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Abstract

Gene networks have been broadly used to predict gene functions based on guilt by association (GBA) principle. Thus, in order
to better understand the molecular mechanisms of esophageal squamous cell carcinoma (ESCC), our study was designed
to use a network-based GBA method to identify the optimal gene functions for ESCC. To identify genomic bio-signatures
for ESCC, microarray data of GSE20347 were first downloaded from a public functional genomics data repository of Gene
Expression Omnibus database. Then, differentially expressed genes (DEGs) between ESCC patients and controls were identified
using the LIMMA method. Afterwards, construction of differential co-expression network (DCN) was performed relying on DEGs,
followed by gene ontology (GO) enrichment analysis based on a known confirmed database and DEGs. Eventually, the optimal gene
functions were predicted using GBA algorithm based on the area under the curve (AUC) for each GO term. Overall, 43 DEGs and 67
GO terms were gained for subsequent analysis. GBA predictions demonstrated that 13 GO functions with AUC40.7 had a good
classification ability. Significantly, 6 out of 13 GO terms yielded AUC40.8, which were determined as the optimal gene functions.
Interestingly, there were two GO categories with AUC40.9, which included cell cycle checkpoint (AUC=0.91648), and mitotic sister
chromatid segregation (AUC=0.91597). Our findings highlight the clinical implications of cell cycle checkpoint and mitotic sister
chromatid segregation in ESCC progression and provide the molecular foundation for developing therapeutic targets.
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Introduction

Esophageal squamous cell carcinoma (ESCC), one of
the most lethal malignancies in humans, results in more
than 400,000 deaths per year. Patients with ESCC are usually
diagnosed at an advanced stage, and the 5-year survival rate
is reported to be less than 15% (1). Early diagnosis has been
the only promising means of achieving better outcomes, and
no reliable diagnostic marker for ESCC has been found.
Thus, identifying non-invasive biomarkers to assist in the
diagnosis of ESCC in clinical settings is urgently needed.

ESCC development is influenced by multiple factors,
involving changes of gene expression as well as physio-
logical structure (2). With the rapid development of molec-
ular biology, many scholars have conducted in-depth
analysis on the etio-pathogenesis of ESCC from gene
level, and a large number of significant genes has been
detected. For instance, up-regulation of epidermal growth factor
receptor and cyclin D1, and expression of p53 mis-sense

mutations have been associated with ESCC progres-
sion (3). Recent high-throughput cancer genome sequen-
cing revealed several gene mutations (ADAM29, MLL2,
ASH1L, SETD1B, MLL3, EP300, CREBBP, and FAM135B)
in ESCC (4). Nevertheless, the mechanism of ESCC has not
been fully elucidated. Therefore, further studies are impera-
tive to understand the underlying molecular basis of ESCC.

Microarray analysis has been broadly used to identify
the potential targets in ESCC. Therefore, investigators have
employed bioinformatics methods to study the microarray
profiles of ESCC and explore molecular mechanism under-
lying ESCC. GSE20347 is one of the microarray profiles of
ESCC deposited by Nan et al. (5), who studied the copy
number changes and the relationship to gene expression
in ESCC. In 2014, using the same data deposited by Nan
et al. (5), Li et al. (6) identified 33 differentially expressed
miRNAs and 1322 differentially expressed genes (DEGs)
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with a close relationship with ESCC. Moreover, Tung et al.
(7) used the same dataset and found that RUVBL1 and
CNIH could be useful biomarkers for discriminating cancer
from normal tissues in Taiwanese ESCC patients. However,
research related to the genetics of ESCC has paid attention
to a single gene or a single miRNA.

To a certain degree, function-based analyses are
better in producing more reproducible results, relative to
individual gene-based methods (8). Of note, understand-
ing gene function is a central challenge of biology (9).
Characterizing gene function is a complicated task, par-
tially because biological functions contain the integrated
activities of many genes. Moreover, the same gene may
have diverse functions relying on different context. Despite
the importance of comprehending gene function, little
attention has been paid to multifunctionality (MF) in the
functional genomics literature. Previously, the attributes
of genes were considered to be associated with MF
intuitively (for example, pleiotropy as well as hubness),
yet these were seldom discussed in the setting of MF.
Although close to MF in definition, pleiotropy is not typically
applied to refer exclusively to molecular traits and is
frequently referred to the effect of mutation on phenotype.
The high connectivity of hubs is usually regarded to reflect
biological ‘‘importance’’ (10). Conversely, MF is defined
with reference to genes possessing multiple molecular
functions, each of which can be characterized by the gene
set (the corresponding products) inferred to be interacted in
a particular biological setting. Moreover, Gillis et al. (11)
have demonstrated that MF is a primary driver for predicting
gene functions.

