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The shifted balance of arginine 
metabolites in acute myocardial 
infarction patients and its clinical 
relevance
Patrycja Molek1, Pawel Zmudzki2, Aleksandra Wlodarczyk1, Jadwiga Nessler1 & 
Jaroslaw Zalewski  1*

The arginine metabolism as a target for cardioprotection in patients with ST-segment elevation 
myocardial infarction (STEMI) remains insufficiently understood. Arginine, ornithine, citrulline, 
asymmetric dimethylarginine (ADMA) and proline plasma levels were measured using liquid 
chromatography and tandem mass spectrometry in 70 consecutive STEMI patients upon admission 
and at 6-month follow-up and were compared with left ventricular function, volumes, and infarct 
characteristics determined by cardiac magnetic resonance imaging, and with 5-year clinical 
outcomes. Baseline median concentration of arginine was higher by 49% (P = 0.002) when compared 
to 6-month measurements and was correlated with an ischemia risk area (R = 0.34, P = 0.004) and 
infarct size (R = 0.33, P = 0.006). Following ischemia median citrulline/arginine index decreased 
when compared with 6-month result (P = 0.002), while citrulline/ornithine and arginine/ADMA ratios 
maintained unchanged indicating a shift of arginine metabolism from nitric oxide synthase (NOS) 
towards arginase. The 6-month arginine concentration reached the area under the ROC curve of 0.67 
(95% confidence interval 0.54–0.81) for prediction of death, myocardial infarction or heart failure 
hospitalization and its value of < 29 µM was associated with lower event free survival (P = 0.02). In 
STEMI patients, during ischemia conversion of elevated plasma arginine was shifted from NOS 
towards arginase. Decreased 6-month arginine concentrations were associated with worse long-term 
outcomes.

Arginine is both a substrate for arginase and the sole source for nitric oxide (NO) synthesis by three main iso-
forms of NO synthases (NOS)1–4. Competing of both enzymes for the same L-arginine may lead to diminished 
production of an unstable molecule of NO which undergoes non-enzymatic oxidation to nitrite and finally 
to stable nitrate. In stable conditions endothelial NOS produces majority of NO, however changes in NO and 
L-citrulline levels may also reflect activation of inducible NOS especially in response to hypoxia or cardiac injury 
and non-enzymatic NO formation5. It has been demonstrated that NO synthesis is not exclusively attributed 
to the vascular endothelium but also red blood cells express a functional endothelial NOS and constitutively 
produce NO6,7 and contribute to the regulation of systemic blood pressure and nitrite homeostasis8. Apart from 
NOS and arginase, arginine is a substrate for arginine decarboxylase that synthesize L-agmatine linked directly 
to polyamine metabolism or for arginine:glycine amidinotransferase producing ornithine, guanidinoacetate and 
L-homoarginine9. In turn, asymmetric dimethylarginine (ADMA) is derived from the methylation of arginine 
residues of various proteins and acts as an endogenous NOS inhibitor.

There is evidence that endothelial damage following ischemia/reperfusion (I/R) injury is a component of 
no-reflow phenomenon and favors infarct area expansion10. Kloner et al. showed that structural changes in 
coronary microcirculation were preceded by and limited to the areas of irreversible cardiomyocyte injury11, and 
were substrate for intramyocardial hemorrhage12. The endothelial damage is associated with impaired endothe-
lial-dependent vasodilatation and diminished NO bioavailability13. In cultured endothelial cells, exposure to 
hypoxia leads to an increased intracellular concentration of L-arginine released from cellular storages or protein 
proteolysis14 whereas impaired uptake of L-arginine is a consequence of plasma membrane depolarization15. 
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Although intra- and extracellular arginine concentration was elevated during I/R, it was inaccessible for NO 
production due to endothelial damage.

Diminished arginine bioavailability and its dysfunctional metabolism have been shown to be associated with 
increased cardiovascular risk. Reduced global arginine bioavailability ratio (GABR), but not arginine concentra-
tion, was associated with both higher prevalence of coronary artery disease (CAD) and an increased incidence of 
long-term cardiovascular events16–18. Moreover, patients who presented symptoms of cardiogenic shock following 
MI had plasma levels of arginine that were twice as low, along with a 42% lower GABR when compared with 
stable CAD patients19. Recent studies on red blood cells provide evidence that their endothelial NOS activity is 
compromised in patients with coronary artery disease7 while elevated arginine I activity in patients with type 2 
diabetes is associated with induction of endothelial dysfunction20.

In animal model of myocardial infarction (MI) a systemic inhibition of arginase was associated with an 
increase of plasma citrulline, citrulline/arginine ratio and citrulline/ornithine ratio and a decrease of plasma 
ornithine21. Simultaneous assessment using two ratios of citrulline/ornithine and citrulline/arginine provided 
indirect insight pertaining to the balancing activity of NOS and arginase. In turn, an arginine/ADMA ratio 
provided information about arginine availability for NO production dependent on NOS inhibitor22 and was 
identified as a marker of heart failure23, hypertension24, atherosclerosis25 and of major cardiovascular events26. 
In contrast, a nitrate anion as a dietary element that can be reduced via nitrite into NO does not reflect NO 
availability27. Lauer et al.28 have shown that plasma nitrite, but not nitrate correlated with NO production from 
endothelial NOS in humans. Additionally, in patients with increased cardiovascular risk, there is a decreased 
availability of tetrahydrobiopterin which results in an endothelial NOS-dependent formation of superoxide 
instead of NO and promotes the oxidation of NO to nitrate29.

