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Abstract: The present discourse links the electrical and chemical properties of the brain 

with neurotransmitters and movement behaviors to further elucidate strategies to diagnose 

and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical 

principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and 

somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal 

brain circuits. Neuronal release of serotonin is detected at the same time and in the same 

animal, freely moving and unrestrained, while open-field behaviors are monitored via 

infrared photobeams. The purpose is to emphasize the unique ability of NMI and the 

BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, 

previously reported, for example, in Aplysia using central pattern generators (CPGs), 

serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the 

literature on central pattern generators, neurotransmitters and movement disorders. 

Specifically, temporal synchrony data are derived from studies on psychostimulant 

behavior with and without cocaine while at the same time and continuously, serotonin 

release in motor neurons within basal ganglia, is detected. The results show that temporal 

synchrony between the neurotransmitter, serotonin and natural movement occurs when the 

brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking 
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contrast, in the case of serotonin and cocaine-induced psychostimulant behavior,  

a different form of synchrony and also asynchrony can occur. Thus, the known 

dysfunctional movement behavior produced by cocaine may well be related to the loss of 

temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. 

The empirical study of temporal synchrony patterns in humans and animals may be more 

relevant to the dynamics of motor circuits and movement behaviors than are studies of 

static parameters currently relied upon within the realms of science and medicine. There 

are myriad applications for the use of NMI to discover clinically relevant diagnoses and 

treatments for brain disease involving the motor system. 

Keywords: neurotransmitters; behavior; brain; dopamine; serotonin; nigrostriatal pathway; 

mesocorticolimbic pathway; cocaine; dystonia; spinal cord injuries; central pattern 

generators; movement disorders; temporal synchrony; atemporal synchrony; drug addiction; 

psychiatric disorders; neurodegenerative diseases 

 

1. Temporal Synchrony between Neurotransmitters and Movement within Motor Circuits 

NMI and the BRODERICK PROBE® can be utilized to study movement disorders whether these 

movement disorders originate in the brain or the spinal cord. This NMI biotechnology actually images 

neurotransmitters at the same time that movement occurs. Moreover, in dystonic movement injury, e.g., 

a BRODERICK PROBE® biosensor can be inserted into neurons of muscle and ganglia in situ or  

in vivo, enabling real time studies of neurotransmitters within these motor neurons on line while 

monitoring movement behavior at the same time. Indeed, the brain’s motor neurons, the basal ganglia 

are the neuroanatomic substrates known to produce sequential movement, adapt reward movement and 

perform such functions as promoting motor learning and planning. Therefore, such a technological 

advance as NMI which allows BRODERICK PROBE® biosensors to sense neurochemistry on line 

with behavior provides potential diagnostic and therapeutic interventions for brain and spinal cord 

injuries previously unavailable. Presented, are empirical data, performed by NMI, demonstrating a 

unique temporal synchrony between neurotransmitters and behavior as neurotransmitters are imaged 

within the basal ganglia nuclei. The most important findings are that (a) temporal synchrony between 

brain neurotransmitter and behavior occurs when endogenous serotonin release in basal ganglia is 

imaged on line with natural behaviors and (b) psychostimulant-induced behavior, monitored on line 

while serotonin release is imaged in basal ganglia, produces a different form of synchrony and/or 

temporal asynchrony. Temporal patterns enable a new and dynamic data profile useful clinically and 

pre-clinically. Although static neurotransmitter levels, currently the standard, are valuable, static 

parameters become more valuable when empirically studied within the context of movement. Other 

disorders of basal ganglia, such as athetoid and dystonic disease can be studied with the BRODERICK 

PROBE®. An example of an athetoid, dystonic disease, is Lesch-Nyhan syndrome (LNS).  

LNS is characterized by severe athetoid and dystonic movements, self-mutilation, and repetitive 

oral stereotypies, similar to fine movement behaviors of licking and grooming observed in rodents 

which is produced by rewarding drugs, such as psychostimulants. Patients suffering from LNS may be 
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required to have teeth removed to avoid oral stereotypies that cause the patient to devour lips, tongues 

or fingers. The stereotypies involve dopamine and serotonin [1] and high levels of uric acid [2]. Other 

athetoid, dystonic diseases and spinal cord injury, drug addiction and psychiatric disorders are 

discussed within the context of these miniature nano-biosensors that comprise the BRODERICK 

PROBE® [3–7]; this biosensor is approved by the Institutional Review Board, NYU Tisch Hospital for 

intraoperative studies in epilepsy patients; studies are published [8]. 

