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Zamłyńska K, Such M,

Szczepankiewicz AA, Hall MH,

Magalska A, Magnowska M, Wolny A,

Bokota G, Basu S, Pal A,

Plewczynski D and Wilczyński GM
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The detailed architectural examination of the neuronal nuclei in any brain region,

using confocal microscopy, requires quantification of fluorescent signals in three-

dimensional stacks of confocal images. An essential prerequisite to any quantification

is the segmentation of the nuclei which are typically tightly packed in the tissue,

the extreme being the hippocampal dentate gyrus (DG), in which nuclei frequently

appear to overlap due to limitations in microscope resolution. Segmentation in DG is

a challenging task due to the presence of a significant amount of image artifacts and

densely packed nuclei. Accordingly, we established an algorithm based on continuous

boundary tracing criterion aiming to reconstruct the nucleus surface and to separate

the adjacent nuclei. The presented algorithm neither uses a pre-built nucleus model,

nor performs image thresholding, which makes it robust against variations in image

intensity and poor contrast. Further, the reconstructed surface is used to study

morphology and spatial arrangement of the nuclear interior. The presented method is

generally dedicated to segmentation of crowded, overlapping objects in 3D space. In

particular, it allows us to study quantitatively the architecture of the neuronal nucleus

using confocal-microscopic approach.

Keywords: chromatin 3D architecture, neurological disorders, epigenetics, neuronal nuclei segmentation, image

bioinformatics

INTRODUCTION

The morphological changes in neuronal cell nuclei and the analysis of details of their architecture
have recently become an important issue in contemporary neuroscience. Gene expression in the
neuronal cell nucleus is known to be crucial for the stabilization and maintenance of synaptic
changes underlying the formation of long-term memory (Kandel et al., 2013). The quantitative
analysis of the nuclear content has to be preceded by an accurate nuclei reconstruction. Currently,
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fluorescence confocal microscopy is the leading imaging
method for observations of brain samples. Therefore, various
computational methods are being constantly developed and
improved in order to deal with high-throughput processing
of confocal data (Li et al., 2007, 2016; Al-Kofahi et al., 2010;
Bilgin et al., 2013; Chen et al., 2013; Kandel et al., 2013; Latorre
et al., 2013; Stegmaier et al., 2014; Bajcsy et al., 2015; Mathew
et al., 2015; Morales-Navarrete et al., 2015; Hall et al., 2016;
Nandy, 2016). A crucial prerequisite to any quantification is a
3D segmentation and reconstruction of neuronal nuclei, which
are sometimes tightly packed within the cell layer. Since manual
segmentation procedures are too laborious to be practical, one
needs an automatic approach. The subject of 2D and 3D
automatic segmentation of cellular nuclei has been frequently
discussed over the last 30 years and several different approaches
have been elaborated (see Stegmaier et al., 2014; Bajcsy et al.,
2015), for a short survey. In the case of studies of densely
packed neurons, the automatic segmentation of their nuclei is
a challenging task. This is mostly due to the fact that the nuclei
can lie very close to one another, in such a way that their
segmentation is very difficult because of the limited resolution of
the light microscopes (especially in the z-direction) and various
image artifacts.

A special case is a dentate gyrus (Szczerbal et al., 2009), a
part of the hippocampal formation, where the body of granule
cells (Hall et al., 2016) are so tightly packed, that the nuclei
appear to overlap on microscope images. Thus, we need a
method of automatic segmentation and reconstruction of the
nuclear content in high resolution confocal stacks, in order to
analyze the architecture of neuronal nuclei. There are several
biological reasons for performing such an analysis. For example,
a range of epigenetic mechanisms has been identified that
have important influence on synaptic plasticity (Zovkic et al.,
2013). The phenomena that are widely studied in this context
include various covalent chromatin modifications (Day and
Sweatt, 2011). A few recent studies have pointed to a large
scale chromatin remodeling as an additional layer of epigenetic
regulation affecting synaptic plasticity (Crepaldi et al., 2013;
Walczak et al., 2013; Bharadwaj et al., 2014; Ito et al., 2014). In
addition to chromatin, various nuclear inclusions, such as Cajal
bodies, PML bodies, and nucleoli were shown to be involved
in activity-dependent neuronal plasticity (see Villagra et al.,
2008; Hall et al., 2016) and references therein (Hetman and
Pietrzak, 2012). All these studies, in a substantial part rely on,
or are connected to, the quantitative analysis of neuronal nuclei
architecture which is crucial in neuronal differentiation and
development (Clowney et al., 2012; Hetman and Pietrzak, 2012;
Solovei et al., 2013; Cremer et al., 2015).

The presented method of automatic three-dimensional
segmentation and reconstruction of neuronal nuclei was inspired
by challenges encountered while analyzing architecture of
closely touching neuronal nuclei observed in the hippocampal
tissue. This paper presents the methodological details of an
algorithm used in already published analyses. However, as the
previous studies were oriented toward the understanding of basic
biological questions, such as Bdnf gene expression in neuronal
nuclei (Walczak et al., 2013), characterization of Histone2GFP

mutant mouse nuclei (Ito et al., 2014), or the description of PML
nuclear bodies in the brain (Hall et al., 2016), the methodological
details of the software were omitted.

