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ABSTRACT: The effects of temperature, pressure, and imposed
strain on the structural transition pathways of glassy atactic
polystyrene (aPS) are studied for a wide range of conditions. By
employing an atomistic description of the system, we systemati-
cally explore its free energy landscape, emphasizing connections
between local free energy minima. A triplet of two minima
connected to each other via a first-order saddle point provides the
full description of each elementary structural relaxation event. The
basis of the analysis is the potential energy landscape (PEL), where
efficient methods for finding saddle points and exploring transition
pathways have been developed. We then translate the stationary
points of the PEL to stationary points of the proper free energy
landscape that obeys the macroscopically imposed constraints (either stress- or strain-controlled). By changing the temperature
under isobaric conditions (i.e., Gibbs energy landscape), we probe the temperature dependence of the transition rates of the subglass
relaxations of aPS, thus obtaining their activation energies by fitting to the Arrhenius equation. The imposition of different strain
levels under isothermic conditions allows us to estimate the apparent activation volume of every elementary transition. Our findings
are in good agreement with experimental observations for the same system, indicating that both length- and time-scales of the
structural transitions of glassy aPS can be obtained by proper free energy minimization of atomistically detailed configurations.

1. INTRODUCTION
The study of the molecular origin of the time-dependent
properties of (polymer) glasses is still a mostly unsolved and
open problem. Polymer glasses are extensively used in a wide
range of applications and produced in enormous quantities
from commodity-rated packaging thin films all the way to
extremely pure medical-grade substances and blends. Apart
from the industrial interest, the dynamics of the glassy state is
still elusive due to the long time-scales involved. One of the
most prominent approaches to the problem is by employing a
mapping of the glassy configurations to the underlying
potential energy landscape (PEL) of the system and study
the motion of the system between the subspaces of the
landscape.1,2 A natural way to tessellate the energy landscape is
by means of “basins of attraction” around local potential
energy minima (also called “inherent structures” following
Stillinger and Weber3,4). Each basin engulfs a specific
minimum (or even multiple minima, e.g., double wells), and
any steepest descent path initiated within the basin will lead to
the local minimum at its bottom. Within the PEL picture,
dynamics is governed by jumps from a basin to its neighboring
basins. A reasonable approximation to studying the time-
dependent properties of glasses is to split the problem in

estimating the sought property at the minima (where the
system spends most of the time) and combine it with the time
evolution which is governed by the transition states
(configurations at the top of the ridges separating basins).
Theodorou and Suter were the first ones to study the

mechanical properties of polymer glasses by means of the
response to deformation of specific local minima of the PEL.5

They envisioned that energetically stable configurations (i.e.,
local minima of the potential energy landscape) contribute
primarily to the elastic behavior of the glasses observed
macroscopically. By assuming, on the basis of a thermody-
namic analysis, that the entropic contribution to the elastic
constants of their model polypropylene (PP) glass was minute
compared to the energetic one, they managed to calculate the
elastic constants by monitoring the change in the potential
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energy (i.e., equivalent to the free energy as T → 0) of the
specimens when subjected to infinitesimal deformations.
Complementary to the energetic approach, they employed
the virial theorem approach with microscopically calculated
stresses (which is fully equivalent to solving the force and
torque balance equations for all atoms within the system) in
order to extract the elastic constants of glassy PP. The
agreement with experimental measurements was remarkable
(within 15% at most).
While the study of the energy minima can provide estimates

of the structural and thermodynamic properties of the system,
dynamics is governed by the existence of transition states. By
the term transition states we define first-order saddle points
connecting two different basins, centered around local minima
on the potential energy landscape. While they system may
travel through higher-order saddle points, we limit ourselves to
those that have a single negative eigenvalue. This is definitely
an assumption with the purpose of rigorously defining a single
path between two basins and alleviating part of the
computational burden to discover higher-order saddle points.
Starting out of a minimum (that can be easily reached starting
from any point in its basin), it is challenging to find transition
states in the surroundings.
In our previous work,6 we formulated a method (by

combining and extending earlier approaches to the problem)
for carefully stepping on the rugged energy landscape of glassy
polymers described at an atomistic resolution with classical
molecular force fields. We split the whole process in three
steps, i.e., exiting the convex region of the basin surrounding
the initial minimum, approaching the transition state, and
exploring the minimal energy path (intrinsic reaction
coordinate (IRC) path following Fukui7,8) that connects two
neighboring minima. In the course of the process, a transition
state and a new local minimum are discovered.
The method for locating saddle points proceeds by (a)

stepping out of the minimum by following a specific direction
in phase-space (this direction can be parallel to an eigenvector
of the Hessian, a linear combination of specific modes of the
Hessian, a random direction in space or a local excitation in the
sense of Mousseau and Barkema9), (b) projecting the potential
energy gradient of the system on the step vector (by means of
the transformation proposed by Munro and Wales10), and (c)
minimizing the potential energy in the normal directions with
respect to the proposed step. Once the system finds itself out
of the convex region, we used the method of Baker11 to drive it
to a first-order saddle point. As far as the construction of the
IRC path is concerned, we employed the method of Page and
McIver12 that is based on a local quadratic approximation
(LQA) to the potential energy landscape. The whole process
of discovering saddle points and exploring the IRC is greatly
facilitated by exploiting rigorous and computationally tractable
analytical derivatives for the potential energy.13