To date an unclear role of arginine metabolism in acute MI precluded the development of effective arginine-
based cardioprotective therapies. We hypothesize that in patients with ST-segment elevation myocardial infarc-
tion (STEMI) elevated plasma arginine together with its metabolites released following ischemia from damaged 
cardiac myocytes may reflect myocardial and microvascular injury, a shifted metabolic balance between NOS 
and arginase and potentially might be useful in prediction of clinical outcomes.

Methods
Patients.  Seventy consecutive STEMI patients who underwent primary percutaneous coronary intervention 
(PCI) were enrolled. They qualified for inclusion if presented with chest pain duration at rest no longer than 12 h 
with concomitant ST-segment elevation > 1 mm in 2 or more limb leads or > 2 mm in 2 precordial leads, or if 
revealed a new left bundle branch block. Criteria for exclusion included lack of informed consent, the presence 
of cardiogenic shock or pulmonary edema, history of MI or PCI at the same location or coronary artery bypass 
surgery, history of cancer, venous thromboembolism, renal or liver failure, and contraindications of cardiac 
magnetic resonance (CMR) imaging.

The demographic characteristics, anthropometric parameters, cardiovascular risk factors, history of cardio-
vascular diseases and comorbidities were collected for all patients. Upon admission, hemoglobin, hematocrit, red 
and white blood cell count, platelet count, lipid profile, glucose, creatinine, high sensitivity C-reactive protein and 
fibrinogen were determined using standard laboratory techniques. Serum activity of creatine kinase (CK, IU/L), 
isoenzyme MB of creatine kinase (CK-MB, IU/L) as well as concentration of cardiac high sensitivity troponin T 
(ng/ml) were measured upon admission and then subsequently at 8, 16, 24 and 48 h. Diagnosis of diabetes mel-
litus was derived from patient history. A new diabetes mellitus diagnosis was given based upon hyperglycemic 
presentation at intake or after a glucose tolerance test. Chronic kidney disease was diagnosed when creatinine 
clearance using the Cockcroft-Gault formula was calculated to be lower than 60 ml/min.

The study was approved by the Ethics Committee of Jagiellonian University and all methods were performed 
in accordance with the relevant guidelines and regulations. All study participants provided written informed 
consent prior to their inclusion to the study procedures.

Quantification of arginine metabolites.  Blood samples were drawn into citrate tubes upon admission 
in acute phase of MI before PCI and again, 6 months later. Before 6-month follow-up visit all patients were on 
low-nitrate/nitrite diet for three days. The samples were centrifuged at 2,500 g at 18 °C to 22 °C for 20 min and 
processed immediately or stored in aliquots at − 80 °C until analysis. Plasma proteins for amino acid analysis 
were precipitated with 80% methanol before measurements were recorded. Plasma concentrations of arginine, 
ornithine, citrulline, proline, ADMA and nitrite/nitrate (NOx) were measured in duplicates using ultra-per-
formance liquid chromatography—tandem mass spectrometer (UPLC-MS/MS) with Waters ACQUITY UPLC 
(Waters Corporation, Milford, MA, USA) coupled to a Waters TQD mass spectrometer (electrospray ionization 
mode ESI-tandem quadrupole).

NOx measurement procedure was performed in two ways30. For nitrites the procedure included direct deri-
vatization to azo compound—4-((4-((2-aminoethyl)amino)naphthalen-1-yl)diazenyl)benzenesulfonamide, 
which was later quantified using the developed UPLC-MS/MS procedure. The procedure for nitrates included 
two stages of enzymatic reduction to nitrites and subsequent derivatization to azo compound and quantification 
as above described. Procedures in plasma samples were performed in parallel, and the final content of nitrates was 
calculated based upon the difference between values obtained from both procedures since the second procedure 
simultaneously quantifying nitrites and nitrates within the sample. Chromatographic separations were carried 
out using Acquity UPLC BEH C18 column, 2.1 × 100 mm, and 1.7 µm particle size equipped with Acquity UPLC 
BEH C18 VanGuard pre-column. The column was maintained at 40 °C and eluted under the following conditions: 
linear gradient elution from 100 to 20% of eluent A over a 4 min timeframe, followed by isocratic elution from 
20% of eluent A over 2 min, and linear gradient elution from 20 to 100% of eluent A over 1 min at a flow rate 
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of 0.3 mL/min (Eluent A: water/formic acid (0.1%, v/v); eluent B: acetonitrile/formic acid (0.1%, v/v). 10 μL of 
each sample was injected in triplicate.

Chromatographic separations of amino acids were carried out with the Acquity UPLC BEH Amide column, 
2.1 × 100 mm, and the 1.7 µm particle size equipped with VanGuard Acquity UPLC BEH Amide pre-column. 
The column was maintained at 40 °C and eluted under linear gradient elution from 20 to 35% of eluent A over 
4 min followed by linear gradient elution from 35 to 40% of eluent A over 6 min, with a flow rate of 0.3 mL/min. 
(Eluent A: water/formic acid (0.1%, v/v); eluent B: acetonitrile/formic acid (0.1%, v/v)).