The major obstacle in applying the standard methods of
segmentation is the fact that each of the nuclei closely touches
or overlaps its neighbors in 3D space. While on most of xy-
sections they are visibly separated, in 3D they form a bulbous
chain difficult to segment by most of the methods. The primary
reason for that is lack of the clear border in the overlapping
region, the intranuclear inhomogeneities may be more intense
than the border that separates the nuclei. Therefore, the generic
methods tend to break the nuclei at their inhomogeneities. The
second difficulty is the restriction on the size of the analyzed
image, as usually the entire data set is loaded into the memory.

The general overview of the presented method is as follows.
In confocal microscopy images, densely packed nuclei appear
as partially overlying one another in some image planes; such
a situation complicates a proper segmentation. However, there
are selected image planes, in which such neighboring nuclei are
clearly separated. Therefore, we proposed the way to identify
such planes, and then to track the nucleus profile, even in
the seemingly overlapping regions. Such a tracking allows to
assemble the entire three-dimensional nucleus shape.

The effectiveness of the segmentation was manually evaluated
for images of different qualities. The correctly recognized
segmented nuclei were further processed in order to perform
the morphometric measurements of the parameters describing
the relations between the internal structures, such as alleles,
chromosome territories or nucleoli, and relations between the
internal structures and the nucleus boundary. This particular
method can be implemented into the program making it capable
of dealing with very large data structures because it does not
require loading of the whole dataset simultaneously.

METHODS

Algorithm Overview
The basic idea behind our approach is to reconstruct the nuclear
surface of each nucleus starting from the two-dimensional
section in a z-plane on which this particular nucleus is well-
separated from the adjacent ones. Even for densely packed nuclei,
we can find such a section for almost all nuclei. Once we
determine the proper boundary of the nucleus on such a two-
dimensional section, we can move to the adjacent z-plane. Since
the boundary of a nucleus is continuous and does not have any
drastic deformations, we know that on the adjacent z-plane, the
surface contour differs only slightly from the contour found on
the previous section. Due to this fact, we can effectively restrict
the region where the nucleus boundary is sought, effectively
eliminating the possibility of inclusion of the adjacent nucleus or
cutting the segmented nucleus into smaller pieces. The inherent
feature of the confocal images is an unequal resolution in the
observation plane and toward the optical axis (∼3 times better in
the x-y directions than in the z-axis). Therefore, a natural choice
of the coordinate system is to use the sections perpendicular
to the z-axis. An obvious prerequisite for this procedure is to
identify for each nucleus, the particular sections in which the
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nucleus is best separated from its neighboring nuclei. For this
purpose, we need to identify a set of seed points lying inside
the nuclei which identify the plane at which the boundary
detection should start. After the starting z-section is identified,
the continuous boundary tracing in the z- positive and negative
direction is performed, and all seed points inside the detected
nucleus are removed, and the seed point with the highest priority
weight from the remaining list is used to initiate the boundary
tracing of the next nucleus. This procedure is continued until we
go through all seed points.

Seed Points Detection
In the preliminary stage of image segmentation, we look for a
preliminary set of seed points that defines the tentative centers
of mass of nuclei on each 2D section (the first three steps in
the algorithm flow, see Figure 1). Therefore, there can be several
seed points corresponding to a single 3D nucleus. Some of these
tentative seed points are incorrectly assigned (e.g., at the position
where two nuclei touch each other), but most of these incorrect
seed points will be eliminated in the subsequent procedure. We
associate a priority weight (the scalar variable) with each of the
seed points. These priority weights are used to sort the set of seed
points in the order according to which the procedure of boundary
detection is executed. A high priority weight means that the
seed point is located at the plane where the nucleus is well-
separated from the adjacent ones, and it is therefore advantageous
to initiate the segmentation of the corresponding nucleus at this
plane. The point with the highest weight does not have to be
in the 3D geometrical center of the nucleus. Usually, in the z-
dimension, this point is located in the plane where the nucleus
is well-separated from the adjacent nuclei, and for this particular
z-section, the point is located close to the 2D geometric center
of the nucleus in the cutting plane. Such a choice of the seed
points greatly facilitated further segmentation of nuclei. Other
seed points belonging to the segmented nucleus (with lower
priority weights) are removed from the seed point sorted list
as we proceed with the segmentation. The position of the seed
points is determined by scanning every z-plane independently,
and therefore we do not need to load the entire 3D dataset into
computer memory.

The set of seed points with priority weights is constructed
by detecting the local maxima in a convolution of each z-
section with circular filters (see Figures 2B,C). The priority
weight is the value of the convolution function at the local
maximum. Since local maxima often appear at the overlap of
two adjacent nuclei, we eliminate these points by applying an
iterative method of computing contrast ratios inside rings which
cover the approximate pre-defined dimension of the nucleus,
entered as initial parameters by the user (see Figures 2D,E),
these parameters define the minimal and the maximal diameter
of a nucleus on the x-y section, and the maximal and minimal
size in the z-dimension (see Supplementary Material SIV for an
overview of tunable algorithm parameters). For every ring, we
check if the contrast ratio is stable (see Figure 2F) which allows
us to eliminate the seed points which are not located around the
centers of the actual nuclei. A rapid increase in the fluctuation of
the intensity over the circle (for the diameters smaller than the

FIGURE 1 | Block diagram of the algorithm for the three-dimensional

segmentation and reconstruction of the nucleus surface. The steps in the right

inlet “Contour Tracer” operate on a two-dimensional section of the

three-dimensional image.

pre-defined minimal nucleus size) was an indication to eliminate
the seed point.

