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Abstract

Background: Neuregulin-1 (NRG1) is one of the susceptibility genes for schizophrenia and implicated in the neurotrophic
regulation of GABAergic and dopaminergic neurons, myelination, and NMDA receptor function. Postmortem studies often
indicate a pathologic association of increased NRG1 expression or signaling with this illness. However, the psychobehavioral
implication of NRG1 signaling has mainly been investigated using hypomorphic mutant mice for individual NRG1 splice
variants.

Methodology/Principal Findings: To assess the behavioral impact of hyper NRG1 signaling, we generated and analyzed
two independent mouse transgenic (Tg) lines carrying the transgene of green fluorescent protein (GFP)-tagged type-1
NRG1 cDNA. The promoter of elongation-factor 1a gene drove ubiquitous expression of GFP-tagged NRG1 in the whole
brain. As compared to control littermates, both heterozygous NRG1-Tg lines showed increased locomotor activity, a
nonsignificant trend toward decreasing prepulse inhibition, and decreased context-dependent fear learning but exhibited
normal levels of tone-dependent learning. In addition, social interaction scores in both Tg lines were reduced in an isolation-
induced resident-intruder test. There were also phenotypic increases in a GABAergic marker (parvalbumin) as well as in
myelination markers (myelin basic protein and 29,39-cyclic nucleotide 39-phosphodiesterase) in their frontal cortex,
indicating the authenticity of NRG1 hyper-signaling, although there were marked decreases in tyrosine hydroxylase levels
and dopamine content in the hippocampus.

Conclusions: These findings suggest that aberrant hyper-signals of NRG1 also disrupt various cognitive and behavioral
processes. Thus, neuropathological implication of hyper NRG1 signaling in psychiatric diseases should be evaluated with
further experimentation.
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Introduction

A genetic association between the neuregulin-1 (NRG1) gene

and schizophrenia has been documented in various human

populations. However, the exact biological relationship is still

unclear [1–3]. Many model studies have used NRG1 hypo-

morphic mutant mice to study the phenotypic consequences of

decreased NRG1 signaling as well as its pathologic contribution

to schizophrenia [2], [4–13]. Differential promoter usage and

alternative splicing produce a large variety of structural variants

of NRG1 precursor proteins. For example, the type-1, -2, and -

4 subgroups of NRG1 contain a immunoglobulin-like domain

and a transmembrane domain while the type-3 variant carries

two transmembrane domains and a cystein-rich domain [14],

[15]. Mutant mice deficient in NRG1 have been found to

exhibit schizophrenia-associated behavioral abnormalities in

sensorimotor gating [2], [4], social interactions [5], [9–11],

latent inhibition [12], and locomotor activity [8], [13], although

neurobehavioral features of the individual mutants significantly

differ depending upon the targeted isoforms of NRG1 [2], [6],

[7–13]. NRG1 has neurotrophic activities to promote NMDA

receptor expression, GABA synthesis, and myelination, all of

which are diminished in postmortem brain of schizophrenia

patients [14], [15]. The animal and patient studies suggest that
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decreased NRG1 signals are responsible for the pathophysiol-

ogy of schizophrenia [14], [15]. However, this argument is not

supported by all types of studies. For example, postmortem

studies report that higher levels of type-1 and type-4 NRG1

mRNA are present in the hippocampus and prefrontal cortex of

schizophrenic patients as well as in patients’ lymphocytes,

compared to control subjects [16–19]. Similarly, the up-

regulation of the NRG1 protein or its signaling is detected in

the brains of schizophrenic patients [20], [21]. Thus, these

patient studies rather suggest a biological link between

increased NRG1 signaling and the pathophysiology of schizo-

phrenia. As the type-1 NRG1 variant display marked mRNA

increase in patients’ postmortem brain and single nucleotide

polymorphisms (SNPs) of its corresponding genome locus are

implicated in genetic vulnerability to schizophrenia [18], [19],

we have established mouse transgenic lines carrying the

transgene of mouse type-1 NRG1 cDNA and examined

whether NRG1 hypermorphic mice, as opposed to NRG1

hypomorphic mice, are an appropriate animal model for

schizophrenia. In the present investigation, we analyzed two

independent transgenic (Tg) mouse lines to minimize the effects

of the transgene insertion in their host genome as well as those

of the genetic inhomogeneity of mouse genetic background.

Further, we examined neurochemical consequences of NRG1

overexpression in several neuronal and glial markers in one of

the Tg lines. Behavioral similarity and difference between the

present Tg mice and reported NRG1-knockout mice are also

discussed.

Results

Generation of transgenic mice overexpressing NRG1
We constructed the Tg vector that contained the promoter of