2. The Basal Ganglia 

In order to examine NMI as this biotechnology relates to the experience of temporal synchrony, let 

us first look at the basal ganglia. The basal ganglia is a complex neuroanatomic substrate targeted by 

injuries involving movement, cognition and reward, each connected through separate motor and limbic 

loops within the neuronal ganglia per se. The basal ganglia, comprised of basal nuclei are paired 

subcortical masses or nuclei of gray matter that include the dorsal striatum, (caudate putamen and the 

globus pallidum) and the ventral striatum. The caudate and putamen are structurally distinct in the 

human and these structures are joined in lower mammals and are generally considered to function as a 

unit, called striatum. The terminology, striatum, is derived from the striped nature of this 

neuroanatomic substrate. Coursing through the striatum and closely related, is the internal capsule 

which separates striatum from the lenticular nucleus. Also closely associated with the basal ganglia 

nuclei are small brain-stem nuclei, the substantia nigra, the ventral tegmentum and the subthalamus. 

The control of voluntary movement is executed by the interaction of the pyramidal, cerebellar, and 

extrapyramidal systems, which interconnect with each other as well as projecting to the cranial  

nerve nuclei. The nigrostriatal and mesocorticolimbic pathways are depicted in Figure 1. 

Figure 1. A schematic diagram showing dopamine in nigrostriatal and mesocorticolimbic 

pathways in basal ganglia. Note: this figure is adapted with permissions from [9,10]. 

Copyright Humana Press, 2002 and Upjohn Company, 1980. 
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Dopamine is a critical neurotransmitter that projects from the substantia nigra to the dorsal striatum 

(A9) with parallel circuitry, the mescorticolimbic (A10) neurons emanating from the ventral tegmental 

area to what is commonly called, “the reward center”, (nucleus accumbens), which is part of the 

ventral striatum. When we think about the ventral striatum as actually being the “limbic loop” of the 

motor ganglia which encompasses reward mechanisms, this could possibly mean that stroke victims 

cannot feel reward in addition to being motor impaired. Therefore, it is important to find medications 

that treat both the movement and the brain reward disorders. NMI contributed to such a medication for 

stroke. It was found that Lovenox® a medication for stroke, increased serotonin release in basal ganglia 

of stroked animals on line, in vivo, with increased blood flow. In these studies, NMI simultaneously 

and selectively imaged neuronal serotonin release in the motor circuit of the murine brain, the dorsal 

striatum while at the same time, Dual Laser Doppler sensors monitored blood flow [11]. 

These small gray-matter nuclei, basal nuclei, comprise the basal ganglia. Although these structures 

lie deep within the forebrain and hindbrain, they are anatomically away from parts of the cortical area 

and yet, they still have multi-faceted neuronal connections with the cortex. Electrophysiological 

studies in primates, in addition to movement and cognitive studies in patients with dysfunctional 

movement, have shown that the basal nuclei operate to assist in movement to (1) determine force and 

velocity, (2) prepare for movement, (3) develop automaticity, (4) promote sequential movement,  

(5) inhibit unwanted movement, (6) adapt to novel or reward movement and (7) motor learning and 

planning [10]. 

3. The Cortico-Basal Ganglia Network 

The A10 terminal neurons of the mesocorticolimbic circuit is now considered to be the ventral part 

of the dorsal striatum and this is, as mentioned, the reward circuit, the limbic loop in the basal ganglia. 

In fact, the reward circuit, is now considered to be embedded within the cortico-basal ganglia network, 

and is a central component for developing and monitoring motivated behaviors. In the past, the basal 

ganglia were best known for their relevance to motor functions, based on the neuropathology of 

movement disorders and the idea that basal ganglia pathways return primarily to motor cortex [12]. 

Therefore, there has been quite a conceptual leap during the last three decades, with reports showing 

that the function of the basal ganglia is not a purely motor or sensory-motor worker but the ganglia 

perform a more complex set of functions that mediate the full range of goal-directed behaviors, 

including emotions, motivations, and cognitions. The conceptual leap came about from several lines of 

inquiry and one of these reports, was the demonstration that frontal cortical information passing 

through the basal ganglia returns to the whole entity of the frontal cortex [13,14]. 

4. NMI in the Dorsal and Ventral Striatum: The Monoamines 

To look further into NMI, neurotransmitters and brain anatomy, let us look into how the dorsal and 

ventral striata were distinguished early on by using pharmacology. In pioneering studies by the 

NOBEL laureate, Dr. Arvid Carlsson, significant amounts of dopamine were found in the basal 

nucleus, the dorsal striatum, the A9 nerve terminal [15]. The somatodendrites for the A9 region are 

called substantia nigra (black body) which Bertler found to contain dopamine as well; the data were 

reported approximately two years after Carlsson’s finding of dopamine in the dorsal striatum [16]. 
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Monoamine histochemistry soon followed and dopamine was visualized in cell bodies and nerve 

terminals of the A9 region by the Falck et al. technology [17]. Indeed, the A9 region was found to be 

the largest dopamine containing pathway originating in the subanatomy of substantia nigra, the pars 

compacta [17–20]. Figure 2 depicts immunocytographs of dopamine (DA) and serotonin (5-HT) in 

nucleus accumbens (NAc) of Sprague Dawley laboratory animals at the site of the BRODERICK 

PROBE® biosensor. 