Waters’ TQD mass spectrometer parameters were optimized for quantitative analysis using the solutions of 
L-arginine, NG, NG-dimethylarginine, L-citrulline, L-ornithine, L-proline, 4-((4-((2-aminoethyl)amino)naph-
thalen-1-yl)diazenyl)benzenesulfonamide, and chloramphenicol in concentration 10 μg/mL at flow 20 μL/min 
and mixture of eluent A and B 1:1 (v/v) at flow 0.28 mL/min.

Coronary angiography.  Coronary angiograms were acquired with Axiom Artis dFC (Siemens, Erlangen, 
Germany) and were analyzed offline using two contralateral projections for each artery before and after angio-
plasty. All coronary segments were evaluated for the presence of visible thrombus in the epicardial artery, distal 
embolization during and after primary PCI as well as degree of stenosis based on visual inspection. Epicardial 
segments with coronary lesions with at least 50% narrowing were considered significant. Epicardial blood flow 
in the infarct-related artery (IRA) was evaluated using the TIMI scale31,32.

Left ventricular volumes, function and infarct characteristics.  CMR imaging was performed using 
a 1.5-T scanner (Magnetom Sonata Maestro Class, Siemens, Erlangen, Germany) at baseline, between the 2nd 
and the 4th day following primary PCI, and then again, at 6 months, as previously described33. Briefly, using 
ECG gating technique, left ventricular (LV) function was assessed with cine imaging in a spoiled gradient echo 
sequence. Following cine sequences, imaging of myocardial edema reflecting area at risk (AAR) of ischemia was 
performed using the breathhold, T2-weighted sequence. Then, the late-enhancement imaging was performed 10 
to 20 min after contrast injection of 0.1 mmol/kg of gadobutrolum (Gadovist, Bayer Pharma AG, Germany) with 
a gradient echo readout. The entire left ventricle was covered by contiguous, short-axis oriented 8-mm slices in 
all CMR techniques.

An in-house-developed, vendor-independent, cardiac-dedicated software (CardioViewer, baseline version, 
Catholic University Leuven, Leuven, Belgium)34 was used for blinded analysis of all images. The borders of 
endocardium and epicardium were delineated on images with the largest and smallest LV volumes in order to 
determine end-diastolic and end-systolic LV volumes, respectively. Based on LV volumes measurements, LV ejec-
tion fraction and myocardial volumes were calculated. The myocardial edema, infarct size (IS), and microvascular 
obstruction (MVO) were delineated on T2-weigted as well as late gadolinium-enhanced images, respectively. 
The area of delineation multiplied by the thickness of the slice and by the myocardial tissue density (1.05 g/ml) 
served as formula to calculate the mass of AAR, IS and MVO. The AAR was expressed as the ratio of LV mass. 
The hyper-enhanced area of the infarct was expressed using a ratio of myocardial edema or LV mass, while MVO 
was expressed using a ratio of the infarct area.

Long‑term clinical follow‑up.  Death, recurrent MI confirmed by enzyme release, stroke, or hospitaliza-
tion due to heart failure (HF) decompensation were collected within 5-year follow-up at the outpatient clinic. 
Data was supplemented by an in-person or telephone interview with the patient or in the case of death, data 
was obtained through an immediate relative. Ischemic symptoms were assessed according to the Canadian Car-
diovascular Society (CCS) scale. The HF hospitalization was defined as an episode of cardiac decompensation, 
including pulmonary edema or worsening of dyspnea up to at least class III-IV according to the New York Heart 
Association (NYHA) classification requiring hospital admission.

Statistical analysis.  To demonstrate a 10% relative decrease of arginine concentration during 6-month 
follow-up with a 90% power and a standard deviation of 20% using a P value of 0.05, 67 patients were required 
in the whole group.

Statistical analyses were performed with SPSS Statistics software (Version 25.0.0.2, IBM, USA) as previously33. 
Categorical variables are shown as numbers (percentages) and compared by Fisher’s exact test. Continuous vari-
ables are shown as median (interquartile range). Continuous variables with normal distribution were compared 
by Student t test whereas non-normally distributed with the Mann–Whitney U test. Between two time-points 
normally distributed variables were compared with t test for paired samples or in case of non-normal distribu-
tion with the Wilcoxon signed-rank. The correlation of two normally distributed variables was calculated with 
the Pearson test whereas for non-normal distributed data Spearman rank correlation coefficient was performed. 
Receiver operating characteristic (ROC) curves and the Youden index were used to determine the optimal cut-off 
value of arginine or NOx and their sensitivity and specificity in prediction of death, recurrent MI or HF requir-
ing hospitalization. A log-rank test was computed to evaluate differences in survival free of death, recurrent MI 
or HF requiring hospitalization between patients with estimated cut-off values of arginine or NOx concentra-
tion. Finally, all independent variables with the potential for confounding both the outcome and exposure were 
included in the Cox proportional hazard regression to find predictors of long-term death, recurrent MI or HF 
requiring hospitalization. A two-tailed P value of less than 0.05 was statistically significant.
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Results
Baseline clinical and laboratory characteristics are reported in Table 1. The studied cohort consisted mostly of 
middle-aged men. About one-sixth of patients were diabetic and half were hypertensive or active smokers. At 
baseline, the majority of patients were in Killip class 1 and three-fourths had an anterior STEMI. The median 
time of ischemia was 220 (interquartile range 160 to 350) minutes. At initial contrast injections, occluded IRA 
with TIMI 0 or 1 flow was found in 63 (90%) patients whereas after the procedure TIMI 2 or 3 flow was restored 
in 69 (98.6%) patients. A collateral blood flow was scored from 0 to 3 according to the Rentrop classification and 

Table 1.   Baseline characteristics. Data are shown as median (interquartile range) or number (percentage). 
ACEI angiotensin-converting-enzyme inhibitors, ARB angiotensin receptor blockers, LDL low-density 
lipoprotein, HDL high-density lipoprotein.