a house keeping gene, elongation-factor 1a (EF1a) and GFP-

tagged NRG1b1 cDNA. The GFP-tag facilitated transgene

expression and detection in mice. The Tg vector was injected to

fertilized eggs to generate transgenic mice (Fig. 1A). The

modification of GFP tagging is known not to affect NRG1

function [22]. We selected two independent NRG1-Tg lines,

Tg5 and Tg7, which were viable and healthy with normal body

weights and reproduction (data not shown). The number of

transgene copies integrated in genome was estimated by

polymerase chain reaction (PCR). Densitometric measurement

revealed that PCR products from Tg5 DNA first appeared at

,22 cycle and that from Tg7 at ,24 cycle, 3–4 and 1–2 cycle

earlier than the emergence of wild type (WT) mice product (2

copies of wild allele) respectively (Fig. 1B). Based on the

present efficiency of PCR amplification (1.660.1 fold/cycle),

we estimated that Tg5 mouse contained 5,6 copies of the

transgene and Tg7 mouse carried ,2 copies. To confirm the

expression of the transgene in the brain, we performed an

immunoblotting analysis with anti-NRG1 and anti-GFP

antibodies. There were NRG1-like and GFP-like immunoreac-

tivities at the same size (55 kDa) in whole brain lysates of Tg5

and Tg7 (Fig. 1C). The size approximately matches the sum of

molecular weights of GFP (25 kDa) and a shedded mature form

of NRG1b1 (30 kDa). The Tg5 line contained higher levels of

Figure 1. Establishment of GFP-tagged NRG1 transgenic mice with EF1a-promoter. (A) A schematic illustration of a transgene construct
carrying EF-1a genomic promoter, NRG1b1 cDNA, GFP-tag insertion, and poly A signal. (B) Estimation of the copy number of the transgene by PCR.
The exon 3 fragment of NRG1 genome was amplified with 18–30 cycles using tail DNA from Tg5 and Tg7 and separated in an agarose-gel. (C) Protein
lysate was prepared from whole brain of adult male NRG1-Tg mice (Tg5 and Tg7) and WT littermate and subjected to immunoblotting with anti-
NRG1 and anti-GFP antibodies. A closed arrowhead marks the transgene products. (D) Quantification of mRNA levels for type-1 NRG1 by RT-PCR.
cDNA fragments specific for type-1 NRG1 and GAPDH mRNAs were amplified in the presence of SYBR Green I. PCR amplification curves and difference
in Ct were analyzed by a real-time temperature cycler (LightCycler, Roche Molecular Biochemicals). For figure display, RT-PCR products were also
separated by agarose-electrophoresis and visualized with ethidium bromide staining.
doi:10.1371/journal.pone.0014185.g001
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the transgene product than the Tg7 line. To confirm the

overexpression of type-1 NRG1 mRNA in the transgenic mice,

we carried out real-time quantitative reverse transcription

(RT)-PCR for type-1 NRG1 mRNA in the presence of SYBR

green I. Calculation of PCR amplification curves and the

threshold cycle (Ct) suggested that the transgenic mice

expressed approximately 4.3-fold (Tg5) and 2.2-fold (Tg7)

higher levels of type-1 NRG1 mRNA than wild type

littermates. The mRNA increases were also apparent in agarose

gel electrophoresis (Fig. 1D).

The expression pattern of the GFP-NRG1 protein within the

Tg5 line was examined by GFP-fluorescence. Under the control of

the EF1a promoter, GFP signals were ubiquitously and homoge-

neously distributed throughout the brain including the cerebral

cortex, striatum, and hippocampus (Fig. 2A–F). There was a

similar distribution pattern of GFP signals in the Tg7 line (data not

shown).

Gross physical conditions of NRG1-Tg mice
The physical abilities of mice, such as sensory ability, motor

reflex and coordination, directly and indirectly influence perfor-

mance scores in behavioral tests. To estimate health and physical

conditions of NRG1-Tg mice, we investigated various physical and

behavioral parameters and compared between genotypes (trans-

genic vs wild), between lines (Tg5 vs Tg7) and between genders.

MANOVA revealed that there was no significant main effect of

genotype [F(16, 30) = 1.249, P = 0.290] or any significant

interactions of genotype with line [F(16, 39) = 0.974, P = 0.506]

or gender [F(16, 39) = 118.50, P = 0.226]. This suggests that the

NRG1 transgene did not significantly influence gross health and

physical conditions in NRG1-Tg mice. As MANOVA also

detected significant main effects and/or interactions of gender

and Tg line (see details in Table S1 and Table S2), we analyzed

two Tg lines independently and tested a gender x genotype

interaction in the following individual behavioral tests.

Figure 2. Detection of the transgene expression by GFP fluorescence in the brain. The transgenic line (NRG1-Tg5) was fixed and slices were
prepared from their brain. The green fluorescence by GFP protein was examined in the cortex (A, B), striatum (C, D), and hippocampus (E, F), and
compared between male NRG1-Tg and WT mice. Scale bars = 50 mm in A, B, and 100 mm in C–F. Note: Fixed brain of WT mice also exhibits
autofluorescence but its intensity is lower than that of NRG1-Tg mice.
doi:10.1371/journal.pone.0014185.g002
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Hyperlocomotor activity of NRG1-Tg mice in a novel
environment.

We assessed behavioral pathology of adult NRG1-Tg mice by

measuring locomotor activity, prepulse inhibition (PPI), fear

learning, and social interaction, which are often implicated in

schizophrenia animal models. First, we used an open field task to

examine the locomotor behavior of the NRG1 Tg lines, Tg5 and

Tg7. A two-way repeated ANOVA using a between-subjects factor

of genotype and a within-subjects factor of time revealed a

significant main effect of genotype in both lines [Tg5: F(1, 40)

= 10.79, P,0.05; Tg7: F(1, 27) = 5.19, P,0.05]. These results

indicated that increases in NRG1 expression led to hyperactivity in

a novel environment (Fig. 3A, B). The significant effect of time

[Tg5: F(11, 440) = 118.50, P,0.001; Tg7: F(11, 297) = 25.03;

P,0.001] and the lack of interaction between genotype and time

[Tg5: F(11, 440) = 0.60, P = 0.83; Tg7: F(11, 297) = 0.72,

P = 0.72] suggested that mice exhibited a decrease in locomotor

activity over time. Furthermore, the rate of habituation was not

significantly different between NRG1-Tg and WT mice. The

novelty-induced rearing behavior of NRG1-Tg mice was simul-

taneously scored and compared with that of wild littermates.

There were no significant differences in rearing behavior

[genotype, Tg5: F(1, 40) = 3.47, P = 0.07; Tg7: F(1, 27) = 2.17,

P = 0.15] (Fig. 3C, D).

NRG1-Tg mice exhibit normal prepulse inhibition and
startle responses

Using different prepulse intensities, we examined and compared

PPI levels of adult NRG1-Tg mice and WT littermates from the two

Tg lines. Both NRG1-Tg mice revealed a non-significant trend

toward decreasing PPI levels compared to WT mice [genotype,

Tg5: F(1, 39) = 3.39, P = 0.073; Tg7: F(1, 21) = 3.36, P = 0.081].