Figure 2. Immunocytographs of dopamine (DA) and serotonin (5-HT) in nucleus 

accumbens (NAc) (ventrolateral (vl)) of Sprague Dawley laboratory rats. Dark field 

photomicrographs show the distribution of (A) DA neurons, stained with tyrosine 

hydroxylase; two high density patterns of DA are apparent in the medial and lateral core, 

(B) 5-HT axons in the caudal one-third of NAcc; 5-HT was stained with a sensitive silver 

intensification procedure, thus axons and terminals are black, (C) 5-HT axons in DA 

neurons in NAcc at the site of the BRODERICK PROBE® laurate biosensor. In (B), two 

low density patterns of 5-HT are apparent in the ventral and ventrolateral NAcc. High 

density 5-HT is seen in the perimeter around the core. A scale = 500 μm as shown by the 

horizontal line in the bottom left part of Figure 2A, Direct efferent neurons derive from 

VTA to vlNAcc. (D) Coronal section of NAcc depicting vlNAcc is adapted with 

permissions from [21]. Copyright Elsevier Limited, 1997. 

 

Dopamine in the ventral tegmental pathway, cell bodies for A10 circuit, adjacent to the nigrostriatal 

pathway, was reported by Anden et al. 1966 [22]. The A9 and A10 dopamine circuits were further 

distinguished from each other in terms of psychomotor stimulant behavior. In further studies, the 

neurotoxin, 6 hydroxydopamine (6-OHDA) was used to lesion the basal nucleus, A9 striatum and the 

result was to eliminate the classical stereotyped repetitive responses of fine movements such as 

grooming [23]. Then, a psychomotor stimulant was injected into basal nuclei, A10, nucleus accumbens 
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and olfactory tubercle and the result was the production of locomotor hyperactivity [24]. There is now 

an extensive empirical body of evidence pointing to psychostimulant directed dysfunctional movement 

behaviors due to affected dopamine in basal ganglia. Cocaine was found to increase serotonin as well 

as dopamine release in nigrostriatal and mesocorticolimbic nerve terminals and somatodendrites in 

1992 and 1993 [25–27]. In the late nineties, the indoleamine, serotonin was found to be present within 

the dopamine reward pathway, A10, at the site of the BRODERICK PROBE® [9–21].  

Dorsal (A9) and ventral (A10) dopamine pathways have been a major focus of study in this 

laboratory [25–28]. Precise distinctions between and within the dorsal and ventral striatal substrates, as 

delineated by a number of different formulations of the BRODERICK PROBE® are published [3–7]. 

This is the first laboratory to separately image endogenous monoamines, indoleamines and peptide 

neurotransmitters on line with natural movement in the animal subject [9,21]. The focus of the present 

paper is the indoleamine, serotonin. 

5. Temporal Synchrony, Central Pattern Generators 

Now, let us look into the concept of temporal synchrony, into the phenomenon of rhythmic 

movement itself, which is often produced by a neuronal network capable of generating a rhythmic 

pattern of motor activity either in the presence or absence of phasic sensory input from peripheral 

receptors; this is called a Central Pattern Generator (CPG). Indeed, CPGs have been identified and 

analyzed in more than 50 rhythmic motor systems and CPGs can generate a variety of motor patterns. 

A universal characteristic of this wide variety of motor patterns is that they consist of rhythmic and 

alternating motions of the body or appendages. It is the rhythmicity of these behaviors that make these 

behaviors appear stereotypic or repetitive. It is the repetitive quality of these behaviors that enables 

stereotypic behaviors to be controlled automatically. This automaticity or autoactivity means that  

there may be little or no need for intervention from higher brain centers when the environment  

remains stable. 

The simplest CPGs contain neurons that are able to burst spontaneously. Such endogenous bursters 

can drive other motor neurons and some motor neurons are themselves, endogenous bursters. 

Importantly, bursters are common in CPGs that produce continuous rhythmic movement, such as 

locomotion. But, locomotion is an episodic, rhythmic behavior and thus, further regulation by 

neurotransmitters, such as dopamine and/or serotonin in motor circuits becomes necessary. 

Endogenous bursts (cell firing) of neurons involved in locomotion must be regulated by 

neurotransmitters and neuromodulators, i.e., substances that can alter the cellular properties of neurons 

involved in CPGs.  

Brief depolarizations occur and lead to maintained depolarizations (plateau potentials) that can last 

for long periods of time. These maintained depolarizations far outlast the initial depolarization and it is 

these maintained depolarizations that are necessary for rhythmic movements. The generation of 

rhythmic motor activity by CPGs can be altered by amines and peptides [29,30], thereby enabling a 

CPG to generate an even greater variety of repetitive motor patterns. Motor CPGs produce a complex 

temporal pattern of activation of different groups of motor functions and each pattern can be divided 

into a number of distinct phases even within a phase. CPGs are also time-dependent [31]. 
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6. Serotonin Is a Neuromodulator for CPGs 

In fact, serotonin (5-HT) can control the CPG underlying the escape swim response in the mollusc, 

Tritonia diomedea. Interestingly, the dorsal swim interneurons (DSI’S) are a bilaterally represented set 

of three 5-HTergic neurons that participate in the generation of the rhythmic swim motor program. 