All patients, n = 70

Age 59.0 (50.8, 64.3)

Male gender 54 (77)

Body mass index, kg/m2 26.3 (24.5, 29.0)

Anterior wall myocardial infarction 52 (74)

Killip class > 1 on admission 6 (8.5)

Cardiovascular risk factors

Hypertension 35 (50)

Diabetes mellitus 11 (16)

Dyslipidemia 44 (63)

Current smoking 40 (57)

Family history of coronary artery disease 13 (19)

Chronic kidney disease 0

Comorbidities

Prior myocardial infarction 2 (3)

Prior percutaneous coronary intervention 0

History of stroke 0

History of peripheral vascular disease 1 (1.4)

Pre-infarction angina 10 (14)

Laboratory results upon admission

Hemoglobin, g/dL 14.6 (13.7, 15.4)

Hematocrit, % 42.6 (40.3, 45.8)

Platelets, × 103/µL 218 (187, 260)

White blood cells, × 103/µL 11.5 (9.6, 13.9)

Glucose, mmol/L 8,1 (7.0, 9.5)

Creatinine, µmol/L 92.0 (80.5, 105.5)

High sensitivity C-reactive protein, mg/dL 1.50 (1.12, 4.09)

Fibrinogen, mg/dL 3.31 (3.03, 3.88)

Total cholesterol, mmol/L 5.48 (4.91, 6.36)

LDL cholesterol, mmol/L 3.39 (2.75, 4.15)

HDL cholesterol, mmol/L 1.07 (1.02, 1.28)

Triglycerides, mmol/L 1.01 (0.9, 2.02)

Troponin T, ng/mL 0.041 (0.014, 0,147)

Isoenzyme MB of creatine kinase, IU/L 20 (15, 34)

Area under the curve of isoenzyme MB of creatine kinase release within 48 h of myocardial infarction, IU/L x h 3525 (2222, 5625)

Antithrombotic treatment before admission

Aspirin, loading dose of 300 mg p.o 67 (96)

Clopidogrel, loading dose of 600 mg p.o 44 (62.9)

Unfractionated heparin, loading dose of 5000 IU i.v 39 (56)

Treatment at discharge

Aspirin 70 (100)

Clopidogrel 55 (78.6)

Ticagrelor 15 (21.4)

ACEI or ARB 66 (94)

Beta-blocker 65 (93)

Statin 70 (100)
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was detected in 47 (67.1%), 14 (20%), 7 (10%) and 2 (2.9%) of subjects, respectively. An aspiration thrombectomy 
was used in 56 (80%) patients and the procedure was completed in all cases using drug eluting stent implantation. 
Clinical management and medical treatment, including antithrombotic therapy, were accomplished according 
to the most recent guidelines.

Left ventricular morphology, function and infarct characteristics.  The median time interval 
between STEMI and first CMR was 3 (2–4) days and between the first and second CMR was 6 (5.5–6.5) months. 
There were no significant differences in LV end-diastolic or end-systolic volumes and LV ejection fraction 
between baseline and follow-up (Table 2). During follow-up, stroke volume improved (P = 0.005) and LV mass 
decreased (P = 0.011).

Median AAR was 51% of left ventricle. The IS expressed as the ratio of LV mass significantly decreased from 
median baseline value of 0.34 to 0.21 after 6 months (P < 0.001). The MVO was detected in 54 of 70 patients, and 
among these subjects, median MVO extent was 8% of IS (Table 2).

The shifts in balance of arginine metabolites in acute phase of MI.  Baseline median concentration 
of arginine was significantly higher by 49% (P = 0.002), ADMA by 42% (P = 0.032) and NOx by 28% (P < 0.001) 
when compared to 6-month follow-up results. However, there were no significant differences between baseline 
and follow-up concentrations of ornithine, citrulline and proline (Table 3).

There were significant correlations between arginine, ornithine and citrulline both on admission as well as 
6 months following MI (Supplementary Table S1). Six months following MI but not in acute phase, we found 
significant correlations between NOx level versus arginine, ornithine and citrulline.

There were no significant differences between baseline and follow-up ratios of citrulline/ornithine and argi-
nine/ADMA whereas citrulline/arginine ratio was lower (P = 0.002) when compared with 6-month results (Fig. 1).

In acute phase of MI, arginine concentration correlated with fibrinogen and inversely correlated with creati-
nine and urea (Supplementary Table S2). Simultaneously, ADMA was inversely correlated with creatinine while 
ornithine and proline were associated with hemoglobin and hematocrit.