PPI levels were dependent on prepulse intensity [Tg5: F(3, 117)

= 64.54, P,0.001; Tg7: F(3, 63) = 76.9, P,0.001]. There was no

significant interaction between genotype and prepulse intensity

[Tg5: F(3, 117) = 0.02, P = 0.99; Tg7: F(3, 63) = 0.05, P = 0.99]

(Fig. 3E, F). In pulse-alone startle responses, the amplitude of

startle responses was dependent on pulse intensity [Tg5: F(7, 140)

= 90.14, P,0.001; Tg7: F(7, 119) = 73.61, P,0.001]. There was no

difference between the genotypes in both lines [genotype, Tg5: F(1,

20) = 0.21, P = 0.65; Tg7: F(1, 17) = 0.06, P = 0.82] and no

significant interaction between genotype and tone intensity [Tg5:

F(7, 140) = 0.76, P = 0.62; Tg7: F(7, 119) = 1.15, P = 0.19]

(Fig. 3G, H).

Impaired context-dependent fear learning in NRG1-Tg
mice

The effect of NRG1 overexpression on learning performance

was examined in adulthood by measuring freezing behavior

following fear conditioning. In this task, electric shock was coupled

with a context plus a tone. In both mouse Tg lines, there was no

significant difference in freezing rates during conditioning between

NRG1-Tg mice and their WT littermates [genotype, Tg5: F(1, 37)

= 0.68, P = 0.42; Tg7: F(1, 21) = 0.05, P = 0.83] (Fig. 4A, B). This

finding suggests that there was no significant influence of the

NRG1 transgene on shock sensitivities. A two-way repeated

ANOVA using a between subjects factor of genotype and a within-

subjects factor of time detected a significant effect of genotype on

freezing rates when the test was coupled with the context [Tg5:

F(1, 37) = 8.45, P,0.01; Tg7: F(1, 21) = 15.86, P,0.01].

However, there was no interaction between genotype and time

[Tg5: F(5, 185) = 0.66, P = 0.65; Tg7: F(5, 105) = 0.66, P = 0.65]

(Fig. 4C, D). In contrast, there was no significant difference in

tone-dependent learning between NRG1-Tg mice and their WT

littermates [genotype: Tg5: F(1, 37) = 1.84, P = 0.18; Tg7: F(1, 21)

= 0.70, P = 0.41] (Fig. 4E, F). These results indicate that the

overexpression of NRG1 in the Tg mice specifically impairs

context-dependent learning ability.

Social behavior of NRG1-Tg mice in an isolation-induced
resident-intruder test

The effect of the NRG1 transgene on social behavior was

examined using an isolation-induced resident-intruder test. In this

assay, a resident male, who was previously housed alone, was

exposed to an unfamiliar intruder male. The social (Fig. 5A–D)

and aggressive behaviors (Fig. 5E, F) of the resident male in

response to the intruder were monitored and scored. The NRG1-

Tg residents displayed a significant decrease in the duration of

social behaviors compared to those of WT male residents

(anogenital sniffing, Tg5: P,0.05; Tg7: P,0.05; non-anogenital

sniffing, Tg7: P,0.05, non-agonistic social behavior, Tg5:

P,0.01; Tg7: P,0.01, unpaired two tailed t-test) (Fig. 5A, B).

There was no significant difference in non-anogenital sniffing

between Tg5 and wild mice, however (non-anogenital sniffing,

Tg5: P = 0.13, unpaired two tailed t-test). This trend was also

supported by a decrease in the frequency of these behaviors

(anogenital sniffing, Tg5: P,0.001; Tg7: P,0.001; non-anogenital

sniffing, Tg5: P = 0.42; Tg7: P,0.05; non-agonistic social

behavior, Tg5: P,0.01; Tg7: P,0.01, unpaired two tailed t-test)

(Fig. 5C, D). In aggressive behaviors, Tg5 male residents

displayed an increase in frequency of aggressive following behavior

(P,0.05), but the frequency of attack and threat behaviors of Tg5

residents was indistinguishable from that of WT resident males

(attack: P = 0.39; threat: P = 0.90) (Fig. 5E). In contrast, Tg7

resident males showed an increase in all indices of aggressive

behaviors (aggressive following: P,0.05 attack: P,0.01; threat:

P,0.05) (Fig. 5F). Although the Tg line-specific behavioral

changes require further investigation, our results from the resident-

intruder test indicate that NRG1 overexpression has significant

influences on social behavior.

Analysis of neurochemical markers for excitatory and
inhibitory neurons and glial cells

NRG1 is involved in the regulation of GABAergic development,

myelin formation, and NMDA receptor expression and function

[23–26]. To explore whether the NRG1 transgene influenced

these processes, we determined protein levels of molecular markers

for GABAergic neurons, oligodendrocytes, and excitatory synapses

and compared those between Tg5 mice and their WT littermates.

Immunoblotting revealed that the immunoreactivity for parvalbu-

min, one of the phenotypic markers for cortical GABAergic

neurons, was elevated in the frontal cortex of Tg5 mice (P,0.05)

(Fig. 6A). Furthermore, we also found significant increases in

myelin-basic protein (MBP, P,0.01) and 29,39-cyclic nucleotide

39-phosphodiesterase (CNPase, P,0.05) in the same region

(Fig. 6A). This result at least verified the hyper-signaling of

NRG1 expressed from the transgene. There were no significant

alterations in protein levels of glutamate decarboxylase (GAD) 65/

67, NMDA receptor1 (NR1), and NMDA receptor 2A/2B

(NR2A/2B) in the fontal cortex (Fig. 6A) as well as in all markers

examined in other brain regions (Fig. 6B, C).