Moreover, we compute the shape characteristics of the object
calculating the scalar magnitudes of modified version of dipole
and quadrupole moments [defined by Equations (1) and (2),
respectively] around every potential seed point, which allow us
to reject highly irregular shapes which cannot be the sections of a
neuronal nuclei,

Mq =
1

m

(

p2x + p2y

)

, (1)

Md =
1

m
det

(

qxx qxy
qyx qyy

)

. (2)

The object whose shape significantly deviates from the oval one
has a large value of the dipole moment, and the objects with
highly irregular shapes have large values of quadrupole moment,
by imposing the limits on the values of these parameters, which
were experimentally determined, we can eliminate the seed
points that are not associated with the actual nuclei.
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FIGURE 2 | Seed points detection. (A) Original image, (B) 2D circular filter convolution used to facilitate the detection of neuronal centers on the 2D section–the

selection from (A). (C) Tentative neuronal centers (red dots) with the priority weights. (D) Selection used for procedure of eliminating improper seed points.

(E) Sequence of rings used to eliminate improper seed points. (F) Changes in image brightness for the set of rings shown in (E).

To calculate the magnitude of the moments, we need to
compute first the modified dipole

pa (rm) =
∑

i

sa (Exi, rm) I (Exi) for a = x, y, (3)

and quadrupole moment

qaa (rm) =
∑

i

saa (Exi, rm) I (Exi) for a = x, y, (4)

qxy (rm) =
∑

i

sxy (Exi, rm) I (Exi), (5)

see (Jackson, 1999).
The quantities appearing in the definitions of dipole and

quadrupole moments are defined by Equations (5–8).

m =
∑

i

Θ (rm − r) I (Exi), (6)

sa (Exi, rm) = Θ (rm − r) a/(r + ε)1/2, for a = x, y (7)

saa (Exi, rm) = 2Θ (rm − r)
(

a2 − x2
)

/(r + ε)2, for a = x, y (8)

sxy (Exi, rm) = 2Θ (rm − r) xy/(r + ε)2. (9)

Here, Exi is the vector pointing to the i-th pixels with coordinates
x,y from the chosen origin, I (Exi) is the image intensity at Exi
pixel, r is the distance between this pixel and the origin, rm is the
radius of the region analyzed, ε is the infinitesimal regularizing

parameter assuring the numerical finiteness of the calculated
quantities. The step function is defined as

Θ (x) = 1 if x > 0;Θ (x) = 0 if x ≤ 0 (10)

The seed points with the highest weights are therefore located
usually in the central regions of nuclei (see Figure 3C).

Tracing the Nucleus Boundary
The next part of the algorithm performs the tracing of the
nucleus boundary at each z-plane. This procedure should
deal with nuclei with internal inhomogeneous structure in
low contrast conditions with significant variations in image
background structure. To perform the tracing we select a seed
point and generate a set of one-dimensional rays (Figure 3A,
single ray shown) and we extract an intensity profile for each
ray (Figure 3D, green curve). For each such ray we calculate a
convolution of the intensity profile (Figure 3D, blue curve) with
a convolution mask, as in the following equation:

F (r0) =

∫

drI (r)M (r − r0) (11)

wherein:

• r is the distance along the analyzed ray
• I(r) is the intensity profile on the ray traced from the seed point
• M(r − r0) is the mask function (see Figure 3E).

The maximum of the convolution function (11) defines the
preliminary position of the boundary points. The collected set of
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FIGURE 3 | Tracing the nucleus boundary. (A) A single ray originating from the seed point. (B) Edge points in the first iteration, (yellow edge points were eliminated as

laying to far from the clustered points). (C) Edge points in the second iteration, (D) green curve- intensity profile along the ray shown in (A), blue curve, convolution of

the intensity profile with the convolution mask. (E) Convolution mask.

the preliminary boundary points is subject to further processing
in order to eliminate points not belonging to the processed
nucleus border. To this end, the preliminary boundary points
are clustered in the following way: we pick an arbitrary point
defining the boundary and move to the adjacent point in a
specific direction (e.g., clockwise direction over the boundary).
If the distance between this two points is smaller than a specific
constant parameter (maximal intracluster deviation, set by the
user, see Table S1), the second point is assigned to the same
cluster as the first point. We continue the procedure until we
find a point that is farther from its neighbor, than the value of the
maximal intracluster deviation. In this case we start a new cluster,
and continue a procedure. Therefore, we are left with a number of
clusters and loose points, that are eliminated. In the next step we
choose the cluster with the largest number of points. We move to
the ray that defined the point, that was adjacent to this cluster, but
could not be assigned into the cluster. For this ray we look for the
new position of the boundary point, at this time restricting it to
themaximal distance defined by the value ofmaximal intracluster
deviation parameter. This new point will necessary belong to the
adjacent cluster. This procedure is continued until we trace the
entire 2D boundary. Figure 3B shows all points during the first
tracing- the points marked by yellow were eliminated during the
described procedure. Figure 3C shows all points after reiterating,
starting from the cluster with the largest number of points.