The free energy of the polymeric specimen at the stationary
points (local minima and transition states) of the PEL is
calculated by applying the quasi-harmonic approximation to
the Helmholtz energy, as elaborated in ref 13. In essence, the
free energy under constant shape of the simulation box (i.e., its
Helmholtz energy) can be obtained as the sum of the potential
energy at the stationary point and a vibrational contribution
calculated by treating all degrees of freedom as independent
(classical or) quantum harmonic oscillators, whose frequencies
are obtained from the eigenvalues of the Hessian in mass-
weighted coordinates. Starting from the Helmholtz energy and

by cautiously applying the Legendre transform, we can produce
the free energy functional for any combination of stresses and
strains imposed on the simulation box. Minimization of a
properly defined free energy functional for uniaxial compres-
sion or extension allowed us to mimic the macroscopic tensile
testing experiments. By adopting a description with two
independent parameters (ε, σ⊥) and the assumption of a
shape-preserving deformation in the lateral directions (i.e., εyy
= εzz = ε⊥ for ε = εxx, and similarly for ε = εyy and ε = εzz), the
problem of simulating a uniaxial deformation experiment
became computationally tractable. The deformation involved
the application of extremely small steps in strain, while
minimizing the relevant free energy function of every
configuration with respect to the externally imposed stress
constraints (quasi-static deformation) in the lateral directions.
While it could not incorporate the effect of a finite strain-rate,
the deformation protocol provided us with a wealth of
information for the response of the system in the elastic14

and the plastic regimes.13

The imposition of deformation destabilizes the local
potential energy minima. Even within the elastic regime,
plastic events15 can be discerned where the system drifts from
one minimum to another.16 The basin of the original minimum
is distorted to such an extent that it is no longer convex.
Within the framework set by Eyring,17 the energy barriers
separating minima decrease linearly with strain facilitating
thermally activated transitions. Lacks and co-workers18−20

showed that plastic deformation induced by shearing causes
the disappearance of local potential energy minima which have
been destabilized along a single zero-mode. More recently,
Chung and Lacks21 stated that the disappearance of minima
due to plastic deformation is equivalent to the mathematical
“fold catastrophe”; i.e., one of the two minima connected to a
saddle point is forced to merge with the saddle point, so that
both the minimum and the saddle point disappear. Moreover,
during this process the curvature of the minimum flattens out
with a well-defined scaling behavior.22

In this work, we report results on the quasi-static
deformation of transition states on the energy landscape of
atactic polystyrene at room temperature. In order to study the
effect of temperature and pressure, we explore the Gibbs
energy landscape. The latter is accomplished by searching for
free energy minima close to the stationary points of the
potential energy landscape; i.e., we employ the quasi-harmonic
approximation to estimate the relevant Gibbs energy at the
local minima and first-order saddle points of the potential
energy landscape (whose exploration has been presented in ref
6). All derivatives can be obtained by rigorous analytic
expressions presented in ref 13. The combination of the above
methods allows us to microscopically mimic a macroscopic
equilibrium under given pressure, strain, or stress. The study of
connected triplets of local minima and transition states (first-
order saddle points) enables us to study for the first time the
dependence of the corresponding rate constants on temper-
ature, pressure, and applied strain. Extending the study of the
potential energy minima initiated by Theodorou and Suter5 to
stationary points of a properly defined free energy reveals a
wealth of important observations and paves the way to direct
connections to experimental observables.

2. METHODOLOGY
2.1. Microscopic Model. We consider a microscopic

specimen of a glassy material that is represented at the
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atomistic scale; i.e., it consists of discrete (united) atoms
interacting via a classical molecular force field. Thus, the
degrees of freedom of our description are the Cartesian
coordinates of all atoms, i.e., the set {ri} and a suitable measure
of the imposed deformation, either strain, εκλ (or deformation
gradient), or stress (σκλ). Combinations of strain- and stress-
controlled boundary conditions are also possible.13 In what
follows, we employ the convention of using bold symbols for
representing full tensorial or vector quantities (e.g., ri), while
individual elements of vectors or tensors are represented by
appropriate regular Greek indices, e.g., εκλ. Latin subscripts,
e.g., i in ri, are reserved for indexing atoms. As shown in our
earlier studies, the adoption of a classical molecular force field
allows for analytical treatment of its first- and second-order
derivatives with respect to the atomic positions and
deformation measures (e.g., strain or deformation gra-
dient).13,23

In the standard energy landscape picture of the glassy state,
the system is mostly found within basins of the energy
landscape surrounding local minima.2 From time to time, the
system may move from one basin to another via infrequent
jumps over transition states (first-order saddle points of the
potential energy). The jumping process involves the system
going uphill and downhill through a valley (minimal energy
path) connecting the two minima through the saddle point.
For studying the dependence of glassy dynamics on
deformation, we should focus on calculating the rate constants
for these individual jumps. This is accomplished by employing
the multidimensional transition state theory (TST).24

However, application of TST hinges upon a proper calculation
of the free energy of the specimen (under the externally
imposed constraints) at the local minima and first-order saddle
points of the energy landscape.
In the following, we study the free energy landscape of a

glassy atactic PS specimen in a united-atom representation
(hydrogen atoms are fused to the carbon atoms that are
chemically attached). We have extensively used the molecular
model of Lyulin and Michels25 in the past, and we employ it
for the present study, too. The simulation box consists of four
PS chains, whose molecular weight is 30 kg/mol and the
styrene dyads (meso or racemo) follow a Bernoullian
distribution with mean 0.5. Initial configurations have been
prepared by using the two-scale equilibration protocol
presented in ref 26. PS has been the material of choice due
to its fast physical aging kinetics; its glass properties have been
recovered successfully by molecular simulations.6,13,25 The
methods are applicable to any atomistically detailed system
described by a classical force field; there is no limitation to the
chemical structure.
2.2. Helmholtz Energy at Stationary Points of the

Potential Energy Landscape. Following the extensive
literature on the quasi-harmonic approximation (QHA) to
the free energy,5,13,14,24,27 the Helmholtz energy of the system
located within a basin I, AI, can be readily obtained as