Arginine metabolites and I/R injury.  Arginine, ornithine and citrulline upon admission were associ-
ated with peak CK-MB release 8 h following PCI (Supplementary Table S3). There was no significant relation-
ship between the concentration of arginine and its metabolites when measured upon admission versus time of 
ischemia as well as pre- and post-PCI TIMI flow. The concentration of arginine, ornithine, citrulline, proline 
and ADMA was significantly higher in patients with left anterior descending artery as an IRA compared with 
the remainder (for all P < 0.001). An association was found between collateral blood flow to the IRA classified by 
Rentrop scale versus arginine (R = 0.26, P < 0.05) and NOx (R = 0.25, P < 0.05) (Supplementary Fig. S1).

Table 2.   Left ventricular volumes, function and infarct characteristics. Data are shown as median 
(interquartile range). MI myocardial infarction, NA not applicable.

Acute phase of MI 6-month follow-up P value

Left ventricular volumes and function

Left ventricular end-diastolic volume, ml 169 (146, 198) 179 (148, 227) 0.11

Left ventricular end-diastolic volume index, ml/m2 89 (78, 103) 94 (80, 114) 0.14

Left ventricular end-systolic volume, ml 96 (78,120) 95 (64, 141) 0.82

Left ventricular end-systolic volume index, ml/m2 51.5 (41, 64) 50 (35, 74) 0.89

Stroke volume, ml 73 (59, 84) 81 (70, 82) 0.005

Stroke volume index, ml/m2 39 (30,45) 42 (38, 48) 0.005

Left ventricular ejection fraction, % 42 (36, 48) 44 (35, 54) 0.12

Infarct characteristics

Left ventricular mass, g 144 (125, 172) 134 (105, 151) 0.011

Left ventricular mass index, g/m2 75 (68, 86) 70 (57, 78) 0.003

Area at risk, g 73 (49, 883) NA

Area at risk/left ventricular mass 0.51 (0.37, 0.60) NA

Infarct size, g 47 (24, 68) 31 (13, 45)  < 0.001

Infarct size/area at risk 0.65 (0.51, 0.79) NA

Infarct size/left ventricular mass 0.34 (0.19, 0.43) 0.21 (0.11, 0.28)  < 0.001

Present microvascular obstruction 54 (77.1) NA

Microvascular obstruction, g 3.45 (0.45, 10.60) NA

Microvascular obstruction/infarct size 0.09 (0.02, 0.19) NA

Microvascular obstruction/area at risk 0.05 (0.01, 0.13) NA
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Arginine metabolites versus CMR findings in acute phase of MI.  Arginine metabolites measured 
upon admission in the acute phase of MI were not associated with indexed LV volumes, LV mass or LV ejection 
fraction as determined with CMR 2–4 days following PCI except for arginine and LV end-systolic volume index 
(Table 4). However, there were significant correlations between arginine, citrulline, ornithine and ADMA versus 
AAR expressed as a ratio of LV and IS expressed as a ratio of LV (Table 4). The concentrations of arginine (62.8 
[49.6–81.8] versus 29.1 [16.8–76.4] µM, P = 0.021) and ADMA (2.11 [1.76–2.57] versus 0.74 [0.51–2.13] µM, 
P = 0.009) were higher but NOx (7.7 [5.7–9.6] versus 11.4 [8.4–13.4] µM, P = 0.003) was lower in patients with 
MVO when compared to subjects without MVO (Fig. 2).

NOx indices versus CMR findings in acute phase of MI.  The NOx/arginine and NOx/ADMA ratios 
were associated with the burden of ischemia, myocardial injury, and also LV volumes. The lower values of NOx/
arginine ratio, the bigger indices of AAR/LV and of IS/LV, and the higher indexed end-diastolic and end-systolic 
LV volumes (Supplementary Table S4). Patients with MVO had lower NOx/arginine ratios when compared with 
subject without MVO (0.13 [0.08–0.22] versus 0.36 [0.11–0.61], P = 0.022) (Fig. 2). At baseline, also NOx/ADMA 
ratio was inversely correlated with AAR/LV, IS/LV, LVEDVI and LVESVI (Supplementary Table S4). Patients 
with MVO had lower NOx/ADMA ratio when compared with subject without MVO (3.91 [2.28–6.34] versus 
12.90 [3.19–20.84], P = 0.007) (Fig. 2).

Arginine metabolites versus CMR findings in chronic phase.  At 6-month follow-up, only proline 
was correlated with indexed LV volumes and LV mass. Simultaneously, higher values of citrulline/ornithine ratio 
were associated with smaller LV mass, lower indexed LV volumes, and better LVEF (Table 4).

Long‑term clinical outcomes.  All patients completed 1- and 5-year follow-up assessments (Supple-
mentary Table S5). Within the first year, 1 patient died, recurrent MI occurred in 4 survivors, and 2 patients 
required hospitalization due to HF decompensation. After the first year, 4 additional patients died, a recurrent 
MI occurred in 6 patients, and 8 patients required hospitalization due to HF. There was no stroke in the stud-
ied group. Within 5 years following MI, death, recurrent MI, or HF requiring hospitalization were found in 20 
(28.6%) patients. At 5 years, ischemic symptoms with CCS class ≥ 2 were present in 11 patients (20%) and dysp-
nea with NYHA class ≥ 2 was reported in 19 (34.5%) patients.