A general approach to describe and assess function
based on computational technique is important. One of
the broadly used methods for expounding the functions
of un-annotated genes, that is to say, for gene function
prediction, is the guilt-by-association (GBA) principle (12).
The GBA principle claims that genes participating in the
same cellular processes tend to have similar properties,
which allows to statistically infer previously unknown func-
tions of a gene relying on the prior knowledge about other
genes and association data (13). GBA has been indicated
to predict gene function in various types of biological net-
works, for example, gene co-expression network (14).
Genetic factors can disturb protein levels, thereby disturb-
ing molecule interactions. The characterization of networks
clarifies the complicated interactions and interwoven rela-
tionships, which control cellular functions (15). Understand-
ing the networks will offer novel insights to reveal the
molecular pathogenesis of ESCC.

In our analysis, we planned to detect disease-
associated gene functions in ESCC and to obtain more
insight into the mechanisms underlying ESCC. In order
to achieve this goal, we utilized the network-based GBA
principle, comprising the following steps: identifying DEGs
between the two groups; constructing the differentially
co-expressed network (DCN) relying on DEGs, followed

by recruiting GO annotations based on the known database
and DEGs; and identifying gene functions using GBA
principle on the basis of area under the receiver operating
characteristics curve (AUC). GO terms with AUC40.8 were
defined as the optimal gene functions for ESCC patients.

Material and Methods

Microarray data
To identify genomic bio-signatures for ESCC, micro-

array dataset of GSE20347 (5) was downloaded from a
public functional genomics data repository of Gene Expres-
sion Omnibus (GEO) database. GSE20347 was con-
ducted on the Affymetrix (USA) Human U133A platforms
(GPL571), which consisted of expression profiles of 17
pairs of ESCC tissues and matched normal adjacent
tissues from Taiwanese male patients in China. Annota-
tion information file for all probe sets (ATH1, genome
array developed by Affymetrix) was obtained from the
R package. The probe annotations and the primary files
were extracted for further analysis.

Data preprocessing
Data analysis started by processing a set of signal

intensity files for Affymetrix expression arrays (CEL). The
probe-level data in CEL style were transformed into expres-
sion profiles. Next, for any missing values of probe (NA
or the probes with expression value of 0), we imputed mis-
sing data using k-nearest neighbor algorithm (16). Robust
multiarray average (17) was used to implement background
correction and quantile normalization. Finally, probes set-
level information was mapped to the genomics to further
obtain the gene symbols based on the package annotation
(18). Totally, 12.436 genes were identified for subsequent
analysis.

Analysis of DEGs
DEGs between matched normal adjacent and ESCC

tissues were first extracted using the paired t-test available
at LIMMA package (19). After that, to circumvent the multi-
test problem, which might result in too many false positive
results, Benjamin and Hochberg correction was applied to
correct the raw P-values into false discovery rate (FDR)
(20). Only those genes with FDRo0.001 and |log fold
change (FC)|42 were regarded as differentially expressed
between the two groups.

DCN construction
Cytoscape (http://cytoscape.org/), an open-source soft-

ware, can combine molecular interactions with microarray
expression profile into a unified network. Hence, we inputted
DEGs into the Cytoscape tool to show the structure of DEGs
relationships. Further, in an attempt to evaluate the co-
expressed strength of every interaction within the DEG-
based network, Spearman correlation coefficient (SCC),
which measured the strength of association of two variables,
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was employed in this work, which could assess the co-
expression probability of two variables by measuring the
strength of association of two co-expressed variables and
whose range is from –1 to 1 inclusively (21). The weight
value of one interaction was defined as the SCC absolute
value of the corresponding edge; greater weight values
indicated that the interaction was more relevant to the given
disease.

GO annotations
GO consortium (http://geneontology.org/), a community-

based bioinformatics database, offers gene function infor-
mation (22). First, human GO annotations including 19,003
functions with 18,402 genes were obtained from GO
consortium. As known, biological functions having few
genes might not have sufficient biological information,
but gene functions with too many genes might be too
generic (23). Previous studies have filtered GO terms
by size such that each remaining term had between 20
and 1000 associated genes, a range that generally gives
stable performance (11,24). In our study, to receive stable
performance, a set of GO groups excluding the GO terms
with less than 20 genes or more than 1000 genes were
reserved, and the subset of GO annotations having
between 20 and 1000 associated genes was assessed.
We defined these GO annotations having between 20 and
1000 associated genes as the seed GO terms. Then, to
assess the association of these GO terms with ESCC, we
aligned the identified DEGs above the subset of seed GO
terms. If a seed GO term had less than 20 DEGs, it would
be discarded. Therefore, only GO categories covering X20
DEGs were retained for subsequent analysis.