Serotonin from these CPG neurons is said to function as both a fast neurotransmitter and as a slower 

neuromodulator. In its modulatory role, 5-HT enhances the release of neurotransmitter from another 

CPG neuron, C2 and also increases C2 excitability by decreasing spike frequency adaptation. Serotonin, 

intrinsic to the CPG, may neuromodulate behavioral sensitization and habituation. Serotonin intrinsic 

to the DSI enhances synaptic potentials evoked by another neuron in the same circuit [32,33]. 

In another mollusc, the pteropod Clione limacina, the CPG for swimming is located in the pedal 

ganglia and formed by three groups of interneurons which are critical for rhythmic activity. The 

endogenous rhythmic activity of this CPG was enhanced by 5-HT [34]. In the pond snail, Lymnaea 

stagnalis, 5-HT is the main neurotransmitter in its stereotypic feeding circuit [35]. In the sea slug, 

Aplysia, the CPG for biting is modulated both intrinsically and extrinsically. Intrinsic modulation has 

been reported to be mediated by cerebral peptide-2 (CP-2) containing CB1 2 interneurons and is 

mimicked by application of CP-2. On the other hand, extrinsic modulation of the CPG for stereotypic 

biting in the sea slug, is mediated by the 5-HT-ergic metacerebral cell (MCC) neurons and this 

behavior is mimicked by application of 5-HT [36]. 

In vertebrates, the 5-HT somatodendritic nuclei, the raphe nuclei, comprise the most expansive and 

complex anatomic and neurochemical system in the Central Nervous System (CNS). Raphe nuclei 

almost exclusively reside along the midline in the rodent and in the primate. Fewer raphe nuclei reside 

along the midline [37]. The rostral 5-HT raphe group and caudal linear nucleus sends 5-HT efferents to 

A9 dopaminergic (DA-ergic) basal ganglia motor nuclei and the caudal 5-HT group as well, whereas 

the interfascicular aspect of the 5-HTergic dorsal raphe projects efferents to A10 dopaminergc  

(DA-ergic) basal ganglia motor nuclei [38]. 

Electrophysiological studies have shown that the most prominent action of increased 5-HT cell 

firing in 5-HT somatodendrites, dorsal raphe (DR), is to increase the flexor and extensor burst 

amplitude of 5-HT cell firing in DR during the act of treadmill locomotion [39]. Further evidence for 

5-HT controlling motor output is seen from studies in which 5-HT, directly injected into the motor 

nucleus of the trigeminal nerve, increased the amplitude of both the tonic electromyogram of the 

masseter muscle and the externally elicited jaw-closure (masseteric) reflex [40–42]. Indeed, Jacobs and 

Azmitia have proposed that 5-HT’s primary function in CNS neuronal circuitry is to facilitate motor 

output [38]. 

Serotonin neurons within 5-HT somatodendrites depolarize with such extraordinary regularity that 

they exhibit automaticity, i.e., they can act by CPGs and produce plateau potentials. Thus, 5-HT 

neurons exhibit repetitive discharge characteristics. Increased 5-HT neuronal cell firing in 

somatodendritic raphe nuclei generally precedes the onset of movement or even increased muscle tone 

in arousal by several seconds and is maintained during sustained behavior [43]. Importantly, 5-HT cell 

firing in raphe nuclei is sometimes phase-locked to repetitive behavioral stereotypic responses. The 

regular firing of 5-HT somatodendrites in raphe nuclei is activated preferentially. This activation is 

associated with locomotion and chewing, stereotypic behaviors that are stimulated by CPGs [44]. 
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Serotonin intrinsic CPGs have been reported to be responsible for inducing rhythmic motor activity in 

the spinal cord of the turtle and the lamprey [45,46]. The evidence in the lamprey suggests that 5-HT 

may have a role in the generation of a family of related undulatory movements including swimming, 

crawling, and burrowing by using one single CPG. 

7. Serotonin Is a Neuromodulator for Natural Movement.  

NMI with the BRODERICK PROBE® was used to study the continuous empirical relationship 

between endogenous serotonin release in basal ganglia and natural movement behavior which is 

directed by basal ganglia per se. Specific studies imaging serotonin release in dopaminergic  

(DA-ergic) motor/reward pathways in (1) the nerve terminals, A9, dorsal striatum (DStr), (2) nerve 

terminals, A10, ventral striatum (nucleus accumbens) (NAcc) and (3) somatodendrites (cell bodies), 

Ventral Tegmental Area (VTA), were performed, in vivo. NMI enables empirical studies in  

each animal subject as its own control. Studies are described in detail in published patents from this 

laboratory [3–7]; an extensive interpretation and discussion of the neurotransmitter mechanisms 

involved in motor circuits are reported [9–21]. Movement behaviors in animals are discussed as  

open-field behavior with two components emphasized, i.e., ambulations and fine movements [47]. 