= +A T A Tr( , ; ) ( , ; ) ( , ; )I
SP

SP vib
SP (1)

where we have introduced the notation “SP” to indicate that
the Helmholtz energy is calculated at a stationary point of the
potential energy. It is to be noted that, in the Helmholtz energy
given by eq 1, only the vibrational contribution depends on
temperature. It is split into the potential energy, , at atomic
positions r = rSP, while the Helmholtz energy of the NDOFs =
3N − 3 vibrational modes5,28,29 is denoted by Avib and is

calculated for the configuration of the system at the stationary
point. The strain appearing in eq 1 refers to the Cauchy strain
tensor. In our simulations, we employ a rectangular
parallelpiped simulation box. However, the calculation of the
Helmholtz energy and its derivatives to be presented in the
following section is applicable to system of any geometry (e.g.,
monoclinic or triclinic) given that the calculation of
interatomic separation vectors within the minimum image
convention is accomplished by correctly treating the periodic
bondary conditions.30 The quasi-harmonic approximation
limits the temperature range of applicability of our approach,
but it remains a valid approximation even at elevated
temperatures. The interested reader is referred to a previous
study14 where the QHA was validated against experimental
data and results from molecular dynamics simulations.
Since we have assumed that the system is located at a

stationary point of the potential energy landscape, its potential
energy around that point can be approximated by a Taylor
expansion

+ ( )x x x x H x x( ) ( )
1
2

( ) ( )x xSP SP
T

SP
SP (2)

in terms of the mass-weighted atomic coordinates, xa = ma
1/2ra,

which is truncated after the second-order term.5 There is no
first-order term (potential energy gradient) since we are
treating stationary points and the second-order term is
governed by the 3N × 3N Hessian matrix (i.e., second
derivatives) of the potential energy with respect to all mass-
weighted coordinates

=H
x xx x

x

2

SP

SP (3)

If the systems exhibit any kind of symmetry (e.g., translational
or rotational invariance), the Hessian should be transformed in
order to exclude this symmetry, leading to a matrix with an
effective range of NDOFs × NDOFs elements.
The Hessian matrix provides us with a way to calculate the

vibrational contribution to the free energy. The eigenvalues,
ωj

2, and the eigenvectors, vj, of the Hessian correspond to the
vibrational frequencies and the normal modes, respectively, of
the motion of the system within the basin, if this is assumed to
be the superposition of NDOFS independent uncorrelated
harmonic oscillators.27 By assuming that the oscillators have
discrete energy levels, i.e., a quantum-mechanical treatment
holds, the vibrational contribution to the Helmholtz energy is
calculated as24,31
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with kB as the Boltzmann constant and ℏ = h/(2π), with h
being Planck’s constant. By following classical thermodynam-
ics, the Helmholtz energy is split as A = U − TS, where S is the
entropy of the microscopic system32,33
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and U is the internal energy13

=

= + +
= =

U A T A
T

2 e 1j

N
j

j

N
j

k Tinh
1 1

( )/( )j

DOFs DOFs

B (6)

Both entropy and internal energy can be calculated from the
potential energy of the stationary point and the vibrational
frequencies obtained there.
2.3. Deformation Thermodynamics. Following the free

energy minimization technique with respect to the compo-
nents of the strain tensor (with analytic derivatives of the
potential energy both with respect to Cartesian coordinates, ri
and components of the strain tensor, εκλ) we introduced in our
previous work,13 any deformation to the system will be applied
in a stepwise fashion of strain steps on the order of

(10 )3 . Each step of the deformation can be adequately
treated within the infinitesimal strain theory; i.e., we are
employing the Cauchy strain, ε, as the measure of the
deformation.
We consider a rectangular parallelpiped simulation box, with

edge vectors h1, h2, h3, encompassing N interacting atoms. The
tensor = [ ]h h h h, ,1 2 3 is formed by combining the edge
vectors of the periodic simulation box. We have shown13 that
infinitesimal strains ε induce a change in the box dimensions,
δh = h − h , that is a small perturbation relative to the box
dimensions at the reference configuration , h . The Cauchy
strain is then given by

[ · + ]h h h h
1
2

( ) ( )1 1 T T
(7)

In the process, we have discarded all terms equal or to higher
than second-order in δh, given that we are interested in
infinitesimal deformations, and we end up with a symmetric
linear strain tensor. Furthermore, by employing a rectangular
parallelpiped simulation box (that is convenient for simulations
of amorphous systems), h is diagonal and so is h 1, and eq 7
can be simplified:

i
k
jjjjj

y
{
zzzzz= +

h
h

h
h

1
2 , , (8)

The differential of the Helmholtz energy, in the limit of
infinitesimally small strains, is given by

= +A S T Vd d
(9)

where the Cauchy stress tensor is identified as

=
[ ]

V
A1

T , (10)

where the notation [κλ] is employed to indicate that all
elements of ε except εκλ are held constant during differ-
entiation.34 The Helmholtz energy per unit volume, A/V, is
usually termed as the elastic energy function in the field of
linear elasticity.35

2.4. Free Energy of a Specimen under Uniaxial
Deformation. In order to mimic the macroscopic uniaxial
deformation experiments, we should use a suitable Legendre

transform of the Helmholtz energy, where the size of the
simulation box is allowed to change in one direction, while
ambient pressure is applied to the lateral ones. A proper free
energy functional should, on one hand, allow our method to be
able to mimic macroscopic experiments, while on the other
hand, be based on the fewest thermodynamic variables in order
to make the problem computationally tractable. By imposing a
strain-controlled deformation along one direction, fully
described by the strain in that direction ε = ε∥, while assuming
that the deformation in the lateral directions is isotropic and
controlled by a lateral stress, σ⊥, we can derive a free energy
functional which depends only on ε.13
By excluding the off-diagonal components of the strain

tensor, eq 9 becomes

= + +A S T V Vd d d 2 d (11)

where σ and σ⊥ are the stresses in the principal and the lateral
directions of the deformation, respectively. By introducing the
volumetric change ϕ = 1 + ε + 2ε⊥, we can rewrite eq 11 in
terms of ε and ϕ:

= + +A S T V Vd d ( )d d (12)

where differentials of ε and ϕ appear. We can now define a
Legendre transform of A with respect to ϕ, where the stress
applied to the lateral directions σ⊥ will replace ϕ:

= + +**A S T V V

V

d d ( )d (1 )d

2 d (13)

This gives us the fundamental equation in the A**
representation:

= +**A T A V V( , , ) (1 ) 2 (14)

A** is a function of the imposed strain in the one direction, ε,
and the stress applied to the equally deformed cross-section in
the lateral directions, σ⊥. We used the double-asterisk-notation,
A**, to discern our free energy functional that preserves the
shape of the cross-section, from a Legendre transform of the
form **A T( , , , )yy zz where some components of the strain
tensor have been replaced by components of the stress tensor.
Thermodynamic equilibrium of the A** potential implies that
it is minimal with any change of the lateral size of the system,
under imposed T, ε, and σ⊥. We note here that eq 14 is
equivalent to the small-strain limit of the A** free energy
derived in eq 37 of ref 13.
2.5. Free Energy of a Specimen under Imposed

Stress. In the case of an elastic solid, there is no unique Gibbs
energy; Li et al.36 provided a thorough analysis on the concept
of the chemical potential of an elastically stressed solid. They
showed that a free energy function whose partial derivative
with respect to the number of moles would yield a proper
chemical potential does not exist. There are few exceptions,
e.g., the case of purely hydrostatic stress where McLellan
derived a chemical potential assuming thermomechanical
equilibrium,37 but generally, a solid specimen can be
characterized only by a properly defined entropy S, and
Helmholtz energy, A, which depend on strain and temperature
as discussed above. In the following, we are going to consider
quantities analogous to the Gibbs energy, G, and enthalpy,
H.38

By starting from the fundamental equation for A in
differential form, eq 9, we can formulate a new thermodynamic
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potential that has the temperature and the stress tensor as
independent variables, G(T, σ), as the Legendre transform of A
with respect to the components of a strain tensor whose
diagonal elements have been increased by 1/3, i.e.

= + 1
3 (15)

with δκλ being the Kronecker delta. Since the constant 1/3
added to the diagonal components of the strain tensor does
not contribute to the differential, we can have the following
Legendre transform of A based on eq 9:

i
k
jjjj

y
{
zzzz=

+ +
G S T V Vd d d

3
dxx yy yy

(16)

By introducing the hydrostatic pressure, p=−(1/3)Tr(σ), we
can rewrite eq 16 as

= +G S T V p Vd d d d
(17)

This substitution brings us to a Gibbs energy definition for our
solid specimen:

= +G T A pV V( , )
(18)

that resembles the Gibbs energy of a fluid. It is in the spirit of
previous derivations by Morris39 and Lempesis et al.14 If we
had not included the factor 1/3 in the differential, we would
end up with the definition of the complementary energy
function of the theory of elasticity

=G T A V( , )

that is also frequently referred to as Gibbs energy. The
definitions of G and G′ differ by the term pV that is constant
with respect to the independent parameters of the free energy;
they are therefore equivalent since only differences in free
energy matter. However, we prefer to coin the term “Gibbs”
energy for the free energy of eq 18 that resembles the Gibbs
energy function of a fluid. Based on the generalized energy
functions A** and G defined above, a consistent thermody-
namic framework for calculating deformation-dependent
transition rates is developed.
2.6. Locating Stationary States on the Potential

Energy Landscape. While it is rigorous to discover potential
energy local minima by means of efficient minimization
methods, the problem of discovering first-order saddle points
that can serve as transition states is still unsolved. In our
previous work,6 we suggested a combination of methods for
sampling first-order saddle points, conceptually similar to the
eigenvector-following technique of Munro and Wales10 and the
activation-relaxation technique (ART) of Barkema and
Mousseau.9,40 Our proposed approach that follows randomly
chosen eigenvectors of the Hessian was successful in probing
the elementary structural transitions on the potential energy
landscape of a united-atom atactic PS specimen. We have also
tested the local random excitation of a group of atoms that is at
the basis of the ART method; however, it proved less efficient
in our systems of interest. The main difference between the
two classes of methods is the spatial extent and intensity of the
excitation: the ART method excites a specific group of atoms
(while leaving all other unperturbed at its first step), while the

eigenvector-following method excites all atoms along a
vibrational mode of the system. While there are no clear
advantages to either approach, we preferred using the
eigenvector-following one, enriched by linear combinations
of eigenvectors of the Hessian as initial directions out of a
minimum (increasing the level of randomness and complexity
in the choice of the initial search direction). Since it serves as
the basis for exploring the free energy landscape of our
specimens, we briefly present its main components in the
following paragraphs.
At a local minimum, where a diagonalization of the Hessian

has taken place, we randomly choose one of its eigenvectors to
follow and the system is stepwise translated from the minimum
along the valley floor parallel to the chosen normalized
eigenvector em,0

= + = + · [ ]h m Nr r h r e 1,n n n n n m1 1 ,0 DOFs

(19)

with hn being the magnitude of the step vector at step n and
em,0 the eigenvector corresponding to the m-th eigenvalue
calculated at the minimum (i.e., step “0”). As discussed above,
the dimensionality of the Hessian matrix is NDOFs × NDOFs after
excluding any potential symmetries of the system (in our case
translational invariance). We sample the eigenvector space
(i.e., possible orientations for the saddle point searching path)
randomly to avoid introducing any bias to the distribution of
saddle points to be discovered (e.g., by following the lower
modes of the Hessian). At every step, we maximize the
potential energy in the “walking” direction parallel to the
streambed we are following while seeking a minimal potential
energy with respect to all other lateral directions.10 The
magnitude of the step-size can be arbitrarily chosen, but we
subject it to a backtracking process so that the uphill walk
remains as close to the underlying streambed as possible.
When the system escapes from the convex region of the basin
surrounding a local minimum, we exchange the stepping
method with the method of Baker for following the lowest
eigenmode of the Hessian,41 until the system converges to a
first-order saddle point. The interested reader is referred to ref
6 for a detailed presentation.
Out of the saddle point we construct a minimal energy path