At the beginning of segmenting a specific nucleus, we analyze

only a single z-plane and perform two iterations of boundary

tracing. The first iteration roughly localizes the boundary in a
neighborhood to which the second iteration is restricted and
produces a contour. In the next step, we consider the adjacent
z-plane and restrict to a tubular neighborhood of the projection
of the contour found in the previous step and produce a contour
for the new z-plane. We continue in this way until a z-plane is
reached where the produced contour is approximately a point.
The seed points which lie within calculated boundary are then
eliminated from the seed point set.

For each traced 2D contour, we calculate the quality estimator
Q, based on the ratio of the integrated intensity in the laminar
layers inside and outside the nuclear surface according to the
following procedure:

First, for each point on the boundary we calculate the
integrated image brightness on the laminar layer on both side of
boundary, L+ and L− as

L− (r0) =

r0
∫

r0−1r

drI(r), (12)

L+ (r0) =

r0+1r
∫

r0

drI(r), (13)

where is the parametrization of the contour by the ray from the
mass center of the contour, I is image brightness in the center
point, 1r is the width of the laminar ray.
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Next, we calculate the Q as

Q = 〈Θ(L+/L−)〉 (14)

where the mean is taken over all boundary points for given
section. If this value is above the user set threshold e.g., we
proceed with the boundary tracing on the next z-section and
continue the segmentation by analyzing the neighboring sections,
otherwise the procedure is discontinued and the respective seed
point is abandoned. The procedure is also terminated when we
reach the end nucleus, this end is determined based on the
fact that there is too little fluorescence intensity in the analyzed
region, or the area of the traced contour starts to grow larger after
the monotonic decrease.

MATERIALS

Tissue Preparation
All experiments performed on animals were carried out in
accordance with relevant guidelines and regulations and were
approved by the First Warsaw Local Ethics Committee for
Animal Experimentation, approval number 1015/2009. Rats
and mice were lethally anesthetized with sodium pentobarbital
(Biowet Pulawy) in a dose of 100 mg/kg body weight, diluted in
saline, and perfused immediately with 0.1M phosphate-buffered
saline (PBS) (pH 7.4), followed by cold 4% paraformaldehyde
(Sigma Aldrich, cat. No. P6148), in PBS (pH 7.4). The brains were
cautiously removed from the skulls and placed for 24 h in the
same fixative at 4◦C. Then the brains were cryoprotected with
30% solution of sucrose in PBS, frozen in the −80◦C cold n-
heptane, and stored at −80◦C. until needed. Forty-micrometer-
thick free-floating sections were cut coronally at −20◦C with
the use of the cryostat and stored in anti-freeze solution (30%
glycerol; 30% ethylene glycol; 0.03M NaH2PO4; 0.01M NaOH;
distilled water), preventing the formation of freezing artifacts.
The sections were subjected to DNA in situ hybridization and/or
immunofluorescence, as described in Ito et al. (2014) and Hall
et al. (2016), respectively.

Image Acquisition
To exercise the algorithm we used confocal image-stacks
visualized exclusively for the purpose of this manuscript and
confocal images used as controls in our three former publications
(Walczak et al., 2013; Ito et al., 2014; Hall et al., 2016). In total, we
used 36 confocal stacks, imaging brain tissue of 19 rodents (16
rats and three mice), we collected up to three stacks per animal.
The maximal imaging depth in z-direction was 170 planes, and
up to 2,048× 2,048 pixels in x-y direction.

Granular layer of the dentate gyrus was examined under
the spectral confocal microscope TCS SP5 (Leica), using
488 nm Ar, 561 nm DPSS diode, and 633 nm HeNe laser
lines for the excitation of FITC/Alexa488/Dylight488/Qdot525,
Rhodamine/Alexa546, and Cy5/TOPRO-3, respectively. To
image Hoechst33342, a two photon excitation with Mai Tai IR
femto operating at 720 nm was used. The images were acquired
through the internal TCS SP5 detectors/photomultipliers. To
avoid cross talk between the fluorophores, we carefully adjusted

the spectral ranges of the detectors and scanned images
sequentially. The planar apochromatic oil-immersion objective
lenses were 20 × (0.7 NA), and 63 × (1.4 NA). The image stacks
of FISH/immuno-FISH were acquired at the lateral resolution
of 80 nm/pixel, with Z-spacing of 200 nm. To reduce noise and
improve resolution, the stacks were 3D deconvolved by means
of Huygens Professional software (Scientific Volume Imaging),
using the classical maximum likelihood algorithm and theoretical
point-spread functions. During imaging of mouse neuronal
nuclei, the exposition was increased to oversaturate partially the
images (the bright chromocenters in the nuclei) what resulted in
more homogeneous nucleus texture. In the case of observation of
nuclei with aberrant chromatin pattern the nucleus boundary was
enhanced using anti-lamin B immunostaining (Ito et al., 2014).
For final inspection and publication, brightness and contrast of
the images were manually adjusted.

Method Availability
The source files (Python scripts) and the exemplary numerical
data used for analysis are available from https://gitlab.com/
pnmis/nuclear-segmentation.git.