NMI and movement behaviors are synchronized in 5 min intervals. The experimental design for these 

studies was chosen according to the needs of the open-field behavioral paradigm. The BRODERICK 

PROBE® images neurotransmitters selectively within a temporal resolution as low as milliseconds. 

It is important to describe open-field behavior: 

• ambulations (locomotion, walking/running, repeatedly);  

• fine movements (stereotypy, behaviors of chewing, licking and grooming); 

• rearing (standing movement with front paws extended upward); 

• central ambulations (motor behavior taking place in the center of the chamber; central 

ambulations are believed to be a measure of anxiety, a fear of open places, called 

agoraphobia/thigmotaxis. 

Some important properties of NMI are: 

• Each neurotransmitter, imaged selectively via NMI, exhibits a distinct voltage potential at which 

oxidation or reduction occurs; this results in a recording which has a distinct peak (waveform) 

for a specific neurotransmitter; 

• The concentration of each neurotransmitter within the synaptic environment is directly related to 

the current as shown by the Cottrell Equation; 

• Each neurotransmitter is detected within seconds (semiderivative circuit). Chronoamperometric 

circuit images within milliseconds; 

• NMI is comprised of several formulations and configurations for the BRODERICK PROBE® 

series of microelectrodes and biosensors. 

The following line graphs show serotonin release plotted versus separate natural (no drug)  

open-field behaviors of Ambulations (Locomotion) and Fine Movements (Chewing, Licking, Grooming). 

The results in Figure 3A show that the natural, normal episodic, rhythmic nature of locomotor 

(ambulatory movement) is neuromodulated by 5-HT within the DA-ergic basal nucleus of the A9 
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terminals, the dorsal striatum (DStr). The data exhibit temporal synchrony between serotonin in dorsal 

striatum (DStr) and natural open-field behaviors of Ambulations. Figure 3B shows temporal synchrony 

between serotonin release in the DA-ergic basal nucleus, A9, DStr and Fine Movement behaviors. 

Figure 3. (A) Ambulations. Natural neurochemistry and behavior: line graph depicting 

endogenous 5-HT release (open circles) at A9 terminals, DStr, detected in real time, while 

the freely moving, male, Sprague-Dawley laboratory rat is actually behaving, during 

normal/natural movement (first hour) and subsequent habituation behavior (second hour). 

(B) Fine movements. Natural (no drug) neurochemistry and behavior: line graph depicting 

endogenous 5-HT release (open circles) at A9 terminals, DStr, detected in real time, while 

the freely moving, male, Sprague-Dawley laboratory rat is actually behaving, during 

normal/natural movement (first hour) and subsequent habituation behavior (second hour). 

Note: the figure is adapted with permission from [21]. Copyright Elsevier Limited, 1997. 

 

 

The terms, synchronous and simultaneous, describe the relationship between serotonin release at 

distal A9 terminal fields versus open-field behaviors of ambulations (locomotion) and stereotypic fine 
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movement behavior (chewing, licking, grooming). When serotonin function in motor circuits is 

endogenous and natural, the co-relationship between the two parameters shows rhythmic regularity. 

In Figure 4A,B, serotonin release, imaged in distal A10 mesocorticolimbic terminal fields 

(ventrolateral nucleus accumbens [ventral striatum, (vlNAcc)] with open-field behavior, is shown.  

Figure 4. (A) Ambulations. Natural neurochemistry and behavior: line graph depicting 

endogenous 5-HT release (open circles) at basal nucleus, A10 terminals, vlNAcc, in real 

time, while the freely moving, male, Sprague-Dawley laboratory rat is actually behaving, 

during normal/natural movement (first hour) and subsequent habituation behavior  

(second hour). (B) Fine Movements. Natural neurochemistry and behavior: Line graph 

depicting endogenous 5-HT release (open circles) at basal nucleus, A10 terminals, vlNAcc, 

in real time, while the freely moving, male, Sprague-Dawley laboratory rat is actually 

behaving, during normal/natural movement (first hour) and subsequent habituation 

behavior (second hour). Note: the figure is adapted with permission from [21]. Copyright 

Elsevier Limited, 1997. Immunocytographs of dopamine (DA) and serotonin (5-HT) in 

nucleus accumbens (NAc) (ventrolateral (vl)) of Sprague Dawley laboratory rats.  
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The results shown in Figure 4A,B show that the natural, normal episodic, rhythmic nature of 

locomotor (Ambulatory Movement) and Fine Movement Behaviors are neuromodulated by serotonin 

(5-HT) within the DA-ergic basal ganglia, the nucleus of the A10 terminals, the ventrolateral nucleus 

accumbens (vlNAcc). Temporal synchrony is exhibited.  