Predicting gene functions using GBA method
Gene networks can be broadly applied to infer the

gene functional relationships based on the GBA principle.
Herein, we used GBA method to predict significant gene-
associated GO terms involved in the ESCC progression
by means of three-fold cross-validation to identify a sorted
list of scoring genes in the DCN as to how they belonged
in the known gene function. The sum of co-expression
values between the training set (co-expression) and the
candidate gene was divided by the sum of co-expression
values between the genes outside the training set and the
candidate gene to analyze degree of candidacy. In detail,
for each gene in the DCN, the MF score in the given GO
term was calculated based on the formula described in the
study by Gillis and Pavlidis (11).

AUC is a measure used to assess the predictive ability of
machine learners in support vector machines (SVM) model
(25). Thus, in our study, based on SVM, AUC was computed
to further evaluate the classification abilities between ESCC
and control samples. The AUC scores were ranked from the
highest to the lowest and the ranks of GO terms were sorted
oppositely. The AUC of 0.5 represents the classification at
chance levels, while the AUC of 1.0 is a perfect classifica-
tion. Based on the literature, an AUC greater than 0.7 is con-
sidered good (24). In our study, GO terms with AUC40.8
were identified and regarded as the optimal gene functions.

Results

Analysis of DEGs and DCN construction
The expression profiles before and after normalization

are exhibited in Figure 1A and B.

Figure 1. A, Box plot of gene expressions in esophageal squamous cell carcinoma (ESCC) and the matched normal adjacent samples
before normalization. B, Box plot of gene expressions in ESCC and matched normal adjacent samples after normalization. The X-axis
indicates samples and the Y-axis is expression level of genes. The black line in the center is the median expression value; the consistent
distribution represented a good standardization.
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To obtain DEGs, we downloaded publicly available
microarray data GSE20347 from the GEO database. Follow-
ing data pretreatment, a total of 43 genes were identified
as DEGs at FDRo0.001 and |logFC|42. The list of DEGs
is shown in Table 1. The most significant 10 DEGs were
HOXB7 (FDR=1.69E-07), SMYD3 (FDR=2.36E-07), ECT2

(FDR=3.19E-07), CBX3 (FDR=4.69E-07), AURKA (FDR=
7.46E-07), WDHD1 (FDR=9.01E-07), MTHFD2 (FDR=2.87-
E-06), KIF4A (FDR=5.72E-06), DUSP12 (FDR=5.94E-06),
and FNDC3B (FDR=6.18E-06).

To further reveal the biological activities of DEGs,
a DCN with 43 nodes and 919 interactions for ESCC is
displayed using Cytoscape (Figure 2), which suggested
that all DEGs were aligned to the DCN. The interacted
strength was an index used to assess the interactions
in the DCN. As a result, the weight values were assigned
to each edge based on SCC. The weight scores were
different among interactions. The interactions having greater
weight scores might be more important for ESCC than
the others. The weight distribution of the interactions in
the DCN is listed in Figure 3. The majority of interactions
were distributed in the weight range of 0.4–0.5 (380
interactions, 41.35%), followed by the range between
40.5–0.6 (232 interactions, 25.24%), 40.6–0.7 (168 inter-
actions, 18.28%), 40.7–0.8 (84 interactions, 9.14%),
40.8–0.9 (30 interactions, 3.26%), and40.9–1.0 (25 inter-
actions, 2.72%). Of note, the interaction of KIF4A and
TOP2A provided the highest weight value of 0.999834. The
interaction of SPAG5 and TOP2A had the second higher
weight value of 0.999832.

Collecting GO annotations
In order to identify significant GO categories, 19,003

GO terms covering 18,402 genes were firstly collected
from the GO Consortium. After discarding several GO
terms with gene size of o20 or 41000, 1755 seed GO
gene sets remained in our analysis. Then, the functions
having DGEs o20 were removed, and 67 informative GO
terms involved in 43 DEGs were reserved.