RESULTS

Algorithm Performance
We performed segmentation and analysis of several confocal
stacks of rat and mouse brain tissue (see Materials, Image
Acquisition, for the imaging details and the number of subjects),
including samples from mutant mice with highly aberrant
structure of neuronal nuclei (Ito et al., 2014). The major
steps in the presented approach of nuclei segmentation and
reconstruction are: (a) seed point detection, (b) 2D contour
tracing, (c) reconstruction of the nuclear boundary, and (d)
reconstruction of internal objects, (see section Methods and
the block diagram of the segmentation algorithm presented in
Figure 1). From the module of seed point detection we obtain
several seed points per single nucleus (see Figure 2), the point
with highest priority weight (see Methods–seed point detection
for details) is used to begin the segmentation of the nucleus
boundary around it (see Methods–tracing nucleus boundary,
and Figure 3 for details). The procedure of contour tracing and
reconstruction of the entire 3D nuclear boundary interact with
each other, these procedures are executed until all the seed points
are used.

At every stage of the segmentation method we encounter
specific artifacts that have to be taken into account. These artifacts
include a ubiquitous noise in images and inhomogeneities of
the nuclear structure. The space between nuclei is often filled
with particles of various origins, usually due to unspecific
binding of DNA stain. These artifacts often interfere with the
boundary of the nuclei. In addition, the internal structure of the
nuclei introduces a significant inhomogeneity in the chromatin
texture, such as chromocenters (especially in mouse species).
Altogether, the aforementioned problems prevented the use
of standard methods and various morphological filters (see
Supplementary Material SI) to perform the segmentation.
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TABLE 1 | Validation of the segmentation results.

Stack no. Stack description Origin PS NP OS US FP ND

1. High contrast, nuclei uniformly labeled

Size: 1,024 × 1,024 × 161 px

71.68 × 71.68 × 33.81 µm

Rat,

dentate gyrus of

the hippocampus

97 48 8 1 18 7

2. High contrast, nuclei with many small internal spots

size: 1,024 × 1,024 × 96 px

71.68 × 71.68 × 20.16 µm

Rat,

Dentate gyrus of

the hippocampus

61 31 10 0 6 4

3. High contrast, nuclei with large internal spots

Size: 1,024 × 1,024 × 138 px

71.68 × 71.68 × 28.98 µm

Mouse,

Somatosensory cortex

47 21 5 1 11 2

4. Low contrast, nuclei non-uniformly labeled

Size: 1,024 × 1,024 × 112 px

71.68x71.68x23.52 µm

Mouse,

Somatosensory cortex

57 34 3 4 6 3

5. Low contrast, nuclei uniformly labeled

Size: 1,024 × 1,024 × 164 px

71.68 × 71.68 × 34.44 µm

Mouse,

Somatosensory cortex

59 35 14 6 9 4

6. Low contrast, nuclei with internal spots

Size: 1,024 × 1,024 × 176 px

71.68 × 71.68 × 36.96 µm

Rat,

Dentate gyrus of

the hippocampus

36 20 23 1 2 12

7. Low contrast, nuclei with many internal spots

Size:1,024 × 1,024 × 38 px

71.68 × 71.68 × 7.98 µm

Rat,

Dentate gyrus of

the hippocampus

13 27 1 0 2 59

The following definitions have been used: PS, precisely segmented; NP, not-precisely segmented; OS, over segmented; US, under segmented; FP, false-positive; and ND, not detected.

Examples of slices from each stack are presented in Figure S5 of Supplementary Materials.

The presented method was tested by applying it to segment
seven different confocal stacks containing cellular nuclei (see
Table 1 for their detailed description). Figure 4A shows the
completed segmentation of 1,024 × 1,024 × 161 confocal stack
(stack No. 1), where the nuclei were randomly colorized while we
kept the original image intact in the inter-nuclei space. The detail
revision reveals a presence of nuclei which overlap in the confocal
image so closely that it is ambiguous to decide where is the actual
boundary between them (Figure 4B), moreover it appears that
there is a “common part” where the images of both nuclei are
superposed. Only the nuclei fully contained in the confocal stack
(not cut by the boundary walls) were considered (Figure 4C),
the cropped nuclei had to be rejected as not appropriate for the
most of morphometric measurements. Quite often the contour
reconstruction on the first or last z-plane containing nucleus was
not precise resulting from the poor image quality at these planes,
due to confocal microscope image modalities. In Figures 4D,E

rendering of a single nucleus with additional channels displaying
other fluorescent signals is presented.

Table 1 presents the quantitative estimates of the accuracy
of our method. During manual verification we count separately
the cases of precise segmentation (PS)—when during the visual
inspection we did not observe defects in the reconstruction of
the nuclear volume, and the cases of non-precise segmentation
(NP)–when we observed defects in reconstruction of the nuclear
volume (up to 5% of voxels), or the nuclei were seemingly
overlapping due to the poor confocal resolution in the z-
direction. As the perfectly reconstructed nuclear surface is
crucial for quantitative studies, we selected only the nuclei
belonging to the first category, PS. The nuclei belonging to
the NP category may still provide valuable information for

some experimental questions. The other rejected nuclei belong
to the following categories: over segmented (OS)–denoting
the case where one nucleus has been segmented as multiple
ones; under segmented (US)–denoting the case where two
(or more) nuclei have been classified as a single one; false-
positive (FP)–being the detections not corresponding to any
nuclei; not detected (ND)–when the entire nucleus has been
missed. For the vast majority of confocal stacks we obtain
satisfactory numbers of PS nuclei varying between 46 and
54% of the total. Due to a very low signal/noise ratio, for
the confocal stack No. 7 we have not obtained satisfactory
results of segmentation. The quality of these images was so
poor that even visual inspection of the nuclei did not allow
for full unambiguous recognition of the individual nuclei (see
Supplementary Material SII).

