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Introduction
Tissue structure, cellular behavior, and cell function are regu-
lated by homotypic and heterotypic intercellular interactions 
mediated by cell adhesion molecules (CAMs). Knowledge about 
CAM-mediated transmembrane signaling has medical implica-
tions because it will allow tailored design of therapeutic agents 
that can target specific CAMs. For a large number of CAMs, the 
molecular/biochemical properties are known in great detail, and 
crystal structures have been reported for many CAM ecto
domains (Xiong et al., 2001; Boggon et al., 2002; Tan et al., 2002; 
Soroka et al., 2003; Xiao et al., 2004; Fedarovich et al., 2006; 
Korotkova et al., 2008). However, with the exception of some 
integrins (Kim et al., 2003; Takagi et al., 2003; Xiao et al., 2004), 

this has not yet given satisfactory explanations for mechanisms 
of ectodomain-initiated signal generation. Signaling by single-
pass CAMs belonging to the immunoglobulin superfamily 
remains a mystery and requires additional information on the 
structural dynamics and supramolecular organization of native 
CAMs at the cell surface and how these properties are influ-
enced by homophilic and heterophilic CAM interactions. To 
achieve this goal, x-ray crystallography has to be complemented 
by other methods that give information on individual molecules 
in large populations.

Members of the carcinoembryonic antigen (CEA) fam-
ily, a subfamily within the immunoglobulin superfamily, play 
important roles in morphogenesis (Yokoyama et al., 2007), 

Cell adhesion molecules (CAMs) sense the extra-
cellular microenvironment and transmit signals to 
the intracellular compartment. In this investiga-

tion, we addressed the mechanism of signal generation 
by ectodomains of single-pass transmembrane homo-
philic CAMs. We analyzed the structure and homophilic 
interactions of carcinoembryonic antigen (CEA)–related 
CAM 1 (CEACAM1), which regulates cell proliferation, 
apoptosis, motility, morphogenesis, and microbial re-
sponses. Soluble and membrane-attached CEACAM1 
ectodomains were investigated by surface plasmon 
resonance–based biosensor analysis, molecular electron  
tomography, and chemical cross-linking. The CEACAM1 

ectodomain, which is composed of four glycosylated  
immunoglobulin-like (Ig) domains, is highly flexible and 
participates in both antiparallel (trans) and parallel (cis) 
homophilic binding. Membrane-attached CEACAM1 
ectodomains form microclusters in which all four Ig do-
mains participate. Trans-binding between the N-terminal 
Ig domains increases formation of CEACAM1 cis-dimers  
and changes CEACAM1 interactions within the micro
clusters. These data suggest that CEACAM1 transmembrane 
signaling is initiated by adhesion-regulated changes of  
cis-interactions that are transmitted to the inner phase of 
the plasma membrane.

The CEACAM1 N-terminal Ig domain mediates 
cis- and trans-binding and is essential for allosteric 
rearrangements of CEACAM1 microclusters
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for adhesion-triggered transmission of signals via reorganiza-
tion of the cis-assembly of the CEACAM1 ectodomains in the 
plasma membrane.

Results
Homophilic binding properties of 
CEACAM1 ectodomains characterized  
by SPR
The homophilic binding properties of CEACAM1 ectodo-
mains were analyzed by SPR-based flow cell biosensor analy
sis. D(1–4) and D(2–4) CEACAM1 ectodomain Fc fusion 
proteins were immobilized as ligands on a BIAcore chip, and 
both His-tagged (Fig. 1) and Fc fusion ectodomains (not de-
picted) were used as soluble analytes. The rat D(1–4) proteins 
bound specifically to immobilized rat D(1–4) (Fig. 1) but not 
to rat D(2–4) (not depicted). No explicit binding of the rat 
D(2–4) constructs was observed either to rat D(1–4) or rat 
D(2–4) ligands (unpublished data). Thus, the recordable homo
philic binding must be caused by D1–D1 interactions. The 
D(1–4) binding was characterized by rapid on and off rates 
in the presence of both EDTA and Ca/Mg, but the extent of 
binding was larger in Ca/Mg (Fig. 1). In addition, the divalent 
cations induced a more complex binding pattern, with a slower 
binding superimposed on the dominant rapid association/ 
dissociation, demonstrating that at least two different binding 
reactions occurred. The Ca/Mg effect was not influenced by 
the His tag because the same divalent cation dependence was 
seen when CEACAM1 Fc fusion proteins, which lack a His 
tag, were used as analytes (unpublished data).

The association/dissociation-binding profiles can be 
analyzed by a global curve-fitting procedure to get information 
about the underlying binding reactions and their association/
dissociation rate constants, provided that appropriate curve- 
fitting algorithms are used. Fitting to a simple 1:1 binding model 
(BIAevaluation 3.1) did not give satisfying results, which of 
course would not be expected for a situation in which the same 

vasculogenesis (Gu et al., 2009), angiogenesis (Horst et al., 
2006), cell proliferation (Scheffrahn et al., 2005), cell motility 
(Ebrahimnejad et al., 2004; Klaile et al., 2005; Müller et al.,  
2005), apoptosis (Kirshner et al., 2003; Singer et al., 2005), 
tumor growth (Leung et al., 2008), invasion (Ebrahimnejad et al., 
2004), infection, and inflammation (Gray-Owen and Blumberg, 
2006). The primordial molecule of the CEA family, CEA-
related CAM 1 (CEACAM1), is a single-pass transmembrane 
type I glycoprotein, which, like many immunoglobulin-like (Ig) 
CAMs, is expressed as differentially spliced isoforms (Singer 
and Lucka, 2005; Gray-Owen and Blumberg, 2006). The two 
major isoforms, CEACAM1-4L and CEACAM1-4S, which dif-
fer only in their cytoplasmic domains, have ectodomains com-
prised of four glycosylated Ig domains. CEACAM1-induced 
cell signaling is regulated by its intercellular homophilic bind-
ing at the cell surface (Gray-Owen and Blumberg, 2006), which 
is mediated by the N-terminal Ig domain (D1) in a reciprocal 
D1–D1 interaction (Wikström et al., 1996; Watt et al., 2001). 
However, the mechanism of this adhesion-initiated signaling is 
still unknown.

In this study, we have approached the first step of 
CEACAM1 transmembrane signaling by analysis of the dy-
namics and kinetics of the structure and homophilic inter
actions of the CEACAM1 ectodomain using a combination of 
surface plasmon resonance (SPR)–based binding analyses, 
molecular electron tomography, and chemical cross-linking. 
We found that the CEACAM1 ectodomain is highly flexible, 
participating in a limited set of structurally well-defined homo-
philic binding interactions that give rise to two different kinds 
of dimers as well as trimers and higher order oligomers. When 
the CEACAM1 ectodomain was associated with liposomal 
membranes, it became organized in multimeric microclusters 
with a narrow size distribution. Upon CEACAM1-mediated 
trans-homophilic membrane adhesion, the level of parallel 
CEACAM1 cis-dimers increased, and the average number of 
molecules per cluster decreased. Together, our data provide 
for the first time evidence for an allostery-based mechanism 