Predicting gene functions and identifying the optimal
gene functions

Based on the combination of GO terms and DCN,
we predicted the gene-related GO terms using the GBA
method. Firstly, for each gene in a GO term, we counted
the MF score, which affected the counting membership in
a GO category by how much the gene contributed to that
given GO term. The greater the MF score of a gene, the
greater the extent to which it ought to a good candidate
for a given function. Thus, a single ranked list of genes
that best captured candidacy across all functions was
equivalent to a list of genes sorted by MF scores. The
specific MF distribution for DEGs in 67 informative GO
terms are shown in Table 2. The top 5 genes with the
higher MF scores were SNAI2 (MF=0.000834), KIF4A
(MF=0.000778), ECT2 (MF=0.000756), MYO5A (MF=
0.000743), and TOP2A (MF=0.000552).

Intuitively, if one wanted to select a single ranking,
the gene owning the most significant GO categories could
be predicted as being in all GO terms. This is because if
one gene was enriched in 100 GO terms (highest MF
score) and another gene was involved in only one (lowest

Table 1. List of differentially expressed genes (DEGs)

Genes |log FC)| FDR

HOXB7 2.058 1.69E-07
SMYD3 2.237 2.36E-07

ECT2 5.174 3.19E-07
CBX3 3.540 4.69E-07
AURKA 2.981 7.46E-07

WDHD1 3.398 9.01E-07
MTHFD2 3.201 2.87E-06
KIF4A 2.436 5.72E-06

DUSP12 3.427 5.94E-06
FNDC3B 2.085 6.18E-06
RFC4 2.147 6.29E-06
HJURP 2.969 6.51E-06

SERPINH1 3.521 6.53E-06
RAD51 2.885 6.70E-06
FZD2 3.203 6.98E-06

MFAP2 3.131 7.10E-06
LPCAT1 2.765 8.08E-06
HMGB3 2.120 8.38E-06

FOXM1 2.641 8.82E-06
TRAM2 2.599 9.10E-06
GTF2E1 2.078 9.16E-06

NEMP1 3.884 9.29E-05
SNAI2 3.645 9.31E-06
FSCN1 2.073 9.45E-06
DNMT3B 2.098 9.79E-06

RUVBL1 2.263 1.72E-05
SLC39A14 2.006 1.79E-05
PPT1 2.214 1.82E-05

TOP2A 2.784 2.12E-05
MYO5A 2.393 3.73E-05
UMPS 2.261 3.93E-05

MINPP1 2.078 3.96E-05
SPAG5 2.317 4.06E-05
SLC39A6 2.463 4.11E-05

KPNA2 2.060 4.45E-05
THAP12 2.671 6.25E-05
CERS2 3.065 8.44E-05
PLOD3 2.821 9.61E-05

PTDSS1 2.257 9.98E-05
ACD 2.042 1.00E-04
C20orf27 2.826 2.89E-04

E2F6 2.111 3.06E-04
CALU 2.383 3.17E-04

FC: Fold change; FDR: False discovery rate.
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MF score), by placing the former gene ahead of the latter
gene in a fixed ranking, we frequently made a correct
prediction across all GO categories. Consequently, we
implemented 3-fold cross-validation on MF scores to com-
pute AUC for GO terms, aiming to distinguish ESCC from
controls.

The AUC distribution for GO categories is illustrated in
Figure 4. From this figure, we observe that the AUC for
GO terms ranged from 0.3 to 0.9, and the frequency of GO
terms with the AUC of 0.55B0.65 was higher than that of
the other GO terms. If we used it as a predictor of GO
category member, we ought to obtain AUC values of over
0.5 for GO terms. Based on AUC40.7, a total of 13 GO
terms were identified. It is noteworthy that 6 out of 13 GO
terms had the AUC40.8 and these 6 GO terms were
determined as the optimal gene functions (Table 3). Inter-
estingly, there were two GO categories with AUC40.9,
including cell cycle checkpoint (AUC=0.91648), and mitotic
sister chromatid segregation (AUC=0.91597).

Discussion

Currently, gene-related functional investigations seem
rewarding in exploring functional insights (26). Unfortu-
nately, investigating gene function is a central challenge
of biology. To solve this problem, many techniques have
been proposed to extend GBA to connections to identify

Figure 2. Differentially co-expressed network con-
struction for esophageal squamous cell carcinoma
based on differentially expressed genes.