Analysis of dopaminergic markers, tissue contents of
dopamine and its metabolites in NRG1-Tg mice

Recently we found that transient exposure of type-1 NRG1

protein to mouse pups produces persistent hyperdopaminergic

Neuregulin-1 Transgenic Mice
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states in the frontal cortex [27]. To assess the effects of NRG1

transgene on the dopamine system, we measured the levels of

dopamine and its metabolites [dihydroxyphenylacetic acid (DO-

PAC) and homovanillic acid (HVA)] in various brain regions of

adult mice. There were significant decreases in dopamine and

DOPAC levels in the hippocampus of NRG1-Tg compared to

Figure 3. Locomotor activity and sensorimotor gating of NRG1-Tg mice. Behavioral traits were compared between NRG1-Tg5 mice and WT
littermates (A, C, E, G) and between NRG1-Tg7 mice and WT littermates (B, D, F, H) at the adult stage (postnatal day PND 56–84). (A, B) Horizontal
locomotor activity was scored every 5 min in a novel environment. (C, D) Rearing behavior was counted similarly [N = 23 (male: N = 9, female: N = 14)
for Tg5, N = 18 (male: N = 7, female: N = 11) for WT; and N = 15 (male: N = 8, female: N = 7) for Tg7, N = 14 (male: N = 6, female: N = 8) for WT]. There was
neither significant or marginal tread in a gender x genotype interaction; Tg5: F(1, 37) = 1.06 (locomotor activity) and 0.70 (rearing behavior), P = 0.31
(locomotor activity) and 0.79 (rearing behavior); Tg7: F(1, 25) = 0.01 (locomotor activity) and 0.11 (rearing behavior), P = 0.94 (locomotor activity) and
0.69 (rearing behavior)]. (E, F) Prepulse inhibition (PPI) percentages are shown with prepulses of 73, 76, 79 and 82 dB [N = 23 (male: N = 9, female:
N = 14) for Tg5, N = 18 (male: N = 7, female: N = 11) for WT; and N = 15 (male: N = 8, female: N = 7) for Tg7, N = 14 (male: N = 6, female: N = 8) for WT].
There was neither significant or marginal tread in a gender x genotype interaction; Tg5: F(1, 37) = 1.90, P = 0.18; Tg7: F(1, 19) = 0.11, P = 0.74]. (G, H)
Relative amplitudes of startle responses to white noise at 75, 80, 85, 90, 95, 100, 105, 110, 115 and 120 dB tones are shown [N = 12 (male: N = 6,
female: N = 6) for Tg 5, N = 10 [male: N = 5, female: N = 5) for WT; and N = 10 (male: N = 5, female: N = 5) for Tg7, N = 10 (male: N = 5, female: N = 5) for
WT]. There was neither significant or marginal tread in a gender x genotype interaction; Tg5: F(1, 18) = 0.64, P = 0.43; Tg7: F(1, 15) = 1.59, P = 0.23].
Data are expressed as mean6S.E.M. *P,0.05, **P,0.01 compared to WT mice by Fisher’s LSD.
doi:10.1371/journal.pone.0014185.g003

Neuregulin-1 Transgenic Mice
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WT mice (dopamine: P,0.01; DOPAC: P,0.001) although there

were no differences in the HVA (P = 0.12) (Fig. 7C). In the frontal

cortex, there was a trend toward decreasing dopamine content of

NRG1-Tg mice, but not statistically significant (dopamine:

P = 0.065; DOPAC: P = 0.19; HVA: P = 0.41) (Fig. 7A). In the

striatum, there were no differences in the dopamine and its

metabolites (dopamine: P = 0.20; DOPAC: P = 0.54; HVA:

P = 0.88) (Fig. 7B).

To explore the molecular mechanism underlying the changes in

dopaminergic metabolism, we examined the protein markers

related to dopamine synthesis and transmission [tyrosine hydrox-

ylase (TH), dopamine beta hydroxylase (DBH), dopamine trans-

porter (DAT), D1 dopamine receptor (D1DR), D2 dopamine

receptor (D2DR), and vesicular monoamine transporter (vMAT2)]

in the frontal cortex, hippocampus and striatum. In agreement with

the above change in dopamine metabolism, we found a significant

protein decrease in TH, a rate-limiting enzyme of dopamine and

noradrenaline synthesis, in the hippocampus (P,0.05) (Fig. 7F).

The decrease in TH levels was manifested in the frontal cortex as

well. In addition, we found significant increase in D2DR protein

levels in the frontal cortex (Fig. 7D). To assess the influence on

noradrenergic terminals, we also determined protein levels of

dopamine-b-hydroxylase (DBH), the enzyme that converts dopa-

mine to noradrenaline. There was no significant change in DBH

levels in the frontal cortex and hippocampus (Fig. 7D, F). We also

failed to detect significant alteration in DAT, D1DR, vMAT2 in all

the regions examined (Fig.7D–F). These results suggest that the

life-long increase in NRG1-expression disrupts dopaminergic

synthesis and transmission in the cortico-limbic system. The present

phenomenon contrasts our recent finding that neonatal treatment

with NRG1 protein enhances dopamine synthesis and release in

adulthood [27].

Figure 4. Context-dependent and tone-dependent fear learning in NRG1-Tg mice. Learning ability was compared between NRG1-Tg5 mice
and WT littermates (A, C, E) and between NRG1-Tg7 mice and WT littermates (B, D, F). NRG1-Tg mice and WT littermates were subjected to shock-
paired contextual conditioning with a tone cue. One day after conditioning, their learning performance was measured in the presence of a contextual
or tone cue. (A, B) Freezing rates (time %) were compared between NRG1-Tg mice and WT littermates during conditioning. (C, D) Freezing rates
during context exposure are shown. (E, F) Freezing rates were compared between NRG1-Tg mice and WT littermates during tone exposure [N = 21
(male: N = 11, female: N = 10) for Tg5, N = 18 (male: N = 10, female: N = 8) for WT; and N = 12 (male: N = 6, female: N = 6) for Tg7, N = 11 (male: N = 6,
female: N = 5) for WT]. There was neither significant or marginal tread in a gender 6genotype interaction; Tg5: F(1, 35) = 0.06 (conditioning), 0.01
(context) and 0.19 (tone), P = 0.81 (conditioning), 0.99 (context) and 0.66 (tone); Tg7: F(1, 19) = 0.01 (conditioning), 0.10 (context) and 0.91 (tone),
P = 0.94 (conditioning), 0.76 (context) and 0.35 (tone). Data are expressed as mean6S.E.M. *P,0.05, **P,0.01, *** ,0.001 compared to WT mice by
Fisher’s LSD.
doi:10.1371/journal.pone.0014185.g004