Figure 1.  SPR-based analysis of homophilic 
CEACAM1 ectodomain interactions. Sensor-
grams were recorded in a BIAcore 2000 in-
strument. Rat and human CEACAM1 D(1–4)-Fc 
proteins were immobilized at a level of 7,100 
response units (RU). (A and B) Five concentra-
tions of rat D(1–4)-His (0.36–1.79 g/l, corre-
sponding to 4.4–22.2 µM monomer) were 
analyzed in HBS/P20/3 mM EDTA (A) or 
HBS/P20/2 mM Ca2+/2 mM Mg2+ (B). The 
corrected responses (cRU) for binding to rat 
D(1–4)-Fc, obtained by subtracting the re-
sponse in the reference lane (human D(1–4)-
Fc), are shown as black data points. The results 
of global curve fitting to each of the three reac-
tion models (models 1–3; see Results, Materi-
als and methods, and Fig. S1) are shown as 
residual plots above the sensorgrams. The 
curve fittings shown in the sensorgrams are 
according to model 1 (A, purple curves) and 
model 3 (B, red curves).

http://www.jcb.org/cgi/content/full/jcb.200904149/DC1
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CEACAM1 D(1–4) ectodomain that was polydisperse as 
a result of varying degrees of glycosylation had an average 
molecular mass of 81 kD (Fig. S2), which corresponds to a 
volume of 580 voxels (1 voxel = 5.74 × 5.74 × 5.74 Å3).  
All CEACAM1 ectodomains should be found among particles 
having a volume >500 voxels. With this constraint, gray-level 
thresholding and SWS returned the same particles, correspond-
ing to CEACAM1 monomers and dimers (Fig. 2, A and B).  
In addition to these protein molecular particles, a large num-
ber of smaller background structures with volumes up to 500 
voxels were recorded by both approaches (Fig. 2, A and C). 
Similar amounts of particles of the same size distribution 
were seen in plain buffer specimens (Fig. 2 D). Because the 

reactions occur between both the analyte molecules in the solu-
ble bulk phase and between the soluble analyte and the immobi-
lized ligand. Therefore, we had to design novel algorithms based 
on a set of plausible homophilic binding reactions that reflect 
such a case. Three different reaction schemes were developed:  
(1) formation of one class of dimers by one homophilic binding 
site (model 1); (2) formation of two classes of dimers (types 
1 and 2) by two different homophilic binding sites (model 2); 
and (3) formation of two classes of dimers (types 1 and 2) and 
one class of trimers by two different homophilic binding sites 
(model 3). Formation of type 1 and type 2 dimers are character-
ized by a set of kinetic rate constants, ka1/kd1 and ka2/kd2, respec-
tively. Detailed reaction schemes and the derived equations are 
presented in Fig. S1 and Materials and methods. It should be 
emphasized that we apply a minimal number of parameters in 
these models and that the number of free-running parameters 
were the same in models 2 and 3.

In the presence of EDTA, all three models gave equally good 
curve fitting (Fig. 1 A) with no significant differences in the  
2 values calculated for all data points in the association and 
dissociation phases. Model 2 was the least plausible because 
it gave unacceptable large standard deviations for the rate con-
stants. Analysis according to model 3 gave acceptable standard 
deviations but indicated that the formation of type 2 dimers 
was almost insignificant. Thus, we conclude that in the pres-
ence of EDTA, essentially only the formation of type 1 dimers 
was recorded. Analysis according to model 1 gave the follow-
ing values of the binding constants in EDTA: ka1 = 0.0453 ±  
0.0036 µM1s1; kd1 = 0.5083 ± 0.0078 s1; and KD1 = 11.21 µM.

In the presence of Ca/Mg, model 3 (the trimer model) 
clearly gave the best fit to the experimental values with the 
lowest 2 (Fig. 1 B), which demonstrated that both type 1 and 
2 reactions were recorded under these conditions. Fitting ac-
cording to the trimer model gave the following values of the 
binding constants in Ca/Mg: ka1 = 0.0890 ± 0.0034 µM1s1; 
kd1 = 0.6806 ± 0.0074 s1; KD1 = 7.65 µM; ka2 = 0.0000598 ± 
0.0000033 µM1s1; kd2 = 0.01241 ± 0.00038 s1; and KD2 = 
208 µM. Thus, these results demonstrate that CEACAM1 
D(1–4) ectodomains participate in two different, simultaneously 
occurring homophilic binding reactions. From the kinetic 
rate constants, it could be determined that the equilibrium con-
centrations of type 1 dimers were significantly higher than those 
of type 2 dimers at all protein concentrations.

Structures of CEACAM1  
ectodomains determined by  
molecular electron tomography
The structures of soluble rat CEACAM1 ectodomains con-
taining all four Ig domains, D(1–4), or lacking the N-terminal 
Ig domain, D(2–4), were determined by molecular electron 
tomography of vitrified specimens. 3D images were recon-
structed by filtered backprojection and refined by constrained 
maximum entropy tomography (COMET), which allowed 
visualization of molecular details at a resolution of 20 Å. 
Particles were selected for structural analysis by two indepen-
dent procedures: (1) gray-level thresholding and (2) seeded wa-
tershed segmentation (SWS; Fig. 2, A and B). The recombinant 

Figure 2.  Particle identification in protein solution and plain buffer. 3D re-
constructions of electron micrographs of a 35.4-µM D(1–4) rat CEACAM1 
ectodomain solution and plain buffer were achieved by filtered back-
projection and COMET refinement. (A) Histogram displaying the volume dis-
tribution (given in voxels) of all structures in a reconstructed volume of 
D(1–4)-containing specimen identified by SWS (1 voxel = 5.74 × 5.74 × 
5.74 Å3). The threshold was 1,000 voxels for D(1–4) dimers and 500 vox-
els for monomers. All volumes <500 voxels were identified as background 
noise. All but no additional structures that were identified by SWS were 
also identified by gray-level thresholding. (B) Comparison of two mono-
mer and two dimer particles from the tomogram analyzed in A identified 
by SWS (top; surface rendered; volumes given in voxels) and gray-level 
thresholding (bottom; volume rendered). Bars, 5 nm. (C and D) Compari-
son of the CEACAM1 D(1–4)-His solution (C) and plain buffer (D), both 
scaled to the same intensity levels by gray-level thresholding. 30-pixel-deep 
slices (300 × 160 × 30; pixel size, 5.74 Å) of the total reconstructed vol-
umes are shown. Bars, 50 nm.

http://www.jcb.org/cgi/content/full/jcb.200904149/DC1
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yet allow recognition of the contacting interfaces even at 20-Å 
resolution, which gives an idea of the structural details that, at 
best, would be seen in glycosylated CEACAM1 dimers/oligomers 
by electron tomography.

Individual Ig domains were resolved in many of the  
tomographically determined CEACAM1 ectodomains (Fig. 4 
and Video 1). Because the rat CEACAM1 D1 domain is larger 
and has more glycosylation sites (105 amino acids and three 
N-glycosylation sites) than the D4 domain (67 amino acids and 
two N-glycosylation sites; Edlund et al., 1993), it might be possible 
to distinguish the two ends in individual molecules. To test this 
possibility, 20 different, extended monomeric D(1–4) domains 
were divided into four equally long segments, and the mean of 
the two diameters of the ellipsoidal center cross sections of each 
segment was recorded. This showed that one end had a signifi-
cantly larger mean diameter than the other end in all molecules. 
Setting the mean of the larger end mean diameters to 1 gave a 
mean of the smaller end mean diameters of 0.81 ± 0.09 (P = 4 × 
1011). Similar analysis of D(2–4), which was divided into three 
segments, showed no significant difference in the size of the two 
end domains, the smaller having a relative size of 0.96 ± 0.05 
(P = 0.09; D2 has 74 amino acids and six N-glycosylation sites). 
This indicates that the D1 and D4 ends can be discriminated in a 
large proportion of the recorded molecules.