In Table 2 we present the values of quantitative measures
describing quality of segmentation results. We are using the
following measures: recall, precision, F-measure, and accuracy,
which are given by the subsequent equations:

recall = TP/(TP+ FN), (15)

precision = TP/(TP+ FP), (16)

F-measure = 2∗recall∗precision/(recall+ precision), (17)

accuracy = TP/(TP+ FP+ FN) (18)

where TP, true positive, FP, false positive, FN, false negative (see
Mathew et al., 2015).

This analysis does not take into account nuclei segmented with
defects. We therefore introduce additional categories shown in
Table 1. We include all nuclei segmented with some defects (i.e.,
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FIGURE 4 | Segmentation of the confocal stack showing fluorescently labeled hippocampal neuronal nuclei in the rat brain; (A) the segmented nuclei were randomly

colorized for illustrative purposes, stack No. 1; (B) adjacent z-sections of the closely touching nuclei where the segmentation was ambiguous, nevertheless the

method was able to separate the overlapping structures, stack No. 1; (C) segmentation of the nuclei with inhomogeneous internal structure, stack No. 4;

(D,E) orthogonal views and 3D rendering of the single nucleus extracted from the confocal stack. See Supplementary Material SIII, for more details.

TABLE 2 | Quantitative analysis of the segmentation results (quality II/quality I).

Stack no. TP FP FN Recall Precision F-measure Accuracy

1. 145/97 27/75 7/7 0.95/0.93 0.84/0.56 0.9/0.7 0.81/0.54

2. 92/61 16/47 4/4 0.96/0.94 0.85/0.56 0.9/0.71 0.82/0.54

3 68/47 17/38 2/2 0.97/0.96 0.8/0.55 0.88/0.7 0.78/0.54

4 91/57 13/47 3/3 0.97/0.95 0.88/0.55 0.92/0.7 0.85/0.53

5 94/59 29/64 4/4 0.96/0.94 0.76/0.48 0.85/0.63 0.74/0.46

6 56/36 26/46 12/12 0.82/0.75 0.68/0.44 0.75/0.55 0.6/0.38

7 40/13 3/30 59/59 0.40/0.18 0.93/0.3 0.56/0.23 0.39/0.13

TP, true positive (positively segmented); FP, false positive (segmented with defects: NP, OS, US, and FP); FN, false negative (not detected). recall = TP/(TP + FN), precision = TP/(TP

+ FP), F-measure = 2*recall*precision/(recall + precision), accuracy = TP/(TP+FP+FN) (see Mathew et al., 2015). Quality I: reconstruction of nucleus surface without defects, quality

II: defects, up to 5% of voxels incorrectly assigned.

NP, OS, and US) to the FP category. The TP nuclei are those
which were correctly segmented (PS), the false negative are those
which were not segmented at all (ND).

After parameterizing nuclear membrane, we proceeded
toward the reconstruction of objects contained in the interior
of the nucleus and perform a series of morphometric

measurements. We evaluated various signals by means
of fluorescent in situ hybridization (FISH) and/or
immunofluorescence including imaging of genes, chromo-some
territories, nucleolus, and RNA polymerase transcription
factories (see Figures 5A–F). These measurements can combine
the spatial arrangement of the observed objects with intensity
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FIGURE 5 | Examples of segmented neuronal nuclei with different intraneuronal structures labeled fluorescently (z-projections) (A–F) and quantification (G,H): (A)

blue, DNA; red, BDNF alleles, green-nucleoli; (B) blue, DNA; red, TRKB alleles; green, BDNF alleles; (C) blue, DNA (ungrouped chromocenters); red, Lamin; (D) blue,

DNA grouped chromocenters); red, NeuN; green, PML bodies; (E) blue, DNA; red, Chromosome 3 territory; green, BDNF alleles; (F) blue, DNA; red, Polimerase

activity; green, BDNF alleles. The labelings of the interneuronal structures were used to perform a series of morphometric measurements. (G) Represenative graph of

distributions of the distances (d) of Bdnf (green histogram) and Trkb alleles (blue histogram) from the nuclear periphery. Bdnf : d = 0.499 ± 0.034µm, Trkb: d = 1.069

± 0.036µm, p-value (Mann–Whitney test) < 0.001, p-value (Kolmogorov-Smirnov test) < 0.001, N = 12, n = 963 (animals, nuclei; respectively). (H) Graph presenting

distribution of the intensity of RNA polymerase II immunoreactivity at the Bdnf alleles located more or <1µm from the nuclear periphery (green and blue histogram,

respectively). Activity (peripheral alleles): 47.77 ± 1.75 [a.u.], activity (internal alleles): 65.43 ± 2.24 [a.u.], p-value (Mann-Whitney test) = 0.006, p-value

(Kolmogorov–Smirnov test) < 0.001, N = 5, n = 310 (animals, nuclei; respectively). Scale bar: 2µm.

information from multi-channel images. The parameterization
of the nuclear membrane was used to calculate the nucleus
volume, the membrane area, the shape form factor, and
in conjecture with the allele coordinates, to calculate the
relative positions of the alleles (e.g., the distances between
the alleles and the nucleus envelope), these parameters play
a significant role in analysis of gene movements (Kosak
et al., 2002; Zink et al., 2004; Ragoczy et al., 2006; Williams

et al., 2006; Szczerbal et al., 2009; Peric-Hupkes et al., 2010;
Clowney et al., 2012; Solovei et al., 2013). The coordinates
of the alleles were obtained by segmenting them with Otsu
thresholding, the unspecific punctuate signal of lower brightness
originating from unspecific binding from the probes to the
nuclear proteins or statistical fluctuations of the detector
noise was eliminated by calculating integrated brightness
for each object and selecting only two objects with the
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TABLE 3 | Comparison of the segmentation results, for different methods.