Figure 3. Pie chart showing the weight distribution of interactions
in the differential co-expression network. The weight values were
classified into the following groups: 40.9–1.0, 40.8–0.9, 40.7–
0.8, 40.6–0.7, 40.5–0.6 and 0.4–0.5.
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gene functions (27,28). The GBA principle is the founda-
tion for most gene function prediction approaches, which
typically employs relational data (for instance, interac-
tions) to predict gene membership in categories of gene
function (29). Generally, network based-GBA analysis may
make exhaustive examining issues faster and easier than
the simple GBA principle. Further, the combination of gene

function prediction and network analysis is sparse. Conse-
quently, we used DCN-based GBA principle to extract the
optimal gene functions for ESCC based on GO information
as well as gene expression data, thereby further explor-
ing the molecular mechanisms of ESCC. In total, 13 GO
categories were obtained relying on AUC40.7, which
indicates a good classification ability. Six out of 13 GO
terms having AUC40.8 were determined as optimal gene
functions. Interestingly, there were two GO categories with
AUC40.9, including cell cycle checkpoint and mitotic sister
chromatid segregation.

Cell cycle progression is supervised by checkpoint
mechanisms, and checkpoints are regarded as the gate-
keepers of genome integrity (30,31). A variety of surveil-
lance mechanisms exist in cells to ensure maintenance
of genomic stability against various types of damage to
the genome. The G1 checkpoint prevents replication of
damaged DNA, while genomic integrity before mitosis is
monitored by the G2 checkpoint, which promotes G2
arrest on detection of DNA damage. Failure of cell cycle
checkpoints results in genomic instability, which predis-
poses cells to neoplastic transformation and tumor devel-
opment (32). Moreover, Hu et al. (33) have suggested that
inactivation of the cell cycle checkpoint plays important
roles in ESCC progression. Thus, the results obtained in our
study further support the idea that cell cycle checkpoint
is closely associated with ESCC onset and progression.

In the process of mitosis, a crucial step of the cell cycle
is the segregation of sister chromatid. Mitotic checkpoints
control sister chromosome segregation (34). Abnormal-
ities in double-strand break repair can ultimately cause

Table 2. Distribution of multifunctionality (MF) score of differen-
tially expressed genes.

Genes MF scores

SNAI2 0.000834
KIF4A 0.000778
ECT2 0.000756

MYO5A 0.000743
TOP2A 0.000552
RAD51 0.000498
AURKA 0.000443

SMYD3 0.000436
RUVBL1 0.000428
PPT1 0.000417

DNMT3B 0.000388
FZD2 0.000358
LPCAT1 0.000269

RFC4 0.000253
SERPINH1 0.000246
FOXM1 0.000239
ACD 0.000200

UMPS 0.000194
PLOD3 0.000194
SLC39A6 0.000191

HJURP 0.000190
SLC39A14 0.000182
SPAG5 0.000179

KPNA2 0.000127
MTHFD2 0.000123
CBX3 0.000111

FNDC3B 0.000104
HOXB7 9.81E-05
PTDSS1 9.77E-05
FSCN1 9.74E-05

DUSP12 8.57E-05
CALU 8.46E-05
E2F6 7.00E-05

CERS2 6.43E-05
HMGB3 5.01E-05
MFAP2 4.49E-05

MINPP1 4.07E-05
GTF2E1 4.02E-05
WDHD1 3.62E-05

TRAM2 2.81E-05
NEMP1 0
THAP12 0
C20orf27 0

Figure 4. Gene function prediction by means of guilt by associa-
tion method based on area under the curve (AUC) values. The
histogram shows AUCs across all gene oncology categories,
which were identified relying on a single list constructed from the
count of co-expression members.
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chromosomal instability as a result of repeated chromo-
some breakage-fusion-bridge cycles (35). Chromosome
segregation is controlled by kinetochores, which guaran-
tee the fidelity of segregation (36). Aberrant function of
kinetochores results in losses or gains of large portions of
chromosomes (37). Chromosomal instability is distinct in
cancer pathogenesis (38). It is worth noting that abnormal-
ities of chromosome segregation exert key functions in
promoting tumor formation (39). Above all, the results
demonstrate that dysregulation of mitotic sister chromatid
segregation endows ESCC development and progression,
at least partially, by regulating chromosomal stability.

Although we obtained several significant gene func-
tions in ESCC, there were some limitations in our study.

Our study was implemented based on bioinformatics
methods but the conclusions have not been tested using
animal experiments. Furthermore, the sample size was
limited. Thus, more work is warranted to further reveal the
molecular basis of ESCC and to apply the molecular
detection to the clinical setting.

Despite that our study lacked experimental investiga-
tions, our results supported some preliminary evidence
to uncover potential candidate therapeutic strategies
for ESCC. Our findings demonstrated that using specific
blockage-related GO functions in ESCC will provide novel
insights for therapeutics and preventive approaches. How-
ever, the association between GO terms and ESCC still
needs to be tested in animal experiments.
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