A striking feature was the structural variability of the 
ectodomains, which was caused by a large flexibility between 
the covalently linked Ig domains. Many shapes were observed, 
including extended (Fig. 4, A and B), kinked (Fig. 4 C), and 
completely back-folded molecules (Fig. 4 D). All molecules in 
several reconstructed volumes were analyzed, which allowed 
quantification of the different shape categories (Fig. 4 L). In 
both Ca/Mg and EDTA environments, monomeric D(1–4) was 

buffer controls showed no particles of or above the size of 
CEACAM1 ectodomains, all CEACAM1 molecules could un-
ambiguously be identified and analyzed.

To demonstrate which molecular details that ideally 
would be observed at a resolution of 20 Å, we show published 
crystallographic structures of mouse CEACAM1 (Tan et al., 
2002), human CEACAM1 (Fedarovich et al., 2006), and human 
CEACAM5 (Fig. 3, A–C; Korotkova et al., 2008). The D1 do-
mains of CEACAM1 and CEACAM5 are very similar both in 
their primary and 3D structures (Watt et al., 2001). All struc-
tures are shown both at atomic resolution (space-filling mod-
els), and at 20-Å resolution (nuclear scattering models). The 
two tandem domains of mouse CEACAM1 (Fig. 3 A) can easily 
be distinguished at 20-Å resolution. However, it should be noted 
that the displayed crystallographic structures represent non
glycosylated protein domains, whereas the molecular tomography 
of rat CEACAM1 in this study was made on highly glycosyl-
ated proteins. The tomographic structures are therefore expected 
to be somewhat larger and not as well resolved. Ig domains have 
two faces consisting of closely opposed sheets of  strands, 
CFG, and ABED faces (Fig. 3 D). Fig. 3 B shows two unglyco-
sylated CEACAM5 D1 domains in close contact at their CFG 
faces. It is believed that this represents a physiological interac-
tion because mutagenesis experiments have demonstrated that 
amino acid residues at the CFG surface are involved in homo-
philic adhesion (Watt et al., 2001). Fig. 3 C shows two unglyco-
sylated CEACAM1 D1 domains that are in contact via their 
ABED faces. However, it has been argued that this does not 
represent a physiological interaction because the ABED surface 
is highly hydrophobic and is believed to be covered by an oligo-
saccharide attached to Asn70 (Tan et al., 2002; Fedarovich  
et al., 2006). Both of the structures (Fig. 3, B and C) are compact 

Figure 3.  Different presentations of CEACAM 
crystal structures. (A–C) Published CEACAM 
PDB data files are presented as ribbon models 
(top), space-filling models with atomic resolu-
tion (middle), and nuclear scattering models 
at a 20-Å resolution (bottom). The right image 
of each structure is rotated 90° around the  
x axis with respect to the corresponding left 
image. (A) Ectodomain of a mouse CEACAM1 
isoform with the D1 domain (top right) fused 
to the D4 domain (bottom left; PDB accession 
no. 1L6Z). (B) Two D1 domains of human  
CEACAM5 (PDB accession no. 2QSQ) in the 
asymmetric unit (asym unit) in contact via their 
C’’C’CFG faces. (C) Two D1 domains of human 
CEACAM1 (PDB accession no. 2GK2) in the 
asymmetric unit in contact via their ABED 
faces. Bars, 2.5 nm. (D) Ribbon model of the 
human CEACAM1 D1 domain shown at three 
different angles to visualize the C’’C’CFG and 
the ABED  sheets.

http://www.jcb.org/cgi/content/full/jcb.200904149/DC1
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to as C-dimers because their structure and shape can easily 
account for antiparallel intermembrane adhesion, which is 
mediated by mutual D1–D1 binding between the CFG -sheet 
faces (Fig. 3 B; Watt et al., 2001). Another type of D(1–4) di-
mers, referred to as A-dimers, was characterized by in-register,  
close binding between three or all four of the Ig domains (Fig. 4, F  
and G). Because the liposome adhesion experiments (see  

the dominant species (45.2% and 56.1% of the molecules,  
respectively). In addition to the monomers, several complexes of 
homophilically bound D(1–4) ectodomains occurred, as judged 
both from the shapes and dimensions/volumes of the recorded 
particles. The most common complex type was fully or partly 
extended dimers held together only by reciprocal binding be-
tween the largest end domains (Fig. 4 E). They were referred 

Figure 4.  Molecular tomography of CEACAM1 D(1–4)-His and D(2–4)-His ectodomains. Segmentation was performed by gray-level thresholding.  
(A–K) Molecules are shown unaltered, color coded, and displayed together with schematic models (individual Ig domains are numbered when unambigu-
ously identified). (A–D) Monomeric D(1–4)-His adopting an extended (A and B), kinked (C), or back-folded (D) form. (E) D(1–4)-His dimer interacting 
exclusively via the D1 domains (C-dimer). (F and G) D(1–4)-His dimers interacting via three (F) or four (G) of their Ig domains (A-dimers). (H) D(1–4)-His 
trimer consisting of a monomer (green) binding via its D1 domain to an A-dimer (red/blue). Molecules displayed in A–H are presented in 3D in Video 1.  
(I and J) D(2–4)-His monomers adopting an extended (I) or kinked (J) form. (K) D(2–4)-His parallel dimer. (L) All ectodomains in several reconstructed 
volumes containing D(1–4)-His in the presence of Ca/Mg (12 vol; 1,091 molecules) or EDTA (14 vol; 888 molecules) and D(2–4)-His in the presence of 
Ca/Mg (5 vol; 211 molecules) were analyzed. The ectodomains were classified as extended monomers (mono e), kinked plus back-folded monomers 
(mono k+bf), C-dimers (di C), A-dimers (di A), and trimers (tri). The differences in each ectodomain class compared with D(1–4) (Ca/Mg) populations were 
analyzed by two-proportion z test. P-values are shown above the histogram bars. Bars, 5 nm.

http://www.jcb.org/cgi/content/full/jcb.200904149/DC1
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and EDTA, respectively. This shows that both types of dimers 
can form in the presence and absence of divalent cations, but 
that both dimerization reactions were enhanced by the divalent 
cations, which agrees with the SPR data. Furthermore, the 
homophilic binding affinity leading to C-dimer formation was 
significantly higher than that for A-dimer formation. This sug-
gests that the C-dimers and A-dimers correspond to the type 1 
and type 2 dimers recorded in the SPR-binding experiments, 
respectively, because the equilibrium concentrations of type 1 
dimers were significantly higher than those of type 2 dimers.

The equilibrium-binding constants obtained by SPR and 
molecular tomography were in very good agreement. In fact, 
the values were surprisingly similar given the vastly different 
principles that the two methods are based on. This strongly 
supports the interpretations of the structures observed by mo-
lecular tomography.

Adhesion mediated by liposome-anchored 
CEACAM1
To gain further insights into the mechanism of CEACAM1- 
mediated adhesion, we investigated His-tagged rat CEACAM1 
ectodomains anchored to nickel–nitrilotriacetic acid (Ni-NTA) 
liposomes. D(1–4), but not D(2–4), induced adhesion between 
liposome vesicles, as demonstrated both by turbidity measure-
ments (Fig. 5 A) and 2D electron microscopy (Fig. 5 B). The in-
ability of D(2–4) to mediate adhesion confirms previously 
published data (Wikström et al., 1996) that domain D1 mediates 
trans-homophilic binding and that antiparallel binding involv-
ing domains D2, D3, and D4 does not occur. The rate and extent 
of D(1–4)-mediated liposome aggregation increased with in-
creasing protein/liposome ratio (Fig. 5 A). Electron tomography 
revealed the presence of CEACAM1 ectodomains both on free-
liposome surfaces and in contact areas between adjacent vesicles 
(Fig. 6). D(1–4) ectodomains on free-liposome surfaces occurred 
as a mixture of monomers, dimers, and clusters containing 3–12 

Fig. 5) showed that domains D2 and D3 do not bind to each 
other in an antiparallel manner, the D(1–4) ectodomains should 
be oriented in a parallel manner in these dimers. In addition, 
a small fraction of CEACAM1 trimers occurred. In all of the 
trimers, two of the ectodomains were closely associated in a 
parallel manner (representing A-dimers), whereas the third 
molecule was bound via its larger Ig domain to one of the larger 
end domains of the parallel A-dimer (Fig. 4 H). Because the 
BIAcore experiments showed no D1–D4- or D4–D4-binding  
interactions, the binding domain in the parallel dimer must 
be one of the D1 domains. Thus, the structure of this trimeric 
assembly demonstrates in agreement with the SPR data that 
two different sites of the D1 domain can participate simultane-
ously in homophilic binding.