Therefore, the results shown in Figures 3 and 4 show that the BRODERICK PROBE® biosensor 

inserted within nigrostriatal and mesocorticolimbic nerve terminals, (A9 and A10, respectively) is 

sensitive to the rhythmic co-relationship between the neurotransmitter, serotonin and movement. In 

each case, the biosensor is imaging neurotransmitter in the same basal ganglia that directs motor 

behavior. There is a rhythmic co-relationship between serotonin release at distal A9 and distal A10 

terminal fields and open-field behaviors of ambulations (locomotion) and stereotypic behavior 

(chewing, licking, grooming). Temporal synchrony occurs in natural neurochemistry and behavior 

when no drug, injury or trauma is present.  

NMI in vivo empirically shows a direct relationship between increased serotonin release at distal 

presynaptic sites in dopamine motor pathways on line with open-field behaviors of ambulations and 

fine movements. This is the first data of its kind, demonstrating brain/behavior mechanisms happening 

with temporally synchronous patterns. These results extend previous voltammetric data, showing that 

5-hydroxyindoleacetic acid (5-HIAA), a metabolite for serotonin, is implicated in the awake state of 

animal subjects [48]. These data, presented herein, further extend and lend an explanatory note to 

electrophysiological data [37,38,42–44] which reports that serotonin directly mediates motor output 

and maintains steady state function during sustained behavior, for example, as in habituation behavior. 

Moreover, what may be of crucial importance, are temporal synchrony patterns in dopamine A10 

somatodendrites, Ventral Tegmental Area (VTA). What does the temporal communication between 

serotonin release in VTA and the act of ambulating and/or the fine movement act of chewing look like? 

Is the increase in serotonin in VTA somatodendrites in tandem before each movement, as 

electrophysiology studies of serotonin and movement have shown?  

Thus, BRODERICK PROBE® biosensors imaged serotonin release on line with open-field behavior 

in proximal A10 ventral tegmental somatodendrites (VTA). The results are shown in Figure 5. 

Figure 5A,B show a natural, rhythmic regularity which is episodic as expected, especially in 

ambulations (locomotor behavior). The co-relationship between serotonin release in DA-ergic A10 

somatodendrites and movement behaviors are in juxtaposed temporal synchrony. 

Synchronicity describes the co-relationship; patterns are in concert between serotonin release at 

proximal VTA and open field behaviors of ambulations and fine movements. This additional new 

finding reveals a synchrony between serotonin release in VTA and open-field behaviors that appears 

temporally juxtaposed. The comparison of the NMI temporal synchrony patterns in the proximal 

presynaptic DA somatodendrites versus NMI temporal synchrony patterns in neuronal terminal basal 

nuclei (A10) is likely related to the electrophysiology of 5-HT cell firing in somatodendritic cell bodies 

in 5-HT-ergic raphe nuclei.   
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Figure 5. (A) Ambulations. Natural neurochemistry and behavior: Line graph depicting 

endogenous serotonin (5-HT) release (open circles) at nucleus, A10, somotodendrites, cell 

bodies, Ventral Tegmentum (VTA), in real time, while the freely moving, male,  

Sprague-Dawley laboratory rat is in the act of behaving, during normal/natural movement 

(first hour) and subsequent habituation behavior (second hour). (B) Fine Movements. 

Natural neurochemistry and behavior: Line graph depicting endogenous serotonin (5-HT) 

release (open circles) at nucleus, A10, somotodendrites, cell bodies, Ventral Tegmentum 

(VTA), in real time, while the freely moving, male, Sprague-Dawley laboratory rat is 

actually behaving, during normal/natural movement (first hour) and subsequent habituation 

behavior (second hour). Note: the figure is adapted with permission from [21]. Copyright 

Elsevier Limited, 1997. 

 

 

The raphe nuclei project 5-HT efferents to DA-ergic basal ganglia nuclei and act via CPG, 

stereotypic discharges that can lead to automaticity. When serotonin increases in 5-HT-ergic raphe 

nuclei, the rise in the firing rate of serotonin neurons generally precedes the onset of movement by 

several seconds [43]. It is interesting that 5-HT temporal synchrony is juxtaposed in DA-ergic VTA 

somatodendrites, (the cell bodies) in concert with movement, whereas 5-HT temporal synchrony 

appears simultaneously with motor behavior within the neuronal terminal basal nucleus (vlNAcc) in 

the DA-ergic A10 circuit. Further work is needed to interpret these novel patterns of brain/behavior 

mechanisms relating to neurotransmitter function in motor regions of brain.  
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8. Serotonin Is a Neuromodulator for Psychostimulant-Directed Movement 

Figures 6 and 7 show the disturbing effects of the psychostimulant, cocaine, on temporal synchrony 

patterns in A10 mesocorticolimbic nerve terminals and the disruptive effects of the psychostimulant, 

cocaine, on A10 somatodendrites. These results, derived from psychostimulant-directed movement, are 

in striking contrast to the results from NMI studies of natural serotonin release and movement 

behaviors. Whereas endogenous serotonin release in DA-ergic basal ganglia during natural open-field 

behaviors exhibits temporal synchrony, psychostimulant-directed serotonin release in DA-ergic basal 

ganglia exhibits different forms of temporal asynchrony. 