The median time elapsed since baseline blood sampling to UPLC-MS/MS measurements was similar in 
patients with versus without composite endpoint including death, recurrent MI or HF hospitalization (84 [79–88] 
versus 84 [80–87] months respectively, P = 0.58). There were no correlations between the storage time versus 
concentrations of arginine metabolites (r from − 0.07 to 0.20, P > 0.05 for all) and NOx (r = 0.22, P = 0.12). There 
were no differences in concentrations of baseline arginine (57.5 [24.1–70.8] versus 63.7 [41.1–81.82], P = 0.53) 
between patients with or without composite endpoint. In turn, the follow-up arginine concentration reached 
the area under the ROC curve of 0.67 (95% confidence interval 0.54–0.81, P = 0.025) for prediction of death, 
recurrent MI or HF hospitalization with sensitivity of 66% and specificity of 65%. Its cut-off value of < 29 µM was 
associated with lower event free survival (P = 0.02) (Fig. 3). By Cox regression, arginine concentration lower than 
29 µM when measured 6 months following MI adjusted to age, sex and IS was independently associated with 
more frequent composite endpoint including death, recurrent MI or HF hospitalization (Table 5).

Table 3.   Arginine metabolites and their indices. Abbreviations: data are shown as median (interquartile 
range), ADMA: asymmetric dimethylarginine, GABR: global arginine bioavailability ratio, MI: myocardial 
infarction, NOx: nitrite/nitrate.

Acute phase of MI 6-month follow-up P value

Arginine, µM 61.5 (39.4, 80.4) 31.5 (23.7, 67.3) 0.002

Citrulline, µM 14.0 (7.1, 20.2) 8.3 (5.8, 25.5) 0.699

Ornithine, µM 69.3 (41.1, 101.9) 50.1 (31.0, 88.3) 0.424

Proline, µM 2.50 (1.75, 3.39) 2.73 (1.78, 3.82) 0.057

ADMA, µM 2.08 (1.34, 2.52) 1.22 (0.76, 2.41) 0.032

NOx, µM 8.23 (5.94, 10.95) 5.90 (3.82, 8.05)  < 0.001

Amino acid and NOx indices

GABR 0.79 (0.51, 0.99) 0.62 (0.48, 0.84) 0.015

Ornithine/Arginine 1.10 (0.84, 1.65) 1.35 (0.98, 1.79) 0.110

Citrulline/Ornithine 0.19 (0.16, 0.25) 0.21 (0.15, 0.27) 0.858

Citrulline/Arginine 0.22 (0.17, 0.28) 0.25 (0.20, 0.33) 0.002

Arginine/ADMA 30.6 (25.7, 40.3) 30.6 (21.6, 37.6) 0.317

NOx/arginine 0.15 (0.09, 0.27) 0.15 (0.10, 0.24) 0.071

NOx/ADMA 4.27 (2.51, 8.19) 3.92 (2.31, 7.44) 0.020
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Discussion
The present study provides new findings. First, it enables indirect insight into the balance of arginine metabolites 
in patients with acute MI. Second, the association of arginine metabolites to myocardial I/R injury can strengthen 
prognostics to improve clinical outcomes.

We have found that plasma levels of ADMA and arginine are elevated following an ischemic phase of MI. 
Moreover, a higher arginine concentration has been noticed in patients with better developed collateral blood 
flow to the infarct territory, suggesting their wash out from necrotic myocardium through efficient collaterals. 
Simultaneously, in acute phase of MI the citrulline/arginine ratio was significantly decreased when compared with 
stable follow-up phase whereas ratios of citrulline/ornithine and arginine/ADMA maintained unchanged at both 
time points indirectly indicating that following ischemia conversion of elevated plasma arginine concentration 
is shifted from NOS towards arginase, despite the lack of enhanced suppressive potential of ADMA for NOS. In 
turn, the constant balance between metabolites of urea cycle suggested that its enzymes had the same effective-
ness in both ischemic phase of MI and in stable chronic conditions, nevertheless it should be remembered that 
the amount of substrate for arginase was higher in acute condition.

Arginine metabolism in patients with myocardial I/R is insufficiently understood. Most human studies of 
arginine metabolism examine various pathologies based on indirect methods assessing the concentration of 
substrates and products involved in arginine-related pathways16–19,26,35. Based on the results of animal studies, 
it is commonly accepted that in cardiac tissue induction of expression and activation of arginase I is an early 
response to hypoxic stress36. At the same time, metabolic activity of NOS competing for the same substrate 
arginine is reduced or even blocked, because NO formation from arginine requires oxygen37. McQuillan et al. 
proved that during hypoxia expression of constitutive NOS was reduced by 40–60% in the endothelial cells for 

Figure 1.   The shifts of balance of arginine metabolites between acute phase of myocardial infarction and stable 
chronic conditions. Following ischemia (a) citrulline/arginine index decreased when compared with stable 
chronic conditions while (b) citrulline/ornithine and (c) arginine/ADMA indices maintained unchanged. Data 
are shown as absolute values, horizontal lines indicate medians. ADMA asymmetric dimethylarginine, FU 
follow-up.
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at least 48 h38. The question whether this metabolic shift from NOS towards arginase is beneficial for the survival 
of ischemic tissues remains a matter of debate. One hypothesis maintains that under the condition of inactive 
NOS, the reduction of arginine pool by activated arginase may protect cells36. The observed shift during acute 
phase of MI was accompanied by unchanged suppressive potential of ADMA. ADMA however, was identified 
in several studies as a prognostic marker for cardiovascular risk39 including MI patients40.