More than 90% of the truncated D(2–4) ectodomains ap-
peared as extended (Fig. 4 I) or more condensed, kinked mono-
mers (Fig. 4 J). Some dimers occurred (Fig. 4 K) but no trimers. 
In all observed dimers, the two ectodomains were oriented in 
a parallel manner, suggesting that they corresponded to the  
A-dimers formed by D(1–4) (Fig. 4 G). The lack of trimers 
gives further support to the notion that the trimeric structures 
occurring in the D(1–4) specimens were formed by reciprocal 
D1-binding interactions. Collectively, these results demonstrate 
that all four Ig domains can participate in parallel, in-register 
cis-dimerization, whereas antiparallel trans-binding is mediated 
by the D1 domain alone.

Because the input concentration of the CEACAM1  
D(1–4) ectodomain was known, the molar concentrations of 
monomers, C-dimers, A-dimers, and trimers could be calculated 
from their relative abundance (Fig. 4 L). Accordingly, it was 
possible to determine the equilibrium dissociation constants for 
C- and A-dimer formation by applying the law of mass action. 
The KD for the monomer/C-dimer binding was 43.8 µM and 
72.1 µM in Ca/Mg and EDTA, respectively. The KD for the 
monomer/A-dimer binding was 113 µM and 260 µM in Ca/Mg 

Figure 5.  Liposome aggregation mediated by CEACAM1. 
(A) Aggregation of D(1–4) and D(2–4) proteoliposomes 
with protein/lipid ratios varying from 1:10 to 1:90 (wt/wt) 
measured as turbidity at 595 nm at various times after pro-
tein addition. (B) 2D electron microscopic images of naked 
liposomes, D(1–4) proteoliposomes, and D(2–4) proteo
liposomes (protein/lipid ratio 1:5). The small black dots  
indicate 10-nm colloidal gold particles. Bars, 100 nm.
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Figure 6.  Molecular tomography of CEACAM1 ectodomains attached to liposomes. Segmentation was performed by gray-level thresholding.  
(A) Tomogram of D(1–4)-His–decorated liposomes. The z direction is parallel to the electron beam. (B and C) Free surfaces of D(1–4)-His– 
decorated (B) and D(2–4)-His–decorated (C) liposomes. (D and E) Monomeric bridges (C-dimers) connecting two liposomes (L1 and L2) 
are shown at two angles. In the colored panels, D1–D1 contact zones are indicated by a black dotted line, and individual Ig domains are num-
bered 1–4. Arrowheads point to bridge positions, and arrows point to the binding areas. (F and G) Multimeric bridges connecting two liposomes 
(L1 and L2) are shown. The bridge in F is composed of seven molecules anchored to L1 (orange) and L2 (green). (G) Two bridging clusters of 6 
and 10 molecules. (H and I) D(1–4) (n = 130) and D(2–4) (n = 163) monomers/clusters on free-liposome surfaces and D(1–4) monomers/clusters  
(n = 63) bridging two membranes were analyzed and classified according to size. The differences in each cluster class compared with D(1–4) (free) popula-
tions were analyzed by a two-proportion z test. P-values are shown above the histogram bars. Arrows indicate bridge positions. The overviews in B and C 
and the bridges in E and F are presented in 3D in Videos 2 and 3, respectively. (D–F) Liposome surfaces are indicated by white dashed lines.

http://www.jcb.org/cgi/content/full/jcb.200904149/DC1
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molecules (Fig. 6 B and Video 2); 90% of the molecules oc-
curred in dimers and clusters (Fig. 6, H and I). In monomers and 
dimers, inter–Ig domain flexibility was still visible (Fig. 6 B and 
Video 2). Because of the dense molecular packing, it was not 
possible to resolve individual ectodomains in the larger clusters, 
but the number of ectodomains within each cluster could be de-
termined from its volume. The D(2–4) ectodomains clustered to 
almost the same extent as D(1–4) (Fig. 6 C and Video 2); 85% 
of the molecules occurred in dimers and clusters (Fig. 6, H and I). 
However, smaller cluster sizes including up to four molecules 
were favored. Quantitative analysis of the cluster distribu-
tion in the solution and membrane-anchored states showed 
that membrane attachment altered the monomer/oligomer 
equilibrium and drove both D(1–4) and D(2–4) ectodomains 
from monomers into dimers and oligomers (compare Fig. 4 L 
with Fig. 6 I).

CEACAM1 D(1–4) bridges were identified in the contact 
areas between adjacent, adhering liposomes (Fig. 6, D–G).  
34 different contact areas having a total of 63 bridges were ana-
lyzed. The number of bridges per contact area varied from one 
to five. The bridges occurred both as single antiparallel dimers 
formed from monomers attached to the respective membranes 
(Fig. 6, D and E; and Video 3) and as clusters containing several 
D(1–4) ectodomains (Fig. 6, F and G; and Video 3). Highly 
organized zipper-like structures were not observed. In some 
monomeric bridges, the individual Ig domains were resolved, and 
the ectodomains were kinked to variable degrees, demonstrat-
ing that the inherent inter–Ig domain flexibility persisted  
(Fig. 6, D and E; and Video 3). In many bridges, a large part of 
the individual ectodomains was oriented parallel to the lipid 
membrane (Fig. 6 D). However, in the cluster bridges, it was not 
possible to unambiguously distinguish individual molecules as 
a result of the dense packing.

Determination of the cluster volume distribution showed 
that the bridge clusters were on average significantly smaller than 
the free-surface clusters and contained at most six molecules 

Figure 7.  Cross-linking of CEACAM1 D(1–4)-
His and D(2–4)-His. (A and C) Purified D(1–4)-
His (A) or D(2–4)-His (C) were cross-linked with 
BS3 in the presence or absence of 2.5 mM  
Ca2+, 2.5 mM Mg2+, 3 mM EDTA, and  
Ni-NTA liposomes at a high protein/lipid ratio  
(hp; 1:10 [wt/wt]) or a low protein/lipid ratio 
(lp; 1:90 [wt/wt]) in various combinations. 
The samples were analyzed by Western blotting 
for CEACAM1 monomers/dimers/multimers. 
The black line indicates that intervening lanes 
have been spliced out. (B) Quantification of 
D(1–4)-His dimers and higher order multimers. 
(D) Quantification of D(2–4)-His dimers. Data 
show mean ± standard deviation of three inde-
pendent experiments. Statistical analyses (t test) 
were made with reference to cross-linked pro-
tein with no extra additions (Untr.). Significant 
p-values ( level 0.05) are shown above the 
histogram bars.

anchored to a single membrane, whereas the largest of the 
free-surface clusters had up to 12 membrane-anchored mole-
cules (Fig. 6 I). The lower bridge size groups, containing 1–4 
molecules per membrane, dominated (Fig. 6, H and I). Collec-
tively, this suggests that the CEACAM1 molecules were re-
arranged when adhesive bridges between adjacent membranes 
were formed.