following the intrinsic reaction coordinate (IRC) construction
of Fukui.8 The IRC is an imaginary trajectory in the mass-
weighted Cartesian space that goes infinitely slowly through
the transition state. The trajectory conncets two neighboring
minima through a transition state. Close to the transition state,
it is parallel to the eigenvector corresponding to the single
negative eigenvalue of the Hessian. As in our previous work,6

we employ the method of Page and McIver.12 This method
provides an exact solution to the differential equations of the
path by employing a local quadratic approximation to the
potential energy landscape at every step along the path. By
following the path, two minima A and B can be connected to
the transition state, ‡, lying between them and form a triplet of
states {A ↔ ‡ ↔ B}.
2.7. Locating Stationary States on the Free Energy

Landscape. The whole process described in the previous
subsection operates under constant volume; i.e., all states of
the triplet {A ↔ ‡ ↔ B} have the same spatial extent.
However, since we are interested in transitions taking place
under the condition of thermodynamic equilibrium in terms of
free energy, we should allow the shape and volume of the
system to be adjusted for every state in order to fulfill the
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equilibrium conditions, e.g., imposed lateral stress σ⊥. For the
local minima, a detailed description of the two-level
minimization strategy can be found in ref 13.
As far as a potential energy transition state is concerned, we

let the system minimize its free energy (either A** or G) under
the constraint of keeping the structure of the Hessian, i.e.,
preserving its single negative eigenvalue. In essence, we
minimize the free energy with respect to the shape and size
of the simulation box, under the requirement that, for each set
of box borders considered, the system remains constrained at a
first-order saddle point of the potential energy. This is
accomplished by changing the box dimensions, searching for
a saddle point with the new dimensions by employing Baker’s
algorithm41 for following the lowest eigenmode of the Hessian
and then recalculating the free energy of the system contained
within the updated domain. The vibrational free energy, Avib, is
calculated for the configuration of the system at the saddle
point, excluding one degree of freedom (the unstable one that
corresponds to the negative eigenvalue). The process is
summarized in Figure 1. In the following, we will study

transitions states on the G and A** free energy landscapes. As
far as the Gibbs energy, G, is concerned, the control variable
will be the pressure p, and we will scan for changes in volume.
As far as the A** free energy is concerned, we can control ε
and σ⊥ and let the system obtain the ε⊥ that minimizes A**.
2.8. Free Energy Barrier and the Rate Constant. The

knowledge of the triplet of connected states, {A ↔ ‡ ↔ B},
allows a rigorous calculation of the free energy of the
transitions A → B and B → A, by means of the quasi-
harmonic approximation that provides analytical estimates of
the internal energy and entropy. Under an imposed stress
tensor, σ, the strain tensor may be different between each state
of the triplet. We choose to use the configuration at the
transition state as the reference configuration with respect to
which the strain tensor is calculated, i.e., V = V‡; any of the

minima can also be used. By employing the transition state as
the reference configuration, the resulting expressions are fully
analogous for both minima by exchanging the minimum index
(A or B). In terms of the Gibbs energy, the A → B transition is
inhibited by the free energy barrier:

= = +‡ ‡ ‡ ‡G G G A A V( )A A A,
(20)

where V‡ is the volume of the system at the transition state and
εκλ,A is the strain tensor of configuration A with respect to the
transition state. The pV term introduced in eq 18 vanishes
since both states employ the volume of the reference
configuration. Since we use the configuration at the saddle
point as the reference configuration for defining the strain
tensor, the last term in the right-hand side of eq 20 appears
with a positive sign. The corresponding enthalpic and entropic
contributions can be easily obtained by

= +‡ ‡ ‡H G T S (21)

and

=‡ ‡S S SA (22)

At this point, we should note again that there is not a unique
definition of enthalpy for a deformed solid specimen. We can
define it as a familiar transform of G as in eq 21, but any other
definition of an “enthalpy” function could be employed.38

In a completely analogous way, the barrier of the free energy
A**, eq 14, for a transition taking place under imposed ε and
σ⊥ is given by

= = +‡ ** ** ‡ ** ‡ ‡A A A A A V( ) 2 A
,

A A , (23)

where we have chosen the transition state as the reference
configuration = ‡V V( ) and the lateral strain is calculated
with respect to that configuration, i.e., ε⊥

‡ = 0 (reference state).
All states have the same (imposed) strain in the principal
direction, i.e., εA = εB = ε‡, and the same stress is applied to the
cross-section in the lateral directions. However, the strain in
the cross-section, ε⊥, is different and obtained by the
thermodynamic minimization process.
The rate constant for exciting state A through the transition

state ‡ is equal to the ratio of the configurational integrals: one
calculated over the dividing surface located at the transitions
state divided by the one calculated over the entire basin
corresponding to state A.42 For state-to-state transition, e.g., A
→ B, we should limit the configurational integral of the
nominator to the part of the boundary surface of basin A that is
common with the boundary surface of B. We can then consider
the relevant partition functions, Q, instead of the configura-
tional integrals, i.e.