In this study we have shown for the first time that in patients with acute MI, plasma concentration of arginine 
and its metabolites ornithine, citrulline and ADMA when measured upon admission, were associated with the 
severity of all morphological features of I/R injury of the left ventricle including AAR, IS and the presence of 
MVO. Experimental studies indicate that a non-selective NOS inhibitor L-NAME administered 10 min before 
reperfusion did not reduce no-reflow phenomenon and infarct size41 while ischemic preconditioning attenu-
ated both of them via endothelial NOS activation42. Recently Fernández-Jiménez et al.43 have shown temporal 
dynamics and extent of edema, IS, MVO and intramyocardial hemorrhage during myocardial I/R. Edema for-
mation had a bimodal temporal distribution and was ameliorated only with cardioprotective interventions. In 
turn, the area of intramyocardial hemorrhage and MVO varied according to the time of ischemia, CMR timing 
and cardioprotective strategy. In this context, beyond infarct size reduction also the attenuation of coronary 
microvascular injury seems to be of particular importance44–46. On the other hand, our results indicate that under 

Table 4.   Arginine metabolites versus cardiac magnetic resonance imaging findings. ADMA asymmetric 
dimethylarginine, NOx nitrite/nitrate, arginine metabolites were expressed in µM, r correlation coefficient.

Proline Citrulline ADMA Ornithine Arginine NOx

Upon admission during acute phase of myocardial infarction

 Left ventricular end-diastolic volume index, ml/m2

  r 0.052 0.211 0.187 0.171 0.171 − 0.161

  P 0.672 0.080 0.122 0.157 0.158 0.184

 Left ventricular end-systolic volume index, ml/m2

  r − 0.011 0.192 0.167 0.146 0.238 − 0.040

  P 0.931 0.112 0.168 0.229 0.047 0.746

 Left ventricular mass index, g/m2

  r 0.090 0.081 0.160 0.089 0.165 − 0.101

  P 0.459 0.505 0.186 0.465 0.172 0.406

 Left ventricular ejection fraction, %

  r 0.075 − 0.095 − 0.082 − 0.054 − 0.234 − 0.113

  P 0.536 0.436 0.498 0.657 0.052 0.351

 Area at risk/left ventricular mass

  r 0.253 0.371 0.342 0.359 0.337 − 0.025

  P 0.035 0.002 0.004 0.002 0.004 0.836

 Infarct size/left ventricular mass

  r 0.141 0.254 0.327 0.268 0.365 − 0.079

  P 0.244 0.034 0.006 0.025 0.002 0.518

 Microvascular obstruction/infarct size

  r − 0.008 0.091 0.110 0.072 0.186 − 0.049

  P 0.948 0.452 0.363 0.555 0.123 0.685

6-month follow-up

 Left ventricular end-diastolic volume index, ml/m2

  r 0.242 − 0.084 − 0.050 0.072 − 0.004 − 0.005

  P 0.045 0.494 0.685 0.557 0.973 0.970

 Left ventricular end-systolic volume index, ml/m2

  r 0.239 − 0.099 − 0.036 0.070 0.013 0.008

  P 0.047 0.419 0.770 0.564 0.916 0.951

 Left ventricular mass index, g/m2

  r 0.252 − 0.068 − 0.025 0.114 − 0.029 0.093

  P 0.036 0.581 0.839 0.351 0.811 0.448

 Left ventricular ejection fraction, %

  r − 0.139 0.134 0.026 − 0.051 − 0.014 0.021

  P 0.256 0.272 0.834 0.678 0.912 0.865

 Infarct size/left ventricular mass

  r 0.163 0.208 0.236 0.212 0.231 0.233

  P 0.180 0.086 0.051 0.080 0.060 0.055
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Figure 2.   Arginine, ADMA, NOx and their indices in relation to microvascular obstruction. In acute phase of MI, in patients 
with MVO plasma level of (a) NOx was lower but (b) arginine and (c) ADMA concentrations were higher than in patients 
without MVO. (d) In patients with MVO, NOx/arginine and (e) NOx/ADMA ratios were lower than in subjects without MVO. 
Apart from ADMA there were no differences between patients with and without MVO at stable chronic phase. Abbreviations: 
Box plot shows median and interquartile range (IQR, Q3 to Q1). Q1 and Q3 are the first and third quartiles. Whiskers 
are drawn at minimum and maximum. MVO: microvascular obstruction present ( +) or absent ( −), ADMA: asymmetric 
dimethylarginine, NOx: nitrite/nitrate, MI: myocardial infarction. MVO was determined with an in-house-developed, vendor-
independent, cardiac-dedicated software (CardioViewer, baseline version, Catholic University Leuven, Leuven, Belgium) 34.
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Figure 3.   Prognostic value of arginine or NOx concentration. (a) The 6-month concentration of arginine was 
lower in patients with composite endpoint including death, recurrent MI or HF hospitalization during 5-year 
follow-up. (b) At 6-month follow-up arginine concentration reached the area under the ROC curve of 0.67 
(P = 0.025) for prediction of death, recurrent MI or HF hospitalization with sensitivity of 66% and specificity 
of 65% and (c) its cut-off value of < 29 µM was associated with lower event free survival. ComEnd composite 
endpoint, HF heart failure, MI myocardial infarction, NOx nitrite/nitrate, FU follow-up, AUC​ area under the 
receiver operating characteristic curve.