Figure 6. (A) Ambulations. Cocaine neurochemistry and behavior: Line graph depicting 

endogenous 5-HT release (open circles) at basal nucleus, A10 terminals, vlNAcc, in real 

time, while the freely moving, male, Sprague-Dawley laboratory rat is actually behaving, 

during cocaine-induced behavior (cocaine, 2-h study). Baseline is not shown. (B) Fine 

movements. Cocaine neurochemistry and behavior: Line graph depicting endogenous 5-HT 

release (open circles) at basal nucleus, A10 terminals, vlNAcc, in real time, while the freely 

moving, male, Sprague-Dawley laboratory rat is actually behaving, during cocaine-induced 

behavior (2-h study). Baseline is not shown. Note: the figure is adapted with permission 

from [21]. Copyright Elsevier Limited, 1997. 
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Figure 7. (A) Ambulations. Cocaine neurochemistry and behavior: line graph depicting 

endogenous 5-HT release (open circles) at basal stem nucleus, DA A10, somotodendrites, 

VTA, in real time while the freely moving, male, Sprague-Dawley laboratory rat is actually 

behaving, during cocaine-induced behavior (cocaine: 4 h). Baseline is not shown. (B) Fine 

Movements. Cocaine neurochemistry and behavior: Line graph depicting endogenous  

5-HT release (open circles) at basal stem nucleus, DA A10, somotodendrites, VTA, in real 

time, while the freely moving, male, Sprague-Dawley laboratory rat is actually behaving, 

during cocaine-induced behavior (cocaine: 4-h). Baseline is not shown. Note: the figure is 

adapted with permission from [21]. Copyright Elsevier Limited, 1997. 

 

 

In Figure 6A and furthermore, in Figure 6B, a form of temporal asynchrony is the result of 

psychostimulant-induced brain/behavior function. It is most intriguing to observe that the 

psychostimulant effect of cocaine on temporal synchrony in nerve terminal A10 basal nucleus remains 

rhythmic and episodic but not synchronous. The BRODERICK PROBE® biosensor allows such 

neuroadaptive subtleties to be imaged after a psychostimulant is injected. Such observations as these 

are critical to future pharmacotherapies for psychostimulant abuse as well as related psychiatric, 

dystonic movement disorders. It is likely that 5-HT-ergic neurons in raphe nuclei further affect the 

synchrony of DA neurons in basal ganglia with both types of open-field behaviors studied here.  
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The data in Figure 7A,B show that cocaine disrupted the natural, episodic, rhythmic nature of 

ambulatory and fine movement behaviors, neuromodulated by serotonin (5-HT) within DA-ergic basal 

stem nucleus, A10 somatodendrites. Psychostimulant effects on temporal synchrony appear to occur to 

a greater degree in somatodendrites as compared with nerve terminal nuclei.  

In summary,  

• The general and well known upward directional values for the effect of cocaine on serotonin 

release and movement behaviors in dopamine motor/reward brain circuitry are repeated  

and confirmed. 

• Previous studies have not been able to show these subtle brain alterations during 

psychostiumulant behavior, nor have these previous studies been able to monitor natural, 

episodic rhythmic nature of exploratory and habituation behavior on line with the 

neurotransmitter associated with the specific behavior.  

• Serotonin-ergic neuromodulation in A10 basal nucleus and A10 somatodendrites during natural 

movement behaviors is disrupted by cocaine.  

• There are different forms of asynchrony dependent on whether the neuroanatomic substrate 

affected is nerve terminal or somatodendrite.  

• The studies show that neuronal damage to basal nuclei and brain stem nuclei occurred after the 

administration of the psychostimulant, cocaine. 

• Neuroadaptive responses by serotonin in motor circuits is seen after a single injection of cocaine. 

• Neuroadaptation may be a pre-disposition to cocaine neurotoxicity. 

NMI data on line with open-field behavior are complementary to the electrophysiological work of 

Jacobs and Azmitia [37,38,42–44]. In the Jacobs and the Azmitia laboratories, the raphe nuclei 

(somatodendrites for serotonin) and their efferent connections to basal ganglia were the focus; the 

findings were (1) The rostral serotonin raphe group and caudal linear nucleus sends serotonin efferents 

to A9 basal nuclei motor system and the caudal linear nucleus serotonin group and (2) the 

interfasciculus aspect of the serotonin dorsal raphe projects efferents to A10 mesocorticolimbic basal 

nuclei, basal ganglia region.  

Thus, NMI enables the imaging of serotonin release in dopaminergic motor circuits in concert with 

movement behavior. The BRODERICK PROBE® real time data shows the extraordinary regularity, 

repetitive nature and automaticity of serotonin neurons on line with natural movement behavior in A9 

and in A10 nigrostriatal and mesocorticolimbic dopamine basal ganglia in brain. The data also directly 

links serotonin with the disruption of natural temporally synchronous behavior known to be caused by 

psychostimulants and dystonic brain disorders related to psychiatric and mental illness.  