Neuregulin-1 Transgenic Mice
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Discussion

To investigate the neurobehavioral consequences of life-long

NRG1 hyper-signaling, we established Tg mouse lines carrying the

GFP-tagged-NRG1 (type-1) cDNA driven by the ubiquitous

transcription promoter. We selected two Tg lines and backcrossed

those lines with C57BL/6N mice (more than seven times) to stabilize

the transgene in a single genomic integration site. One of the lines

carried more copies of the NRG1 transgene than the other. In

agreement, the expression of the transgene was higher in the Tg5

line compared to the Tg7 line as shown by immunoblotting as well as

by real time RT-PCR. Our results indicated that the expression of

the NRG1 transgene was widespread throughout the brain. As

indicated the neurotrophic actions of this neurotrophic factor, the Tg

mice exhibited the increase in the phenotypic markers of GABAergic

neurons and oligodendrocytes [14], [15], [23], [24], [28]. In spite of

the reported neurotrophic activity of NRG1 on midbrain dopami-

nergic neurons [29], [30], the hippocampal decrease in TH and

dopamine was observed beyond our expectation.

These two independent Tg mouse lines displayed similar levels

of neurobehavioral abnormalities; hyper-locomotor activity in a

novel environment, learning deficits in context-fear conditioning,

reduced social interactions, and a nonsignificant trend toward

decreasing prepulse inhibition. Both lines also exhibited the

normal behavioral phenotypes that were indistinguishable from

WT littermates in acoustic startle amplitudes, vertical movement,

shock sensitivity, and tone-dependent fear learning. These

behavioral traits of the Tg mice appear to indicate their normal

motor function or sensory abilities in a limited degree. We do not

exclude the possibility that unexamined physical functions, such as

olfaction, might be altered by NRG1 overexpression and influence

social interaction scores of the Tg mice.

Figure 5. Isolation-induced resident-intruder test. NRG1-Tg5 mice (A, C, E) and Tg7 mice (B, D, F) and their WT littermates were subjected to
a isolation-induced resident-intruder test. (A–D) Social scores of anogenital sniffing (An. sniff), non-anogenital sniffing (Non-an. sniff) and non-
agonistic social behaviors (Non-ago. social) were measured over a 10-min period. The non-agonistic behaviors represent grooming and lying down
next to each other of resident mice. (E, F) Aggressive behaviors, which represent aggressive following, attacks and threats, were counted in parallel.
(A, B) Time spent by the resident males actively pursuing social behaviors. (C, D) The frequency of social behaviors in the resident males is shown. (E,
F) The frequency of aggressive behaviors of the resident males was compared between the NRG1-Tg mice and their WT littermates (N = 11 for Tg5,
N = 10 for WT; and N = 7 for Tg7, N = 7 for WT, all males). Data are expressed as mean6S.E.M. *P,0.05, **P,0.01, ***P,0.001 compared to WT
littermates by unpaired two-tailed t-test.
doi:10.1371/journal.pone.0014185.g005
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The behavioral homology between these two independent Tg

lines presumably rules out the possibility that genomic disturbance

of the transgene integration was involved in these behavioral

deficits. In addition, it is also unlikely that the distinct genome

background impurities of the two independent Tg lines resulted in

the same behavioral traits. In this context, the discordant

behavioral trait (social aggression) between the two Tg lines might

be illustrated by the distinct genomic disturbance of the transgene

integration or different background impurities of the original DBA

mouse genome.

The Tg mice in the present study displayed both an increase in

horizontal locomotor activity and a decrease in social behavior.

Interestingly, hyperlocomotion is typically associated with positive

symptoms in a mouse model of schizophrenia whereas reduced

social activity is implicated as a negative symptom of this illness

[31–33]. The hypo-dopaminergic state is often associated with

impairments in social and learning behaviors, and might illustrate

some of the behavioral traits of the present transgenic mice [34],

[35]. In particular, their hypo-dopaminergic state in the limbic

system might impair the hippocampal functions, leading to their

context learning deficits [35]. The observed behavioral traits are

reported in studies of various NRG1 knockout lines as well [5], [8–

11]. Although we failed to detect significant and marginal gender x

genotype interactions in individual behavioral tests, the physical

examination test detected a significant main effect of gender and

an interaction between Tg line and gender, presumably suggesting

the dose-dependent NRG1 effects on gender-specific behavioral

trends. This agrees with the reports that the down-regulation of

NRG1-ErbB signaling in mice exhibit sexually dimorphic changes

in several behavioral paradigms such as exploratory and

habituation profiles [8], [36], [37]. The biological mechanism

underlying the interaction between sex hormone and NRG1

signaling remains to be studied.

Unexpectedly, the present study and previous reports indicate

that both hypomorphic and hypermorphic expression of the

NRG1 gene may produce several common behavioral phenotypes

in mice. This finding is quite surprising but raises a challenging

question about the molecular and cellular mechanisms underlying

the behavioral deficits common to both the hypermorphic and

hypomorphic expression of NRG1.