Table 5.   The independent predictors of death, recurrent myocardial infarction or hospitalization due to heart 
failure decompensation. CI confidence interval, HR hazard ratio, NOx nitrite/nitrate.

Univariable model Multivariable model

P value HR 95% CI for HR P value HR 95% CI for HR

Age, per 1 year 0.864 1.01 0.97–1.06 0.986 1.00 0.96–1.05

Female gender, yes versus no 0.303 2.17 0.50–9.42 0.386 1.94 0.43–8.71

Infarct size/left ventricular mass, per 0.01 0.550 0.39 0.02–8.56 0.711 0.51 0.02–17.30

Arginine level < 29 µM at 6-month follow-up, yes versus no 0.027 3.02 1.13–8.06 0.047 2.76 1.01–7.57
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stable conditions higher proline levels were associated with larger LV volumes and mass. Moreover, the lower the 
ratio of citrulline/ornithine suggesting metabolic shift from NOS towards arginase, the larger LV volumes and 
mass. Experimental studies revealed that activation of arginase-dependent polyamine metabolism associated 
with proline synthesis has a pro-hypertrophic significance47.

We found also that the total amount of NOx in stable chronic phase, but not in acute phase of MI, was cor-
related with plasma concentration of arginine, citrulline and ornithine. Undoubtedly, in acute phase of MI, 
activation of inducible NOS and the fact that patients were non-fasting could affect NOx plasma level. The con-
centrations of ADMA and L-arginine as measured by HPLC both in MI patients as well as in healthy volunteers 
were comparable with our results48,49 but NOx levels in healthy volunteers determined with a Griess method were 
higher than ours48. Keeping in mind all the limitations associated with non-fasting measurements of plasma NOx 
level during acute phase of MI, in this study the new ratios of NOx/arginine and NOx/ADMA were analyzed. 
These indices were inversely correlated with both morphological features of I/R injury including territory of 
ischemia, myocardial necrosis and area of damaged microvasculature as well as with LV end-systolic and end-
diastolic volumes. Nevertheless, our preliminary data regarding ratios of NOx/arginine and NOx/ADMA need 
to be interpreted with caution, require further validation and their biological relevance remains unknown, the 
more that NOx cannot be used as a marker of NO production5,27.

Can interventions interfering arginine metabolism reduce I/R injury and/or improve MI outcomes? Theoreti-
cally, therapies that lead to NO increase may potentially show benefit in cardiovascular disorders, as its decreased 
concentration plays a key role in multiple dysfunctions. The shifted balance of arginine metabolites from arginase 
towards NOS found in our study indicates that treatment with arginase inhibitors administered in acute phase 
of MI may be effective. Jung et al. demonstrated that systemic arginase inhibition reduced IS in rats by 50% in 
a mechanism dependent on NOS activity and NO bioavailability21. Also, local intracoronary arginase inhibitor 
infusion started 5 min before reperfusion in a pig model of MI reduced IS by 50%50. In turn, an intravenous 
co-administration of L-arginine and tetrahydrobiopterin 5 min before reperfusion reduced IS and this effect 
was mediated by NOS-dependent pathways resulting in diminished superoxide generation51. Although, several 
specific inhibitors of arginase are available, their systemic mechanism of action is a major limitation of such 
therapy in humans1. Our findings also suggest that in the acute phase of MI, when arginine plasma concentra-
tion is high, its supplementation may not bring expected benefit. In contrast, in stable conditions following MI, 
higher arginine concentrations were associated with better long-term outcomes. Thus, arginine supplementation 
at that moment might be beneficial. However, available data from VINTAGE MI clinical trial has demonstrated 
increased mortality associated with arginine supplementation after MI52.

Our study has several limitations. First, the analyzed group is relatively small, however sample size was appro-
priately calculated whereas arginine metabolites and myocardial injury were meticulously measured using the 
recommended methods. Second, arginine metabolites were not measured in acute phase following reperfusion. 
Third, non-fasting blood samples in acute phase of MI have been taken, therefore we cannot exclude alternative 
sources of NOx associated with diet. However, before follow-up blood sampling dietary intake was controlled 
for nitrate/nitrite. Nevertheless, both acute and chronic measurements of NOx could be confounded by liver 
metabolism, formation by gastric bacteria, nitrate renal clearance, or contamination5,27. Fourth, as the red blood 
cells are involved in metabolism of arginine and were not examined in this study, the analysis of blood plasma 
represents only a part of the L-arginine-NO metabolism in the whole blood6,7. Another limitation of this study is 
lack of age matched control group, however all patients were examined twice in acute and chronic phase. Finally, 
the study population is homogenous in terms of race and ethnicity, thus the data may not be reflective of other 
more heterogeneous populations.

In conclusion, our findings provide arguments that during acute ischemia in patients with STEMI, conversion 
of elevated plasma arginine concentration released from damaged cardiac myocytes is shifted from NOS towards 
arginase, despite the lack of enhanced suppressive potential of asymmetric dimethylarginine for NOS. Meas-
ured upon admission, arginine metabolites reflected myocardial and microvascular I/R injury. Simultaneously, 
decreased arginine concentrations during stable chronic phase were associated with worse long-term clinical 
outcomes. These findings of potentially clinical relevance may be useful in the development of cardioprotective 
therapy based on the arginine metabolism in STEMI patients.
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