=
‡

k
k T

h
Q
QA B

A

TST B

(24)

where the Planck’s constant, h, takes care of the different
dimensionalities of the relevant phase-spaces where the
partition functions correspond to (for Q‡ we exclude the
dimension normal to the dividing surface; the system is
allowed to freely sample all other directions). In the case of
applied pressure, e.g., in the G framework defined by eq 18, the
transition rate constant becomes

Figure 1. Free energy minimization in the vicinity of stationary points
of the potential energy landscape (marked in black). A pair of
potential energy minima connected through a first-order saddle point
is depicted (black dots). For every one of them, an A** free energy
minimization is conducted in order to drive the system to the
corresponding free energy minima that are indicated by red dots. The
underlying potential energy landscape following the free energy
minimization is marked in blue. All states are characterized by the
same principal strain ε and stress applied to the lateral dimensions, σ⊥.
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which resonates with the familiar definition of the rate constant
in isothermal−isobaric conditions. Similarly, the rate constant
for transitions taking place under constant ε and σ⊥ is

i
k
jjjjj

y
{
zzzzz=

‡
k

k T
h

A
k T

expA B
B

B (26)

implying that the partition functions in the T( , , )
-ensemble are proportional to the Boltzmann factor of the
A** free energy.

3. RESULTS AND DISCUSSION
3.1. Finding a Transition State under Given ε, σ⊥.

Quenching from the melt state under isobaric conditions (here
p = 1 atm) results in the first configuration of the system in the
glassy state. This resembles a freshly quenched specimen (after
heating and annealing) locked in the basin of the energy
landscape where it found itself upon cooling. In that case, the
system is described by its Gibbs energy, G, and by minimizing
G with respect to the components of the strain tensor under
imposed hydrostatic pressure, we obtain a mechanically stable
configuration in the glassy state, that is represented by the blue
dot in Figure 2. This configuration is characterized by a density

of ρ(300 K, 1 atm) = 1034 ± 9 kg/m3 which is in good
agreement with the macroscopically observed density of
polystyrene under the same conditions.14 Out of that
configuration, we can initialize saddle point searches in order
to discover transition states in the Gibbs energy landscape. In
order to switch to the A** representation, we have to lock the
cross-section of the specimen in two directions, i.e.,
constraining both directions to deform by the same strain,

ε⊥, and search for an A** minimum. This is accomplished by
scanning different principal strains, ε, and minimizing for every
value of the principal strain (abscissa of Figure 2, we find the
lateral strain ε⊥ that minimizes A** under given σ⊥). The
procedure yields the configuration for which A** is minimal;
i.e., any imposition of strain ε on the configuration increases
the free energy. The resulting configuration is considered the
reference configuration for given T and σ⊥. In our simulations,
we keep the stress applied to the lateral cross-section fixed to
−1 atm. The change of conditions, from equal pressure applied
to all directions of the simulation box to the combination of a
single strain-controlled dimension with equal pressure applied
to the lateral cross-section, modifies the mechanical equili-
brium of the specimen leading to different box dimensions
(moving from the filled blue dot to the open magenta dot in
Figure 2). The imposition of strain in the one direction lightly
affects the density; in any case, the relative volumetric change,
φ = 1 + εε⊥

2 with respect to the configuration of minimal Gibbs
energy is close to unity within 10−5.
Once a free energy minimum, either in G or in the A**

representation, is ensured, we set out to explore the energy
landscape for first-order saddle points in the same
representation. This is accomplished by a two-step procedure,
as described in the Methodology section. First we try to locate
potential energy saddle points by using the methods we
developed in the past,6 and we then minimize the
corresponding free energy at the transition state. The relevant
procedure for finding transition states in the A** representa-
tion is presented in Figure 3. At first, the saddle point search is

undertaken under constant shape and size of the simulation
box represented by the vertical magenta arrow in Figure 3; i.e.,
the two strain measures ε (in the principal direction) and ε⊥
(in the lateral directions conjugate to the imposed stress σ⊥)
are held constant. Once a transition state is found, we
minimize the free energy by allowing the system to vary its
lateral dimensions, i.e., by varying ε⊥, that is represented by the
horizontal green arrow in Figure 3.

Figure 2. Free energy minimization in the glassy state. The blue circle
indicates the configuration obtained after isobaric (p = 1 atm)
quenching to the glassy state, i.e., the Gibbs energy minimum at
temperature T = 300 K. The open magenta circle indicates the
configuration corresponding to the free (A**) energy minimum,
where the specimen is enforced to comply with pressure applied to
the lateral crossection, while the principal direction of deformation is
strain-controlled.

Figure 3. Saddle point search out of a free energy minimum. Initially,
a first-order saddle point is discovered by stepping uphill under the
constant shape of the simulation box6 (vertical magenta arrow in the
figure). Once a transition state is reached, local free energy
minimization is accomplished by optimizing the size of the lateral
cross-section of the box (horizontal green arrow in the figure).
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By splitting the problem of discovering saddle points in the
free energy landscape into finding saddle points on the energy
landscape and then changing their dimensions, the whole
process becomes computationally tractable. However, it is
important that a saddle point searching technique is used close
to the transition state, instead for an energy minimization,
since the latter may trigger a “fall-off” of the system to one of
the neighboring potential energy minima. To this end, we
employ the saddle point searching algorithm of Baker,41 tuned
to follow the lowest eigenmode of the Hessian (corresponding
to the single negative eigenvalue of the Hessian). Ideally, one
could allow for free energy minimization with respect to ε⊥ at
every step of the uphill path but that leads to an enormous
computational cost. We have done that for a few config-
urations, and we found complete agreement with the scheme
of imposing the free energy equilibrium only at the saddle
point. Similar observations were also drawn by Kopsias and
Theodorou.24 Once the saddle point on the free energy
landscape is found, we initialize a minimal energy path
exploration, following the quadratic method of Page and
McIver43 for laying down the IRC on potential energy
landscapes using a local quadratic approximation that we
have also employed in our previous work.6 That leads us to the
second minimum under a constant shape, that will also need
ε⊥-optimization on the other side of the landscape. Finally, we
end up with a triplet of states that are under the same
thermodynamic constraints. In the case of the A** free energy,
the triplet of the saddle point and the connected minima are
stationary points of the A** hypersurface; i.e., they are
characterized by the same ε and σ⊥, but different strain in the
cross-section, ε⊥.
3.2. Response to Temperature under Constant