PPI is also implicated in the neuropathology of schizophrenia

and its animal models. In contrast to the abnormality in social

behavior or locomotor activity, the PPI deficits of these Tg mice

appear to be moderate. The NRG1 knockout line (transmem-

brane-domain of NRG1+/2) similarly displayed moderate or non-

significant abnormality in PPI levels [2], [13]. Since there are

variations in the magnitude of PPI deficits depending upon the

targeted exon of NRG1 gene [4], the behavioral phenotype of the

present NRG1-Tg mice is not discordant with that of NRG1

knockout mice in this context. The recent report is noteworthy

that the specific overexpression of type-1 NRG1 driven by a Thy-1

promoter in brain projection neurons markedly impairs PPI [38].

The use of distinct gene promoters of EF1a and Thy-1 genes

differentially regulates timing and cell types of the transgene

expression and presumably results in the difference in mouse

behavior. Controversy of the behavioral difference between these

NRG1 Tg lines awaits further investigations, however.

NRG1 is one of the neurotrophic factors that positively regulate

neuronal migration, synaptogenesis, GABAergic and dopaminer-

gic neuronal development, and myelination [14], [15], [27–30],

[39–41]. In agreement with the given biological activities of

NRG1, we found the increases in parvalbumin, MBP and

CNPase. These molecular phenotypes of the NRG1-Tg mice well

contrast those of NRG1 knockout mouse lines. ErbB4, the

Figure 6. The expression of GABA-, myelin-, and excitatory
synapse-associated molecular markers. Protein extract was
prepared from (A) frontal cortex, (B) striatum, and (C) hippocampus
and subjected to immunoblotting with antibodies directed against the
GABAergic markers (GAD65/67 and parvalbumin), oligodendrocyte
markers (CNPase and MBP), and excitatory synaptic markers (NR1 and
NR2A/2B). Immunoreactivity on immunoblots was measured by
densitometric analysis, and normalized to b-actin levels. Percentage
ratio to that of WT littermates was calculated (mean6S.E.M, N = 5, all
males) and analyzed by unpaired two-tailed t-test.
doi:10.1371/journal.pone.0014185.g006
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receptor for NRG1 knockout-mutants exhibit reduced parvalbu-

min positive cells in the hippocampus [28] and loss of ErbB4

signaling by its dominant-negative form reduced oligodendrocyte

number and myelination [41]. These phenotypic abnormalities of

NRG1 knockout mice are in agreement with the neuropatholog-

ical findings on postmortem brains of schizophrenia patients [42–

44]. Conversely, the present NRG1-Tg mice, which display the

increases in these pathological markers, may be irrelevant to an

animal model for schizophrenia in spite of their schizophrenia-like

behavioral deficits. In this context, it is a challenging question how

the hyper-NRG1 signals reported in patients’ postmortem brains is

associated with the above neuropathologic deficits.

NRG1 is reported to promote cell survival of midbrain

dopaminergic neurons and trigger dopamine release [29], [30],

[45–47]. Accordingly, we had expected positive influences of the

NRG1 transgene expression on the dopaminergic system in the

present experiment. However, the direction of the dopaminergic

changes in NRG1-Tg mice was opposite to our expectation.

NRG1-Tg mice rather displayed reduction in TH protein levels

and dopamine content in the hippocampus and/or frontal cortex.

It is a challenging question how the hyper-signaling of NRG1

produced the TH decrease. This discrepancy might be illustrated

by the NRG1 action on dopaminergic neurons [46]. NRG1 evokes

an almost immediate overflow of striatal dopamine when injected

into a region just dorsal to the substantia nigra. Therefore, it is

possible that the life-long hyper signals of NRG1 might result in

constant dopamine over-flow and produce cytotoxic influences on

dopaminergic terminals [48], [49]. As there are many alternative

Figure 7. Analysis of dopamine metabolism and neurochemical markers for dopaminergic neurons of NRG1 transgenic mice. Levels
of dopamine and its metabolites (DOPAC and HVA) (A, B, C) as well as those of dopamine-related molecular markers (D, E, F) were measured in (A,
D) frontal cortex, (B, E) striatum and (C, F) hippocampus of NRG1-Tg5 and WT mice at the adult stage. Typical immunoblots for TH, DBH, DAT, D1DR,
D2DR, and vMAT2 were displayed. Each immunoreactivity was measured by densitometric analysis, normalized to b-actin levels and its ratio to that of
WT littermates was displayed (N = 4–5 each, all males). Data are expressed as mean6S.E.M. (% of WT). *P,0.05, **P,0.01, ***P,0.001, compared to
WT littermates by unpaired two-tailed t-test.
doi:10.1371/journal.pone.0014185.g007
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explanations for this controversy, the exact mechanism underlying

this phenomenon remains to be explored.

In summary, our behavioral results from NRG1-Tg mice and

previous findings on NRG1 knockout mice highlight the complex

dose dependency of NRG1 functioning in brain development or

behavioral regulation.

Materials and Methods

Ethics statement
All of the animal experiments described were approved by the

Animal Use and Care Committee guidelines of Niigata University

and performed in accordance with the guidelines of NIH (USA).

Generation of NRG1-Tg mice
The GFP gene was inserted into the NspV-SacI site between the

immunoglobulin (Ig)-like and epidermal growth factor (EGF)-like

domains of NRG1b1 cDNA [50]. The 2.6 kb cDNA fragment

encoding mouse NRG1b1 and GFP tag was then excised by

EcoRI-XbaI digestion, subcloned into the EcoRI-XbaI site of a

mammalian vector pT113 (gifted from Dr. Shigekazu Nagata,

Osaka University) and ligated to an EF-1a gene promoter. The

DNA construct of the transgene was confirmed by DNA

sequencing (data not shown). Transgenic mice were generated

by pronuclear injection of the fragment (shown in Fig. 1A) into

fertilized mouse eggs (DBA/26C57BL/6 F1). The lines of the

NRG1-Tg mice (Tg5 and Tg7, chosen for its low copy number of

the transgene) were backcrossed with C57BL6NCr mice (pur-

chased from Nihon Charles River, Yokohama, Japan) for 7–9

generations, and their offspring of heterozygous mice was used in

this study. Mice were genotyped by PCR using primers

corresponding to the Ig-like domain of NRG1 (forward: 59-

TGCCTCCCAGATTGAAAGAG) and the EGF domain of

NRG1 (reverse: 59-TTCTCCTTCTCCGCACACTT), giving a

product with 1112 bp. All Tg mice were bred and housed under a

12 h light-dark cycle with free access to food and water. The mice

were subjected to behavioral testing during the light phase

between postnatal day (PND) 56–84.