PS NP OS US FP ND Recall Precision F-measure Accuracy

Proposed 97 48 8 1 18 7 0.95/0.93 0.89/0.84 0.92/0.89 0.85/0.79

Ilastik 15 11 3 9 0 2 0.93/0.88 1.0/1.0 0.96/0.94 0.93/0.88

Gradient flow 34 26 43 13 15 0 1.0/1.0 0.8/0.69 0.89/0.82 0.8/0.69

MorphoLibJ 18 5 0 12 4 122 0.16/0.13 0.8./0.7 0.27/0.22 0.15/0.12

Farsight 6 5 76 4 22 55 0.16/0.1 0.33/0.21 0.22/0.13 0.12/0.07

Classical watershed 25 8 5 9 0 6 0.85/0.8 1.0/1.0 0.86/0.6 0.84/0.8

Curvatures of the iso-intensity surfaces 23 69 174 35 30 0 1.0/1.0 0.75/0.43 0.92/0.85 0.75/0.43

See captions at Tables 1, 2 for explanations of notation.

largest integral value. Figure 5G shows that TRKB allele is
position significantly further from the nuclear envelope, than
the BDNF allele, which is located in the close proximity
(mostly <0.5µm) of the nuclear lamina. Figure 5H shows
the histogram of the transcriptional RNA polimerase factory
for different locations of BDNF allele. We observe a larger
proportion of alleles with smaller polimerase activity, for the
selection of alleles located in the proximity of nuclear lamina
(<1µm). Such analysis can also reveal a special relationship
between different genes (Kosak et al., 2002; Zink et al., 2004;
Ragoczy et al., 2006; Williams et al., 2006; Szczerbal et al.,
2009; Peric-Hupkes et al., 2010; Clowney et al., 2012; Solovei
et al., 2013), this topic has been recently intensively studied
in non-neuronal cells, as spatial arrangement is constantly
more and more recognized as an import relation influencing
gene expression.

Comparison With Other Methods
We compared the results of segmentation of the proposed
method with six other available methods Ilastik (Sommer, 2011),
gradient flow (Li et al., 2007), MorphoLibJ (Legland et al.,
2016), Farsight (Narayanaswamy et al., 2010), classical watershed
(Vincent and Soille, 1991) curvatures of the iso-intensity surfaces
(Toyoshima et al., 2016) (see Table 3 and Figure 6). For the
methods (Li et al., 2008; Narayanaswamy et al., 2010; Legland
et al., 2016; Toyoshima et al., 2016), we tried several different
sets of parameters, and chose the set giving the best performance,
the Ilastik method described in Sommer (2011) required an
initial training on a sample data set. For the methods (Li
et al., 2008; Toyoshima et al., 2016), we had to downsample
the image resolution (respectively, by a factor 2 and 4) as
the hardware memory (16GB) did not suffice to perform the
segmentation. For both classical watershed (Vincent and Soille,
1991) and gradient flow (Li et al., 2008) methods, we observed the
presence of few blobs containing several undersegmented nuclei.
The segmentation performed by MorphoLibJ (Legland et al.,
2016) resulted in a significant portion of undetected nuclei. The
methods (Li et al., 2008; Narayanaswamy et al., 2010; Toyoshima
et al., 2016) led to a large fraction of oversegmented nuclei. For
the method based on analysis of curvatures of the iso-intensity
surfaces (Toyoshima et al., 2016), we obtained a high proportion
of nuclei correctly segmented (yet “not precise” according to our
classification), this deviation was mainly due to the fact, that the
method (Toyoshima et al., 2016) assumes the ellipsoidal shape
of the nuclei (shown as contours in Figure 6G), which deviate

from the actual shapes of the nuclei in our sample. The number
of segmented nuclei in Category I by the proposed method
outperformed each comparison example.

In order to perform the cross-check of morphometric
measurements (nuclear volume and surface, the distances
between the surface of the alleles and the nuclear boundary,
the distances between the surfaces of the alleles) we created
artificial ellipsoidal nuclei with internal objects with a’priori
known dimensions, position and arrangement. The artificial
nuclei were created in 3D Studio Max software, as ellipsoids
with assumed arrangement and minor and major axis. Inside
the ellipsoids we placed two small spheres on each channel,
which mitigated the alleles. Subsequently, we added the Gaussian
noise. For these artificial nuclei we calculated analytically the
aforementioned morphometric parameters. These values were
in a good agreement (discrepancy resulting from numerical
accuracy) with the values obtained numerically from the
image analysis.

DISCUSSION

An automated segmentation and surface reconstruction of
neuronal nuclei is a crucial procedure required for quantitative
studies of neuronal architecture. Crowding of nuclei and their
varying structure (presence of chromocenters, inhomogeneities,
and overlapping nuclei) are major obstacles for automatic
segmentation. The presented method, which relies on very
mild assumptions on the nuclear shapes, is capable of
resolving a large number of nuclei allowing further quantitative
analysis. Nevertheless, the results of the segmentation still
required manual verification in order to reject the improperly
segmented cases.