These data link for the first time, the mechanism of neuronal serotonergic central pattern generators 

(CPGs) in dopaminergic basal nuclei and somatodendrites, specifically with ambulatory and 

stereotyped movement behaviors.  

9. Serotonin Is a Neuromodulator in Spinal Cord Injury 

It is known that inflammatory cytokines as well as vasoactive substances such as serotonin are 

released at the site of spinal cord injury and it has been also shown that serotonin is released in 
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ischemic injury in basal ganglia of animals [11]. In vitro work by Saruhashi et al., in 2002 [49] shows 

that the amplitude of action potential necessary for movement in the dorsal column axon of the spinal 

cord works through different mechanisms, i.e., the serotonin 1A versus the 2A receptor. These important 

studies provide strategies for pharmaceutical therapies in terms of using the serotonin 1A agonist to 

depress action potentials and assist in acute spinal cord injury. However, in an intact spinal cord injury, 

signals from the brain are telling the motor neurons to excite or depress causing muscles to contract or 

expand and since these systems are acting in concert, an in vivo model, NMI, becomes more appealing 

for study. 

A recent paper from the Bennett group (2010) [50] studied a virtual “stepping response” to show 

serotonergic temporal synchrony in a hemisected rodent model of spinal cord injury, in situ. This 

model is valuable especially since many of the neurons that normally coordinate rhythmic movements 

in mammals are located in the spinal cord [51,52] and spinal neurons require serotonin to get neurons 

ready to generate movement [53,54]. When the spinal cord is injured, spinal neurons caudal to the 

injury are serotonin deficient, leaving them “high and dry” in an unexcitable state even though injury 

did not occur at this caudal site. It is an intriguing finding by the Bennett group that locomotion after 

spinal cord injury depends on constitutive activity in serotonin receptors [50]. The data, although not  

in vivo, supports our NMI data that ambulations/locomotion are neuromodulated by serotonin. Further 

evidence for serotoninergic neuromodulation of movement is derived from data showing that 

locomotion can be regained soon after spinal transection with the exogenous application of drugs that 

activate the neuromodulatory serotonin, noradrenaline and dopamine receptors in vivo and in vitro [55–58], 

including serotonin 2 and serotonin 7 receptor agonists [59–61] or even transplants of serotonin and 

noradrenaline- producing cells into the spinal cord [62,63].  

The Bennett group studied a virtual “stepping response: to show serotonergic temporal synchrony, 

by observing the movement of the hindlimb of the hemisected spinal cord. Our empirical NMI data,  

in vivo, advances the Bennett paper and shows temporal synchrony between serotonin and movement 

exactly in motor neuroanatomy, the basal ganglia. Our data, shown above, are the first to show that 

temporal synchrony between serotonin and movement behavior occurs during natural behavior and is 

rendered dysfunctional during psychostimulant-induced, athetoid and dystonic behaviors. Therefore, in 

dystonic movement disorders as well as in spinal cord injury in patients and animals, serotonin and 

rhythmic movement are inseparable. Thus, NMI and the BRODERICK PROBE® provides advances 

for the diagnosis and treatment of a variety of dystonic movement disorders via the phenomenon of 

temporal synchrony between neuromodulators and movement directed within motor circuitry. 

10. Conclusions 

Described in this discourse is a dynamic concept of temporal synchrony in natural versus  

drug-induced movement behavior. Temporal synchrony patterns are shown between the 

neurotransmitter, serotonin, and movement behavior using NMI and the BRODERICK PROBE® 

microelectrodes and biosensors. Serotonin is imaged in dopamine motor pathways while open-field 

behavior is monitored with infrared photocell beams in the same animal subject. Temporal synchrony 

is described within the context of central pattern generators, repetitive discharge in cell firing and 

automaticity in co-relationship to open-field ambulatory and stereotypic movement behaviors.  
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The take-home messages from these studies are new findings [1] temporal synchrony between brain 

neurotransmitter and behavior is exhibited when injury is not present. Brain/behavior mechanisms are 

rhythmic and synchronous [2] dysfunctional behavior that is asynchronous and arrhythmic comprises 

temporal asynchrony. These temporal brain/behavior patterns using NMI enable the formation of  

a new and dynamic data profile. Temporal brain/behavior patterns are more relevant to the physician 

and scientist than are static parameters currently used in research for diagnosis and treatment of  

brain disease.  

Given the caveat that static levels of neurotransmitters are valuable, static parameters assume more 

value within the context of movement because dynamic data profiles provide more accurate clinical 

management. Disorders of basal ganglia, such as athetoid, dystonic disease may be studied with the 

BRODERICK PROBE®. The patient with spinal cord injury will benefit from diagnosis with this 

biosensor. It is concluded that the healthy brain and spinal cord in humans and animals may very much 

depend on patterns of brain/behavioral synchronicity.  
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