 0.974 Yes 0.952

3446873935 Prifti 2021 Sotalol toxicity 10,292 22 0.948 Yes 0.92

3485322636 Katsushika 2021 LVEF <40% 37,103 7 0.945 No -

3499348737 Akbilgic 2021
Heart failure (at 10 
y) 14,613 NR 0.756 No -

3393057438 Chen 2022
9 distinct cardiac 
diagnoses 26,130 8 NR No -

345446523 Sawano 2022 Aortic regurgitation 29,859 7 0.802 No -

3474356639 Khurshid 2022 Atrial fibrillation NR 16 0.823 Yes 0.726

3502916340 Ahn 2022 Cirrhosis 25,940 9 0.908 No -

3515364141 Zang 2022 Depression 5,060 2 NR No -

3533213742 Sangha 2022
6 distinct cardiac 
diagnoses 2,228,236 125 0.99 Yes 0.972

3536002343 Wu 2022 STEMI 793 3 0.999 Yes 1.00

Culprit STEMI 
vessel 793 3 0.958 Yes 0.96

3538794044 Nakasone 2022 PVC origin 80 NR NR No -

3546376145 Han 2022 CAC score >100 8,178 13 NP Yes 0.718

CAC score >400 8,178 13 NP Yes 0.777

CAC score >1,000 8,178 13 NP Yes 0.803

3550178546 Aufiero 2022 LQT1 mutation 10,748 10 0.90 Yes 0.86

LQT2 mutation 11,122 10 0.92 Yes 0.87

LQT3 mutation 10,636 10 0.89 No -

3553345647 Agrawal 2022 Post-COVID status 532 3 1.00 No -

3562918648 Chang 2022 PVC origin 4,109 6 0.963 No -

3570700849 Jiang 2022 Elevated CRP 12,315 10 0.85 No -

3671300550 Siegersma 2022 Patient sex 287,547 NR 0.89 Yes 0.915

None51 Schlesinger 2022 Elevated PCWP 6,739 16 0.79 No -

Full characteristics of the 44 publications containing 53 clinically relevant ECG deep-learning models.

AUROC = area under the receiver operator curve; ECG = electrocardiogram; NP = not performed; NR = not-reported.
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