The majority of the nuclei for the confocal stacks we further
processed were correctly segmented, yet we encountered a
significant number of nuclei which contained defects (with no
under- or over segmentation) in their surface reconstruction
(see Tables 1, 2). These were mostly overlapping nuclei with no
border between them, for which the segmentation method is not
capable to properly determine the border between the nuclei
(any determined boarder is based on a sort of extrapolation),
such nuclei were classified into NP category (non-precisely
segmented). Moreover, we accounted the glial cells into the FP
(false positive) category, we did not include into the algorithm
the criteria whether a nucleus is from the glial cell or not. Still,
we are able to extract a sufficient number of nuclei to reveal
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FIGURE 6 | Comparison of segmentation results with different other methods:

(A) original image, (B) proposed method, (C) Ilastik, (D) gradient flow tracking,

(E) MorphoLibJ, (F) Farsight, (G) classical watershed, (H) method based on

the curvatures of the iso-intensity surfaces. Left column: z-projection, middle

column: z-section, right column: magnification. Scale bars: 7 µm—left, middle,

2.3 µm—right. Segmented nuclei were randomly colorized for illustrative

purposes (A–G), for (H) contours of ellipsoids representing the segmented

results are shown.

several morphological features, e.g., differences in location of
BDNF and TRKB alleles, see Figure 5G. The presented method
allowed for the analysis of more than 4,000 nuclei, segmented
from the hippocampal dentate gyrus (Walczak et al., 2013).

The hippocampal dentate gyrus, in our experience, is the most
extreme case of nuclei crowding. We expect, that nuclei in other
brain areas, are easier to segment, we do not however foresee
the major differences between the rodents and other species. The
crucial factor influencing the image modality seems to be the
brain region.

We were able to segment confocal stacks of dimensions up
to 1,024 × 1,024 × 176 voxels in computational time of <2 h
using a single processor core. The speed of the method could
be increased via parallel processing since the seed point set can
be divided into subsets corresponding to different nuclei and
independently processed. However, parallelization in Python (in
which we developed the algorithm) is a complex task, due to
the presence of the GIL (Global Interpreter Lock). Therefore, we
decided to run, in parallel, segmentation of different stacks, each
as a separate process. As some of the confocal stack are pretty
large (e.g., 4,096 × 4,096 × 300 voxels), the segmentation of
multiple images at the same time is restricted by the computer
memory. However, the advantage of the proposed method is
that it does not require loading the full data set into memory,
more specifically, it only needs simultaneous loading of two
slices, at the cost of re-reading the data which consumes up to
30% of total segmentation time. If segment smaller stacks, the
computer memory is usually sufficient to load all data for the
bunch of used processes. With the larger stacks it pays off to
load only the required part of the data, allowing to segment more
stacks simultaneously.

Another improvement of the algorithm could be to develop
a post-processing procedure to correct the quality of the
surface reconstruction of the nuclei that were classified as
non-precisely segmented. The difficulty in developing a post-
processing procedure is the variety of artifacts that influence the
surface quality.

The presented method requires to adjust manually few
parameters with varying data modalities. The main parameter
values that need to be set manually are: maximal and minimal
nucleus size (separately for xy- and z-dimension), minimal
value of priority weight associated with a seed point (this
value is set experimentally by analysis of a single section,
setting too larger value results in omission of nuclei, setting
too small values results in abnormal computational time as the
algorithm tries to find nuclei in the background noise), the
parameter controlling how much the boundary varies between
two adjacent plane (setting too large value results in under
segmentation, too small value results in omission of nuclei).
The other parameters control the numerical accuracy, e.g.,
the resolution of points parameterizing the boundary, or the
minimal value of the quality estimator Q, that controls when to
abort the segmentation of nucleus, when the procedure fails. In
summary, an appropriate adjustment is necessary to compensate
the variability in image quality.

Even if performing manual segmentation, one often
extrapolates the nucleus surface at the locations where the
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artifacts or irregularities occur (e.g., holes or overlapping
nuclei). To recognize automatically such irregularities we need
to construct a model of the nucleus by which we can decide
whether a certain image feature is an artifact or not. Any such
model, however, would be strongly determined by the details
of the features of analyzed nuclei (e.g., it would be strongly
influenced by an aberrant nuclear structure), and therefore it
would suffer a loss of generality. The model based recognition
may lead to the bias resulting from the selective recognition of
objects which fit to the a-priori implemented model (Wienert
et al., 2012). Thus, the presented algorithm was based on very
general assumptions concerning the neuronal shape, rather than
on the specific nucleus model, asserting that (a) two adjacent
z-sections of the nuclei, which are not very thick (210 nm), do
not vary dramatically from each other (the condition of the
continuity of the nuclear membrane), (b) for each nucleus, there
exists a section where the nucleus is well-separated from the
adjacent nuclei, since even densely packed nuclei cannot fill the
whole space, and (c) the shape of the nuclei is convex. We did
not assume the homogeneity of the fluorescence from the marker
used to stain the nuclei, allowing for analysis of nuclei with
disrupted architecture (Ito et al., 2014). These assumptions are
however challenged by various image artifacts, whose presence
limits the effectiveness of the proposed image processingmethod.
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