Pressure. We start by studying the temperature dependence
of the free energy barriers, Δ‡G. This is accomplished by
minimizing the Gibbs energy of every triplet of connected
states (saddle point and minima) with respect to the
components of the strain tensor under prescribed atmospheric
pressure at different temperatures. We start from the reference
temperature of T = 300 K, where our previous work is
conducted,6 and we either cool down or heat up the systems.
The size of the simulation box is allowed to change, obeying
the externally imposed pressure, p = 1 atm. There are two

different ways of obtaining the configurations of the minima at
different temperatures. The first approach is the direct heating
or cooling of the minima from the initial to the target
temperature (allowing their domain size to change appropri-
ately). The other approach is heating or cooling of the saddle
point and then constructing the IRC path from the saddle
point to the neighboring minima under constant temperature.
Both methods provide identical configurations for the free
energy minima, and we thus make no distinction from now on.
The rate constant dependence on temperature for specific

transitions is presented in Figure 4. Following the procedure
described above, we study the response to temperature
changes of our ensemble of transition states. Out of the
ensemble of transition states presented in Figure 10 of ref 6, we
choose those with rate constants at T = 300 K in the proximity
of the macroscopically observed subglass relaxations. Three
individual transitions are examined in Figure 4, each one
corresponding to the β-, γ-, and δ- relaxations of atactic
polystyrene. For all transitions we observe linear behavior with
temperature that can be described well by an Arrhenius law.
The activation energy of the best fit Arrhenius equation is also
reported. The values obtained experimentally will be discussed
in the following paragraphs. The temperature dependence of
the rate constants of all elementary transitions sampled are
fitted by an Arrhenius equation; we have not found elementary
transitions, i.e., basin-to-basin displaying a strong non-
Arrhenius character. This is in par with the experimental
observations that all subglass relaxations exhibit an Arrhenius
character, in contrast to the α-relaxation, the latter being a
complex relaxation mechanism, where the system follows a
sequence of elementary transitions and the macroscopic
relaxation is a superposition of elementary events.
By taking this a step further, we perform temperature sweeps

(cooling and heating) on all transition pairs available. For
every transition, we fit the dependence of the rate constant on
temperature to an Arrhenius law, and we store the activation
energy. We then group the transitions by their rate constant at
300 K; the results are presented in Figure 5. The simulation
results (solid circles) cover a range of activation energies from
0.15 to 1.1 eV, with the activation energy of individual
elementary structural transitions increasing with a decreasing
rate constant (or increasing relaxation time). Alongside the

Figure 4. Arrhenius plots of the rate constants of individual transitions, whose rate constants at T = 300 K lie within the time-scales of the (a) β-,
(b) γ-, and (c) δ-relaxations of atactic polystyrene, respectively. Gibbs energy minimization has been conducted under p = 1 atm for every
temperature. The straight lines are best fits to an Arrhenius equation with activation energy Ea.
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simulation results, we mark with gray bands the range of
relaxation times associated with the subglass relaxations of
polystyrene as those were obtained experimentally (gray bands
in Figure 5). Moreover, we use the red straight lines to indicate
the experimental estimate of the activation energy for every
process. The scaling of the activation energy with the logarithm
of the rate constant is indicated by the black dashed line, i.e.,

=E k k T/ (ln )A Ba B . Most transitions within the studied
time-scales seem to conform to Arrhenius activated processes.
There are, however, few outliers which do not seem to follow
the general trend.
The characteristics of the δ-relaxation are obtained by the

neutron scattering experiments of Arrese-Igor et al.,44 while the
characteristics of the γ- and β-relaxations are obtained from the
dielectric spectroscopy experiments (for a sample freshly
quenched from the melt) of Grigoriadi et al.45 We see that
there is very good agreement between simulation and
experiment. However, instead of clear-cut bands of rate
constants, corresponding to the macroscopic relaxation
mechanisms, molecular simulations provide a continuous
spectrum of rate constants, i.e., transitions being scattered
around the straight dashed line in Figure 5. Even the
experimental measurements of the macroscopic manifestation
of the segmental relaxations indicate an overlap of the different
relaxation mechanisms.44

An experimentally observed characteristic of the γ-relaxation
of polystyrene is the complementary roles of enthalpy and
entropy; i.e., transitions characterized by high enthalpic
barriers exhibit also high entropic barriers, known as
“enthalpy−entropy compensation EEC”.46−48 The general
applicability of this empirical law is still controversial. In our
simulations, we can sort the transitions at room temperature,
based on their corresponding rate constants, and group those
that correspond to the time-scales of an experimentally
observed relaxation mechanism. In Figure 6 we present the
height of the entropic barrier, Δ‡S, versus the height of the

enthalpic barrier, Δ‡H, for the elementary transitions that can
be assigned to the γ-relaxation. By following this procedure, we
can clearly observe a linear increase of the height of the
entropic barrier with the height of the enthalpic one. The same
happens for groups of transitions corresponding to the other
relaxation mechanisms (δ- and β-). However, this observation
could be anticipated within our simulation framework. By
grouping the transitions by means of their rate constant, that
corresponds to a specific free energy barrier, a compensation
between enthalpy and entropy should come into play for the
overall rate constant to be within the limits set, since Δ‡G =
Δ‡H − TΔ‡S. The most important feature of Figure 6 is the
fact that the range in Δ‡S (and thus Δ‡H) values is
considerable at T = 300 K.
3.3. Response to Pressure under Constant Temper-

ature. In the following we are studying the pressure
dependence of the relaxation time-scale of a transition,
whose rate constant falls into the range of γ-relaxation.
Intrinsic to the pressure dependence of transition rates (or
segmental relaxation times) is information related to the
apparent activation volume of the relaxation process:49,50