Immunoblotting
Whole brain tissues were homogenized in lysis buffer (62.5 mM

Tris-HCl pH 6.8, 2% SDS, 0.5% NP-40, 5 mM EDTA) with a

protease inhibitor cocktail (Roche, Indianapolis, IN, USA). After

centrifugation, the supernatant was collected and protein concen-

trations were determined. Equal amounts of protein (30 mg/lane)

were subjected to sodium dodecyl sulfate–polyacrylamide gel

electrophoresis and transferred to nitrocellulose membranes. The

membranes were incubated with anti-extracellular-NRG1 (7D5,

1:1000, NeoMarkers, Fremont, CA, USA) or anti-GFP (1:2000,

Clontech, Palo Alto, CA, USA) monoclonal antibodies. Alterna-

tively, immunoblots were probed with anti-GAD 65/67 (1:5000,

Sigma-Aldrich, St Louis, MO, USA), anti-parvalbumin (1:10000,

Abcam, Cambridge, UK), anti-MBP (1:1000, Millipore, Bedford,

MA, USA), anti-CNPase (1:1000, Millipore), anti-NR1 (1:250,

Millipore), anti-NR2A/B (1:150, Millipore), and anti-b-actin

(1:4000, Millipore) antibodies. Immunoblots were alternatively

probed with antibodies directed against the following dopamine-

related molecules; TH (1:1000, Millipore), DBH (1:1000, Milli-

pore), DAT (1:1000, Millipore), D1DR (1:500, Santa Cruz

Biotechnology, Santa Cruz, CA, USA), D2DR (1:250, Millipore),

and vMAT2 (1:1000, Millipore). Immunoreactivity was detected

by peroxidase-conjugated anti-rabbit or peroxidase-conjugated

anti-mouse Ig antibody followed by a chemiluminescence reaction

combined with X-ray film exposure (ECL kit; GE Healthcare,

Little Chalfont, UK).

Analysis of NRG1 mRNA expression
Real-time RT- PCR was performed in a fluorescent tempera-

ture cycler (LightCycler, Roche Molecular Biochemicals, Mann-

heim, Germany) according to the manufacturer’s instruction.

Total RNA was isolated from whole brain tissue with the

guanidinium-phenol solution (Isogen, Nippon Gene, Osaka,

Japan) and treated with DNase I (20 U/ml) to remove

contaminating genomic DNA. NRG1 mRNA was detected by

recombinant Thermus thermophilus DNA polymerase (High-Plus,

Toyobo, Osaka, Japan) using the forward primer (59-GCAAA-

GAAGGCAGAGGCAAG) and the reverse primer (59-

GCTACGGTTCAGCTCATTCC), which correspond to exon 2

and exon 3 sequences of mouse NRG1 genome, respectively. The

primer set was designed to amplify mRNA transcripts specific for

type-1 NRG1. RT-PCR of glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) mRNA was similarly carried out with the

forward primner (59-TGCACCACCAACTGCTTAGC) and the

reverse primer (59-GATGCAGGGATGATGTTCTG). These

primer sets was designed to span intron(s) to distinguish PCR

products of mRNA from those of genomic DNA. The lengths of

the expected products were 230 bp for NRG1b1 mRNA and

239 bp for GAPDH mRNA. The genome copy number of the Tg

mice was estimated by the comparative Ct method using the

amplification curve of the wild genome as a standard [51].

Physical examinations
We employed the primary behavioral screen SHIRPA devel-

oped by Rogers et al. [52] and estimate a behavioral and

functional profile of NRG1 Tg mice by observational assessment.

Parameters of undisturbed animals and animals submitted to

battery of reflex tests are scored for quantitative analysis. The

behavioral parameters assessed include posture, activity, gait,

motor coordination, tremor, startle response, excitability and

defecation as observed in a viewing jar and open field. Salivation,

lacrimation, piloerection, placing and righting reflexes, muscle

tone and other reflexes were scored by picking the animal up and

eliciting the reflexes with specific equipment and manipulations

[53], [54]. Naı̈ve mice (i.e., mice not exposed to any other

behavioral test) were used for these physical examinations.

Analysis of Locomotor Activity
Exploratory motor activity was measured in a novel environ-

ment under dim light. Mice were placed in an automated activity

apparatus (27 cm L627 cm W620 cm H, MED Associates, St.

Albans, VT, USA) equipped with infrared photosensors at

1.62 cm intervals, and we measured horizontal activity every

5 min for the first hour [27]. Horizontal activity was assessed via

beam crossings, which were counted by a fully automated tracking

system (Activity Monitor, Med Associates).