Cross-linking of free and liposome-bound 
CEACAM1 ectodomains
To learn more about the homophilic binding interactions of the 
rat CEACAM1 ectodomains and possible adhesion-induced 
intracluster reorganization, we performed chemical cross- 
linking of D(1–4) and D(2–4) with BS3 (bis[sulfosuccinimidyl] 
suberate), which has a length of 11.4 Å between the amine- 
reactive groups. Cross-linking of D(1–4) in solution resulted 
in stabilization of dimers, trimers, tetramers, and higher mul-
timers (Fig. 7, A and B). Addition of Ca/Mg ions or EGTA did 
not significantly change the proportion of the different cross-
linked species, but EDTA decreased the abundance of cross-
linked trimers/tetramers/multimers. Cross-linking of D(2–4) 
also resulted in stabilization of dimers, but the percentage of 
dimers was fourfold lower than for D(1–4) (Fig. 7, C and D). 
Oligomer species higher than dimers were not observed, and 
Ca/Mg or EDTA did not influence the level of dimerization.

Cross-linking of liposome-associated CEACAM1 ecto
domains at high D(1–4)/liposome ratio (protein/lipid [wt/wt] 
1:10) revealed a significant increase in the level of dimers and 
a decrease of higher order oligomers that was not statistically 
significant (P = 0.123; Fig. 7, A and B). At low D(1–4)/liposome 
ratio (protein/lipid [wt/wt] 1:90), the level of the D(1–4)  
dimers was similar to that of nonliposome-bound CEACAM1, 
whereas the higher oligomers disappeared almost completely 
(Fig. 7, A and B). The amount of cross-linkable D(2–4) di-
mers was not changed by liposome anchoring either in the 
presence or absence of Ca/Mg (Fig. 7, C and D). These  

http://www.jcb.org/cgi/content/full/jcb.200904149/DC1
http://www.jcb.org/cgi/content/full/jcb.200904149/DC1
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the proportion of A-dimers in the tomograms would mean that 
some of the parallel dimers that we classified as A-dimers were 
in fact C-dimers in which the physical binding only was medi-
ated by domain D1. Underestimation of A-dimer formation in 
the SPR-binding experiments could be caused by homophilic 
interactions between the immobilized CEACAM1 ectodomains 
that we could not account for in our SPR-binding algorithms. 
Another contributing factor might be that the formation of  
A-dimers, which we treated as one single reaction, is in reality 
composed of four cooperative reactions in which all of the four 
Ig domains participate.

The most surprising result was the extent of flexibility 
of the CEACAM1 ectodomain, which is not in agreement 
with predictions from x-ray crystallography of murine 
CEACAM1 (Tan et al., 2002) or x-ray and neutron scattering 
of human CEACAM5 (Boehm et al., 1996). This demon-
strates that molecular electron tomography has some advan-
tages in characterization of gross conformations of single 
native molecules under physiological conditions. CEACAM1 
anchored to liposomal membranes also appeared as flexible 
monomers and dimers, but the majority occurred in micro
clusters of closely packed molecules. Such clustering is  
expected, as predicted by Grasberger et al. (1986), who 
demonstrated that the likelihood of forming dimers and higher 
oligomers increases many orders of magnitude when dimer-
izing proteins are oriented on membrane surfaces. The degree 
of clustering did not change significantly when the CEACAM1 
ectodomain to lipid ratio was varied over a 90-fold range, 
which demonstrates that the clustering effect caused by orien-
tation on a surface was much stronger than what would be ex-
pected from just increased protein concentration in liquid 
solution. In many of the clusters, it was not possible to distin-
guish the individual molecules or Ig domains. This is what is 
expected at a 20-Å resolution of closely packed molecules, 
but it should be emphasized that the cluster structures really 
reflect what assembled molecules look like at this level of 
resolution. However, in spite of this limitation, it was possible 
to calculate the approximate number of molecules within 
each cluster from determination of the cluster volumes.

Tomography showed that CEACAM1-induced liposome 
adhesion was mediated by reciprocal binding between D1 do-
mains presented both by single molecules and by small clus-
ters of CEACAM1. The bridging clusters were both smaller 
and had different molecular packing compared with the free-
surface clusters, and the cross-linking results indicated that 
this was a result of formation of D1-mediated antiparallel ad-
hesion. An important piece of information for the interpreta-
tion of the cross-linking data is that we could show that 
antiparallel C-dimers mediating cell–cell adhesion are not sta-
bilized by amine-reactive cross-linkers (see Müller et al. on  
p. 569 of this issue). Thus, the cross-linked dimers should 
exclusively represent parallel A-dimers. Also, the truncated 
D(2–4) ectodomains gave rise to a small proportion of cross-
linked dimers, although the weaker interaction mediated by 
D(2–4) was not picked up by the SPR analysis. However, the 
A-dimerization contributed by Ig domain D1 can also be sta-
bilized by cross-linking because the proportion of stabilized 

results demonstrate that the more complex oligomerization 
of D(1–4) is a function of the interactions of the D1 do-
main and suggest that the adhesion-promoting property of 
CEACAM1 is an important regulator of the organization and 
intermolecular interactions of CEACAM1 within the membrane-
bound clusters.

Discussion
In this study, we show that CEACAM1 behaves as a molecu
lar system characterized by dynamic homophilic binding  
interactions. Three different methods, SPR-binding analysis,  
molecular tomography, and chemical cross-linking, consis-
tently demonstrated that CEACAM1 ectodomains occur as 
a mixture of monomers, dimers, and oligomers. The tomo-
graphic analyses showed that the CEACAM1 ectodomain is 
flexible, being able to adopt several different conformations 
as a result of hinge regions between all of the Ig domains. 
Antiparallel trans-dimers (C-dimers) and parallel cis-dimers  
(A-dimers) could be distinguished. Also, the SPR-binding analyses 
identified the C- and A-dimerization reactions and demonstrated 
a rapid transition between monomers and C-dimers. The  
N-terminal D1 domain participated both in C- and A-dimerization,  
whereas domains D2–D4 were involved only in A-dimerization. 
All three methods revealed a partial dependence of divalent 
cations, which favored decreased ectodomain flexibility and 
enhanced formation of multimeric complexes. Because both 
dimerization reactions were enhanced, extracellular Ca/Mg 
should contribute to formation of CEACAM1-mediated  
cell adhesion.

Although homophilically binding proteins have been ana-
lyzed by flow cell biosensor techniques (Korotkova et al., 2008), 
it has previously not been possible to analyze the kinetics of 
such a system because no algorithms have existed that can deal 
with a situation in which the same binding interactions take 
place both within the mobile phase and between the mobile and 
solid phases. However, the novel curve-fitting algorithms that 
we present in this study allowed us to identify two different re-
actions that resulted in the formation of two types of dimers and 
one type of trimer in the presence of divalent cations. The equi-
librium dissociation constants that were obtained from the curve 
fitting were in good agreement with the equilibrium dissocia-
tion constants determined from the tomography data. Both 
methods gave constants that were of the same order of magni-
tude for either type of dimerization reaction and showed the 
same dependence on divalent cations. These findings strongly 
support the interpretations of both the SPR-binding analyses 
and the molecular electron tomography.

A closer analysis of the data showed that the tomography 
gave a 1.7-fold higher degree of monomers and a 0.7-fold lower 
degree of total dimers than the SPR-binding experiments in the 
presence of Ca/Mg. In addition, the differences in the equilib-
rium constants and the proportion of C- and A-dimers obtained 
by the two methods suggest that the proportion of A-dimers 
might have been overestimated in the tomography experiments 
and/or that the formation of A-dimers might have been under-
estimated in the SPR-binding determinations. Overestimation of 
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participate in dimer formation in Ig domains (Edmundson 
et al., 1975). However, a simultaneous interaction of two areas 
in the same Ig domain has, to our knowledge, only previously 
been suggested for the adhesion molecules JAM-1 (Kostrewa 
et al., 2001), NCAM (Soroka et al., 2003), and TAG-1 (Mörtl 
et al., 2007). The binding site in the CEACAM1 D1 domain 
that mediates trans-homophilic binding, and presumably oper-
ates in C-dimer formation, has been localized to the CFG face 
by site-directed mutagenesis (Watt et al., 2001). The exact  
location of the other binding site in relation to the CFG face is 
unknown and could not be determined from the electron tomo-
grams. Although crystallographic structures showing domains 
in close contact do not necessarily reflect a biologically relevant 
association, the finding of two unglycosylated CEACAM1 D1 
domains in the asymmetric crystal unit that interact hydrophobi-
cally across the ABED faces (Fig. 3 C; Fedarovich et al., 2006) 
might indicate that this could represent the second binding site. 
However, in the crystal structure of mouse CEACAM1, this 
surface was covered by the oligosaccharide N linked to Asn-70 
(Tan et al., 2002), and therefore, it has been argued that the 
ABED surface of CEACAM N-terminal domains cannot par-
ticipate in physiological homophilic binding (Fedarovich et al., 
2006). However, such a scenario should not be completely ruled 
out because oligosaccharides are flexible units, and it might be  
possible that the ABED surface would transiently and dynami-
cally be exposed for participation in protein–protein inter
actions. Because CEACAM1 is variably glycosylated in different 
cell types and tissues (Odin et al., 1988; Singer et al., 2002), 
glycosylation might even represent a mechanism to control its 
putative potential to form A-dimers.

An important feature of N-terminal D1 domains in the 
CEACAM family is that they, in contrast to other Ig domains, 
lack intradomain disulfide bridges (Watt et al., 2001). This 
might be a prerequisite for the allosterically regulated homo-
philic binding interactions that we propose play an important 
role in CEACAM1 adhesion–induced transmembrane signal-
ing. A similar lack of disulfides occurs in the N-terminal Ig  
domain of CD2, which also has been demonstrated to change 
conformation upon adhesion (Li et al., 1996). Interestingly, the 
N-terminal domain of CD2 has been shown to be in a metastable 
state, which can result in exchange of  strands between the  
domains in a CD2-dimer, resulting in a dimeric structure in which 
each domain is formed by the intercalation of two polypeptide 

D(1–4) dimers was significantly larger than that of D(2–4)  
under all conditions. Importantly, these findings show that the 
D1 domain can participate in mutual cis-binding in addition to 
trans-binding, demonstrating that it has two different homo-
philic binding sites, which is in agreement with the interpreta-
tion of the trimers identified by electron tomography. The 
cross-linked multimers formed by the D(1–4) ectodomains are 
clearly caused by the presence of domain D1 because no com-
plexes larger than dimers were formed by D(2–4) under any 
conditions. These multimers most likely form because of the 
flexibility of the ectodomains, which allows combinations of 
parallel, A-type interactions between Ig domains belonging to 
several D(1–4) ectodomains (Fig. 8).

The multimers that were formed by D(1–4) in solution 
disappeared when the protein was attached to liposomes at a 
low protein/liposome ratio. This can be explained by a dilution 
of the ectodomains on the membrane surface, which will result 
in persistence only of the most stable dimer forms in which all 
four Ig domains are in register with each other. At a higher 
protein/liposome ratio, a significant increase in the amount of 
cross-linked D(1–4) A-dimers occurred. This was caused by the 
presence of domain D1 in the CEACAM1 ectodomain but was 
not a result of increased local concentration of membrane- 
attached protein because a corresponding increase of cross-
linked D(2–4) A-dimers did not occur. Instead, the enhanced 
A-dimer formation was most likely a function of D1-mediated, 
antiparallel (trans) C-dimerization because it only occurred at 
the higher protein/liposome ratio, which resulted in more effi-
cient homophilic liposome adhesion. It was not simply a result 
of increased local concentration of CEACAM1 ectodomains in 
the membrane contact regions because the statistical analysis 
showed that the CEACAM1 clusters were at the same time re
arranged to become significantly smaller. Rather, it suggests that 
formation of trans–C-dimers between liposomal membranes 
induced cis–A-dimer formation by an allosteric mechanism 
transmitted by Ig domain D1, which is in agreement with the 
tomographic results that showed an increased abundance of di-
meric clusters in the liposomal bridges.

The present data highlight the central role of the  
N-terminal D1 Ig domain in the functional activity of CEACAM1. 
A crucial finding was that two different sites in the D1 domain 
could participate simultaneously in homophilic binding. It 
is well established that either the CFG or the ABED face can 

Figure 8.  A model for adhesion-induced 
signal generation by CEACAM1. (A and B) 
CEACAM1 molecules on free-membrane sur-
faces are organized as a mixture of monomers 
(A, left), parallel A-dimers (not depicted), and 
multimers (B, right). Upon adhesion-mediating, 
trans-homophilic antiparallel C-dimerization, 
the N-terminal D1 domains undergo confor-
mational changes, which induce formation of 
parallel cis–A-dimers by an allosteric mecha-
nism. The formation of ectodomain A-dimers 
is transduced by the transmembrane domains 
to the cytoplasmic domains, bringing them 
together in a specific configuration, thereby  
altering their binding interactions with intra
cellular signal molecules.
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HP; GE Healthcare) and size-exclusion chromatography (Superdex 200; GE 
Healthcare). Protein purity was determined by SDS-PAGE and Coomassie 
staining (Fig. S2).

SPR
Binding experiments were performed with a BIAcore 2000 instrument 
(GE Healthcare). Rat and human CEACAM1 D(1–4)-Fc and rat 
CEACAM1 D(2–4)-Fc were immobilized on a CM5 sensor chip by 
amine coupling at pH 4.0. All interaction analyses were performed at 
25°C at a flow rate of 20 µl/min in 0.15 M NaCl, 10 mM Hepes 
(Hepes-buffered saline [HBS]), pH 7.4, and 0.005% P20 detergent sup-
plemented with either 2 mM CaCl2/2 mM MgCl2 or 3 mM EDTA. His-
tagged rat CEACAM1 ectodomains were injected for 3 min followed by 
buffer injection for 5 min. After each binding cycle, the chip surface was 
regenerated with two cycles of 4 M LiCl/HBS and one cycle of 0.25% 
P20/HBS. Corrected binding profiles (sensorgrams) for rat CEACAM1 
ectodomains were obtained by subtracting the response in the reference 
lane (human CEACAM1-Fc) from the response in the binding lane (rat 
CEACAM1-Fc). Data modification including scale transformation and 
background subtraction was performed with the BIAevaluation program 
(version 3.1). Algorithms for global curve fitting to the different reaction 
models were written in IGOR Pro (version 6.0; WaveMetrics, Inc.). The 
basic equations and parameters used for mass transport calculations 
were described previously (Sigmundsson et al., 2002). Detailed descrip-
tions of the reaction models and the equations underlying the curve  
fit algorithms are provided in Fig. S1 and the following paragraph.  
A molecular mass of 81 kD and a frictional ratio (f/f0) of 1.256 were used 
for D(1–4)-His. Varying the frictional ratio between 1.256 and 1.43  
did not result in any significant differences of the association/dissocia-
tion constants.