Measurement of acoustic startle response and prepulse
inhibition

Mice were placed in a plastic cylinder and fixed in an

automated startle chamber (SR-Lab Systems, San Diego, CA,

USA) [27]. After a 5-min acclimation period with 70-dB-

background noise (white noise), an 75-, 80-, 85-, 90-, 100-, 110-,

or 120-dB white noise stimulus (40 msec duration) was given 8

times to each mouse in the same pseudo-random order at 15 sec

intervals. Analysis for startle amplitudes was based on the mean of

the seven trials (ignoring the first trial) for each trial type. PPI
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responses were measured with 120 dB acoustic stimuli combined

with four different prepulse intensities. Each mouse was placed in

the startle chamber (SR-Lab) and initially acclimatized for 5 min

with background noise alone (70 dB white noise). The mouse was

then subjected to 48 startle trials, each trial consisting of one of six

conditions: (i) a 40 msec 120 dB noise burst presented alone, (ii–v)

a 40 msec 120 dB noise burst following prepulses by 100 msec

(20 msec noise burst) that were 3-, 6-, 9-, or 12-dB above

background noise (i.e., 73-, 76-, 79-, or 82-prepulse, respectively),

or (vi) no stimulus (background noise alone), which was used to

measure baseline movement in the chamber. These six trial types

(i–vi) were each repeated 8 times in a pseudorandom order to give

48 trials. The inter-trial interval was 15 sec. Each trial type was

presented once within a block of six trials and the order of 48 trial

presentations was fixed for all mice. Analysis was based on the

mean of the seven trials for each trial type. The percentage PPI of

a startle response was calculated as: 100 2 [(startle response on

prepulse-pulse stimulus trials 2 no stimulus trials)/(pulse-alone

trials 2 no stimulus trials)] 6100.

Context- and tone-dependent fear learning
The test paradigm for contextual fear conditioning was

modified from procedures published in Frankland et al, 2004

[55]. Mice were placed in a shock chamber with a grid floor

(10 cm L610 cm W610 cm H; Obaraika Ltd. Tokyo, Japan), and

their baseline movement/freezing behavior was monitored for

2 min. The mice were then exposed to three rounds of 0.8 mA

electric shocks (2 sec duration) with 180 sec tone cues (60 dB,

10 kHz). One day after conditioning, mice were returned to the

chamber. The time spent freezing (i.e., no movement other than

respiration) was recorded and scored at 30 sec intervals for 3 min.

After 3 h, the mice were moved to a different chamber with a flat

floor (10 cm L610 cm W610 cm H). In this chamber, the time

spent freezing was recorded and scored for 3 min before and after

the tone cue. Freezing behavior was monitored by a video camera

during all sessions and analyzed by imaging software (Obaraika

Ltd.).

Isolation-induced resident-intruder test
The isolation-induced resident-intruder test to estimate social

behaviors was modeled after the procedure described by Mohn et

al, 1999 [56]. For one week before testing, male wild-type (WT)

and NRG1-Tg mice were housed individually (resident) or in

groups (intruder) of three or four mice. We note that the bedding

was changed in all cages one day prior to testing. On the test day,

an intruder was placed in the home cage of resident mice, and

their behavior was video-recorded for 10 min. The duration and

frequency of 1) anogenital sniffing, 2) sniffing of any part of

resident mice excluding anogenital area (non-anogenital sniffing)

and 3) non-agonistic social behaviors (grooming and lying down

next to each other of resident mice) were scored by observers blind

to the experimental conditions. In addition, aggressive behaviors;

1) aggressive following (resident mice rapidly follow intruder mice

from behind and force it to retreat, fiercely tugging hair or tail),

and 2) attacks (biting and pinning), and 3) threats (upright posture

and tail rattling) were scored. Scores for each behavior were then

averaged for each genotype. The experimental groups included

10 WT residents and 11 NRG1-Tg residents in the Tg5 line

experiment, and 7 WT and 7 NRG1-Tg residents in the Tg7 line

experiment. We purchased and used novel adult male C57BL/6

NCr mice (same age) as unfamiliar intruders.

Quantification of dopamine and its metabolites
We measured the tissue contents of dopamine, DOPAC and

HVA as described previously [57]. The prefrontal cortex,

hippocampus, and striatum were dissected and frozen on dry

ice. The tissue was homogenized in monoamine extraction buffer

[0.1 M perchloric acid, 0.1 mM EDTA, 50 nM isoproterenol

(internal standard)], incubated on ice for 30 min, and then

centrifuged at 10,0006g for 10 min. Precipitates were homoge-

nized in 0.5 N NaOH for protein determination.

The high performance liquid chromatography (HPLC) system

consisted of a pump (model LC-10ADVP; Shimadzu, Kyoto,

Japan), an automatic sample injector (model SIL-10ADVP;

Shimadzu), and an electrochemical detector (ECD) with a glassy

carbon-working electrode (model ECD-300; Eicom, Kyoto,

Japan). Tissue contents of dopamine, DOPAC and HVA were

measured using a C18 column (model CA-5ODS, 4.66150 mm;

Eicom). The mobile phase consisted of 50 mM trisodium citrate,

25 mM NaH2PO4, 0.03 mM EDTA, 10 mM diethylamine,

3 mM octanesulfonic acid sodium salt, 6% methanol, and 1%

dimethylacetamide, pH 3.2.

Statistical analysis
Health and physical conditions (39 parameters) were analyzed

using a multiple analysis of variance (MANOVA) with genotype

(two levels), line (two levels) and gender (two levels). Behavioral

scores were initially analyzed using a three-way analysis of

variance (ANOVA) with genotype (two levels) and gender (two

levels) as the between-subjects factors and time or prepulse (four

levels) as the within-subjects factors. Because the initial ANOVAs

did not yield any significant results with gender, the variable was

collapsed and the analysis rerun. Univariate data for the social

behavioral scores, protein expression levels and monoamine

contents were analyzed using an unpaired two-tailed t test. For

post hoc testing, Fisher’s LSD was used to detect differences in the

absolute behavioral values. A P-value of less than 0.05 was

regarded as statistically significant, and ‘‘N’’ values represent the

number of animal used in the analysis. These statistical analyses

were performed using SPSS 11.0 for Windows.

Supporting Information

Table S1. Statistical values and results of MANOVA in

SHIRPA test. N, animal number; AVE, average; SD, standard

deviation.

Found at: doi:10.1371/journal.pone.0014185.s001 (0.03 MB

DOC)

Table S2. Physical and health conditions of NRG1-Tg mice in

SHIRPA test. N, animal number; AVE, average; SD, standard

deviation.

Found at: doi:10.1371/journal.pone.0014185.s002 (0.05 MB

DOC)
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