Solutions for analysis of homophilic binding reactions  
in a flow cell biosensor
To analyze the SPR-based recordings of the CEACAM1 homophilic 
interactions, three different reaction schemes (Fig. S1) were developed: 
(1) Formation of one class of dimers by one homophilic binding site,  
(2) formation of two classes of dimers (types 1 and 2) by two different 
homophilic binding sites, and (3) formation of two classes of dimers 
(types 1 and 2) and one class of trimers by two different homophilic 
binding sites. Formation of type 1 and type 2 dimers (A2a and A2b) are 
defined by two sets of kinetic rate constants, ka1/kd1 and ka2/kd2, respec-
tively. All three models take into consideration that the same reactions 
occur in solution between the analyte molecules as between the analyte 
and the immobilized ligand. The models assume a mass transport– 
limited process based on the two compartment model (Myszka et al., 
1997) with mass transport coefficients, kcx, given in units of centimeter/
second (where the subscript x = 1, 2, or 3 indicates a monomer, dimer, 
or trimer, respectively), and the critical height of the reaction volume, h 
(given in centimeters), is calculated as previously described (Sigmundsson 
et al., 2002).

In all three models, the bulk analyte is referred to as ATotal (given in 
grams/liter). The different forms of the analyte, i.e., monomer, dimer, and tri-
mer, are referred to as [A], [A2], and [A3], respectively (given in micromoles/
liter). To ease the reading of the coupled differential equations applied for 
numerical integration (Eqs. 1.3–1.5, 2.3–2.8, and 3.6–3.15), the brackets 
have been dropped, and [A], [A2], and [A3] are provided as A, A2, and A3, 
respectively. Bulk concentrations of these forms are indicated with the super-
script B, and unlabeled forms represent surface concentrations. Association 
rate constants (ka) are given in liters/(micromoles × seconds). Dissociation 
rate constants (kd) are given in the unit of seconds1. Under the experimental 
conditions (referring to a BIAcore instrument), the analyte bulk concentration 
is kept constant by a continuous injection at a constant flow rate. Thus, in 
our models, the bulk analyte forms (i.e., monomer, dimers, and trimers) are 
assumed to be in equilibrium.

During sample injection, the amount of unoccupied ligand, i.e., [L], 
decreases with time until equilibrium is reached. Thus, the concentration of 
free-ligand sites, [L], at a particular moment, is given by [L] = [L0]  [AL], 
where [L0] is the total amount of accessible surface-immobilized ligand (i.e., 
available binding sites) at time 0, and [AL] is the amount of complex formed 
at time t of analyte injection. The response signal, R, measured by the SPR-
based sensor, is proportional to the amount of complex formed at the detector 
surface multiplied by the factor MWG, i.e., R = MWG[AL], where MW is the 
molecular mass of the analyte, and G is a factor converting the concentration 
to R values (G = 10,000 R cm2/g of protein; Stenberg et al., 1991). This  
allows for the rate equations to be expressed in R units. Rmax is defined as the 
theoretical maximum-binding response at surface saturation. All three models 

chains (Murray et al., 1995). If this would also occur in the 
CEACAM1 N-terminal domains, it might be the basis for the 
allostery that they transmit.

Allostery has been demonstrated to occur in other CAMs 
such as selectins (Springer, 2009; Waldron and Springer, 2009) 
and integrins (Xiao et al., 2004). Integrin allostery, which is im-
portant for bidirectional transmembrane signaling, is transmit-
ted through the extracellular heterodimeric domains and is 
coupled to alteration of the intermolecular distance between the 
cytoplasmic domains of the  and  chains (Kim et al., 2003; 
Xiao et al., 2004). Because of the heterodimeric nature of inte
grins, the allostery can operate at the single molecule level. This 
is in contrast to the single chain molecule CEACAM1, for 
which the proposed allosteric changes instead cause alterations 
of the dimer/oligomer assembly.

Adhesion-induced, altered lateral organization of 
CEACAM1 in the adhesion bridges, manifested as increased 
parallel dimer formation and smaller clusters, has important 
implications for the transmembrane signaling by CEACAM1 
and suggests a mechanism for how homophilic CEACAM1- 
mediated cell–cell adhesion can influence intracellular sig-
naling. The altered organization of the ectodomains would 
be transmitted via the transmembrane domains, resulting in a 
corresponding alteration of the intermolecular organization of 
the cytoplasmic domains (Fig. 8). This might in turn influence 
binding/activation of SH2 domain–carrying enzymes, such 
as c-Src, SHP-1, and SHP-2, to the tyrosine-phosphorylated 
cytoplasmic domains of CEACAM1-L, causing a shift in the 
balance of kinase/phosphatase activation. In the accompany-
ing paper (Müller et al., 2009), we demonstrate that such a 
mechanism involving adhesion-influenced dynamic changes 
of CEACAM1 microcluster organization indeed exists in epi-
thelial cells.

Materials and methods
Cloning and expression of Fc- and His-tagged proteins
For the rat and human D(1–4)-Fc constructs, rat and human CEACAM1 ecto
domains (GenBank accession no. J04963 and X16354) and human IgG Fc 
(GenBank accession no. BC014258) were amplified (rat CEACAM1, 
5-AAGCTTTAGCAGGCAGCAGAGACTATGG-3 and 5-GAATTCA
GAATTTCCTTGTGTTGGATCAGG-3; human CEACAM1, 5-AAGCTTAC-
CATGGGGCACCTCTCAGCC-3 and 5-GAATTCAGGTGAGAGGC-
CATTTTCTTG-3; and human Fc, 5-GAATTCATGGCACCTGAACTCCT-
GGGGGGACC-3 and 5-CTCGAGTCATTTACCCGGAGACAGGGAGA-
GGC-3) and ligated sequentially into the HindIII–EcoRI–XhoI sites of 
pcDNA3.1(+) (Invitrogen). For the rat D(1–4)-His construct, the BsrGI-AgeI 
cassette of pcDest 40 V5-His (Invitrogen) was replaced with a duplex en-
coding the TEV protease cleavage site (annealed 5-GTACAAAGCTTAAG
GATCCCGGGCAGCTGGAGAATCTTTATTTTCAGGGCA-3 and 5-CCGGT
GCCCTGAAAATAAAGATTCTCCAGCTGCCCGGGATCCTTAAGCTTT-3). In 
the resulting vector, the amplified rat CEACAM1 ectodomain (5-AGCTG-
GCTAGTTAAGCTATCAACAAGTTTGTAGCCACCATGGAGCTAGCCTCG-
GCT-3 and 5-TGATGATGACCGGTGCCCTGAAAATAAAGATTCTCGC-
CAGAATTTCCTTGTGTTGG-3) was inserted by homologous recombination. 
To obtain rat D(2–4)-His, the rat D(1–4)-His vector was amplified (Phusion 
polymerase; Finnzymes; 5-GGTGACTTGGGCAGTGGT-3 and 5-GCAT-
TACAAAAGCCCAACGTC-3, omitting the D1 domain) and self-ligated. 
Correct sequences and reading frames were verified by sequencing. Re-
combinant plasmids were transfected into HEK 293 cells, and the respective 
proteins were allowed to accumulate in serum-free Pro293s-CDM medium 
(BioWhittaker). Fc fusion proteins were purified by protein A–Sepharose af-
finity chromatography (HiTrap Protein A HP; GE Healthcare), and His-
tagged proteins were purified by Ni-NTA affinity chromatography (HisTrap 



JCB • VOLUME 187 • NUMBER 4 • 2009� 564

dimer forms for a given ATotal, the curve-fit model is composed of the fol-
lowing six coupled differential equations, applied for numerical integra-
tion (surface-bound type 1 and type 2 dimers are indicated with RAL and 
RLA, respectively):
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3. Formation of two classes of dimers (types 1 and 2) and one class 
of trimers by two different homophilic binding sites. This model is a modifi-
cation of the model described in section 2. If both binding sites participate, 
larger complexes can be formed. If we set the limit for a larger complex as-
sembly at the trimer level, Eq. 2.1 expands to
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In this case, addition of the trimer term does not require additional 
fit parameters. At equilibrium, it holds that
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Recalling Eq. 3.1, the total amount of analyte is composed of 
monomer, dimer, and trimer forms (i.e., ATotal in grams/liter). It is benefi-
cial to express these forms with simple functions of the monomer [A] 
combined with rate constants to provide the minimal amount of vari-
ables. We define MW as the molecular mass of the monomer and place 
it with the proper multiplication terms, i.e., times three for a trimer  
and times two for the dimers, together with Eqs. 3.2–3.4 into Eq. 3.1  
to give
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This equation can be rearranged to the general form of the cubic 
equation:
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assume a low ligand density and do not account for interactions or bridge 
formations between ligand units.

The models were programmed in IGOR Pro (version 6.03A2) and 
were applied together with the IGOR Pro Global Fit Procedure based on a 
nonlinear least-square method using the Levenberg-Marquard algorithm (Press 
et al., 1999). For numerical integration, we applied the IGOR Pro algorithm 
based on a fifth order Runge-Kutta-Fehlberg method (Press et al., 1999).

1. Formation of one class of dimers by one homophilic binding site. 
This model describes the simplest system of homophilic binding interactions,

	 A A A+ ↔ 2
	

where A and A2 define the monomer and dimer forms of the analyte, respec-
tively. At all conditions, it holds for the analyte in the units of grams/liter that

	 A A ATotal2 0+ − = . 	  (1.1)

At equilibrium, it holds that [A]2ka = [A2]kd, where [A] and [A2] repre-
sent the molar concentrations. Thus, [A2] = [A]2/KD, where the equilibrium 
dissociation constant KD = kd/ka. From Eq. 1.1, it follows that
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For simplicity, this quadratic equation can be rearranged to the classi-
cal form x2 + x +  = 0, defined as  = 2MW/KD,  = MW,  = 1 × ATotal, 
and x = [A], with the relevant solution
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In addition to Eq. 1.2 and the relation [A2] = [A]2/KD, which provide 
the bulk concentrations of the monomer and dimer forms for a given ATotal, 
the curve-fit model is composed of the following coupled differential equa-
tions, applied for numerical integration:
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2. Formation of two classes of dimers (types 1 and 2) by two differ-
ent homophilic binding sites. By the introduction of a second binding site 
in the monomer, two more variables, ka2 and kd2, need to be accounted for. 
At all conditions, it holds for the analyte (given in grams/liter) that

	 A A A Aa b Total2 2 0+ + − = , 	  (2.1)

which at equilibrium gives
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with the following solution for the molar concentration of the monomer 
form:
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In addition to Eq. 2.2 and the relations [A2a] = [A]2/KD1 and [A2b] = 
[A]2/KD2, which provide the bulk concentrations of the monomer and 
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Molecular electron tomography
1.0–2.9 mg/ml rat D(1–4)-His and rat D(2–4)-His in HBS (150 mM NaCl 
and 10 mM Hepes, pH 7.4) supplemented with either 2 mM CaCl2,  
2 mM MgCl2, or 3 mM EDTA were mixed with a suspension of washed 
colloidal 10-nm BSA-coated gold markers (AuroProbe EM protein A G10; 
GE Healthcare), placed on carbon-coated grids (Quantifoil R1.2/1.3; 
Quantifoil), and plunge frozen in liquid ethane. Liposome-anchored, His-
tagged proteins were prepared by mixing the protein solution with a 
suspension of Ni-NTA liposomes before the addition of colloidal gold.  
A field emission–scanning transmission electron microscope (200-kV accel-
eration voltage; CEM 200; Philips) equipped with a detection system with 
a magnification of 41,800 on a 2,048 × 2,048–pixel charge-coupled 
device chip with a raster size of 24 µm, giving a pixel size of 5.74 Å  
(F224; TVIPS GmbH), was used for the recording of samples. Tilt series 
were recorded at ±60° at 1° intervals. The total dose on the cryosamples 
was 20–70 e/Å2. 2D images of liposomes were taken at 100 e–/Å2. 
The colloidal gold markers were used for alignment of the projections of the 
tilt series. The average alignment error was <8 Å (1.5 pixels). The tilt series 
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Of the three solutions to the cubic equation, two involve complex 

numbers, and therefore, with regard to our model, have no physical rel-
evance. The third one is a real number solution, which is relevant for ad-
dressing the monomer concentration in the sample (i.e., analyte), yielding
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However, this solution is rather fragile if applied on a real num-

ber format to curve-fit algorithms because of somewhat complicated vari-
able compositions within the root terms. For this reason, subfunctions for 
these terms are better defined as complex number functions when applied  
together with such algorithms.

One additional complication arises in the curve-fit routine for 
the trimer model based on the fact that, in contrast to a single form 
of a trimer in solution, the surface-bound trimers cannot be treated as 
equal. Because one of the three components belonging to the trimer 
will be the immobilized ligand, an asymmetry is introduced. Because 
of different responses for the association or dissociation of monomers 
versus dimers to a surface-bound ligand, together with different inter-
action rates for the two types of binding sites involved, the model has 
to account for two types of dimers and three types of trimers contribut-
ing to the SPR-based signal. These ligand complexes are distinguished 
as RAL, RLA, RAAL, RLAA, and RALA (Fig. S1). As for the other two mod-
els, this model has to be provided with information on ATotal (in grams/ 
liter), MW, Rmax, and initial values for the rate constants. Finally, together 
with Eq. 3.5 for the estimation of [AB], Eqs. 3.2 and 3.3 for the esti-
mation of the dimer [ AB

2 ] forms and Eq. 3.4 for the estimation of the  
[ AB3 ] form, the curve-fit model is composed of the following 10 coupled 
differential equations, applied for numerical integration:
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were analyzed by SDS-PAGE under reducing conditions, and Western 
blotting was performed with rat CEACAM1-specific Mab Be9.2 (Becker 
et al., 1986) or Pab CC16 (Singer et al., 2000) to detect D(1–4)-His and 
D(2–4)-His, respectively. Protein detection on Western blots using nitro
cellulose membrane (Schleicher & Schüll) was performed using SuperSignal 
West Pico Chemiluminescent Substrate (Thermo Fisher Scientific). Chemilu-
minescence was detected using a digital system (LAS-1000; Fujifilm). 
Quantification was performed using Image Gauge software (Fujifilm).  
Images were imported into Photoshop (Adobe) for processing.

Online supplemental material
Fig. S1 shows different reaction schemes for homophilic binding inter
actions in a BIAcore flow cell. Fig. S2 shows Coomassie brilliant blue–stained 
SDS-PAGE of purified recombinant CEACAM1 ectodomains used in this 
study. Video 1 shows 3D views of the D(1–4)-His molecules analyzed by 
molecular tomography displayed in Fig. 4 (A–H). Video 2 shows 3D views 
of the proteoliposomes analyzed by molecular tomography displayed in 
Fig. 6 (B and C). Video 3 shows 3D views of the D(1–4)-His molecules 
bridging two liposomes analyzed by molecular tomography displayed in 
Fig. 6 (E and F). Online supplemental material is available at http://www 
.jcb.org/cgi/content/full/jcb.200904149/DC1.
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