=#V RT
p

ln

T (27)

where the relaxation time can be interpreted as τ = 1/k.
Harmandaris and co-workers50 have followed a similar analysis
in the melt state of PS; their simulations indicated an apparent
activation volume of 400 cm3/mol for the lowest temperature
of 350 K they studied. That volume referred to the segmental
dynamics of PS, and it is probably too large for the activated
motions in the glassy state. In our case, by studying the
response to pressure of individual transitions, we can correlate
the activation volume to specific rate constants; i.e., we can
rigorously associate the dynamics of the molecular motion with
the portion of the specimen that participates in the transition,
or alternatively the length-scale of the rearrangement.
The pressure dependence of an individual transition, whose

rate constant corresponds to the range of the macroscopic γ-

Figure 5. Activation energy of the different transitions studied versus
the rate constant of every transition at T = 300 K. The gray bands
represent the experimentally observed subglass relaxations of atactic
polystyrene and the red horizontal lines the corresponding
experimentally obtained activation energies. The dashed line has a
slope of −kBT.

Figure 6. Entropy of activation, Δ‡S, versus the enthalpy of activation,
Δ‡H, for all transitions exhibiting rate constants on the order of the
inverse time-scale of the γ-relaxation. The selection of transitions was
done on the basis of T = 300 K, and the chosen transitions were
heated and cooled under atmospheric pressure, p = 1 atm. The dashed
line has a slope of 1/T (see text for details).
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relaxation at T = 300 K and p = 1 atm, is presented in Figure 7.
The rate constants have been obtained by compressing and

dilating the transition state (at different levels of hydrostatic
pressure) and recreating the IRC at every pressure level. The
new minima reached by IRC are then allowed to minimize
their Gibbs energy under the same pressure. For that specific
relaxation, we can estimate the apparent activation volume via
eq 27: Δ#V = 22.475 cm3/mol. For the same temperature and
pressure, the volume of styrene monomer can be estimated as
Vmon(T = 300 K, p = 1 atm) ≃ 101 cm3/mol. The comparison
between the two volumes indicates that only a small fraction of
a styrene monomer participates in this specific transition.
While the molecular origin of the γ- relaxation is still unclear,
our findings lie on par with the latest neutron scattering
interpretation of the transition as local low-amplitude motions
rather than full flips of the phenyl rings.44

3.4. Response to Imposed Strain in One Direction. An
interesting feature observed in the case of saddle point
searching under constant pressure is that saddle points are
slightly diluted to allow for reorganization of the polymer
during the transition through them. By changing from the
Gibbs energy representation to the A** free energy
representation, we, more or less, artificially constrain the
expansion of the system in the principal direction of
deformation by determining the principal strain ε. If the
system would assume macroscopic dimensions, its size under
the conditions of (T, p) would be the same as its size under

= =T p( , 0, ). However, this is not the case we
showed in Figure 2 due to the discrete nature of the matter
at the length-scales of molecular simulations.26 Transition
states in the A** landscape and their connected minima are
characterized by the same ε but different ε⊥. The distribution
of the strain in the lateral directions with respect to the
configuration of the transition state (that is considered
reference ε⊥

‡ = 0) is presented in Figure 8.

The differences in the lateral strains are small, on the order
of 10−2 at most, but clearly present. We observe that the main
part of the distribution is located on the negative semiaxis. A
transition state involves an elementary structural rearrange-
ment of the system. For that rearrangement to take place, the
system should allow some free space; i.e., the dimensions of
the system at the saddle point should be slightly larger (or
equivalently the strain imposed to arrive at the minima
negative). However, there is a fair part of it that is found on the
positive semiaxis, indicating actual contraction of the saddle
points with respect to the minima. We consider that this
should probably be an artifact of the finite-sized simulation
domains we are employing. Despite being dense and consisting
of a few thousands of atoms, our simulations systems are still
extremely small by macroscopic criteria and far from being
homogeneous and uniform. Moreover, a transition occurring
locally within a small region will become less important if the
size of the studied system becomes larger. Even by considering
the maximum contraction of the system by ε⊥,A/B = −0.02, the
corresponding “work”, carried out by the system (due to its
contraction) while it moves from the saddle point to the
minimum, W = V‡ε⊥σ⊥≃ 0.005 kcal/mol, is only a minute
fraction of the thermal energy at the same temperature, kBT ≃
0.6 kcal/mol.
Having set the framework for strain-controlled uniaxial

deformation experiments, we can now set out to explore the
response to deformation of a free energy minimum and its
surrounding transition states. In complete analogy to our
discussion concerning the Gibbs energy above, there are two
ways of obtaining the transition states as a function of imposed
deformation. We can either deform the initial minimum and
initiate new saddle point searches at every point along the
deformation path, or search for saddle points for ε = 0 and
then deform the saddle points by following the same protocol
as the minimum. For all three transition states included in
Figure 9, we have followed both routes that proved fully

Figure 7. Pressure dependence of the rate constant of an elementary
structural transition whose rate constant at T = 300 K and p = 1 atm
lies within the γ-relaxation regime. The ordinate of the figure follows
the convention introduced by Floudas and Reisinger.49

Figure 8. Distribution of strain of free energy minima with respect to
the transition states at which the IRC calculation was initiated. In the
inset to the figure a simple schematic presents the definition of the
strain in connection to the discussion in Section 2.8. All stationary
points of the free energy are not deformed in the principal direction,
i.e., ε = 0.
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equivalent, up to the limits of stability of the transition states,
indicated by the dashed vertical lines in the figure.
We can probably discern three groups of transition states for

a given minimum in terms of their response to imposed strain
ε. Since we impose ε, the only way to check the dimensions is
by monitoring ε⊥. The first group includes the transition states
that have their free energy minimum at the same dimensions as
the minimum, i.e., ε⊥,A/B ≃ 0 (we should note the convention
of using the transition state as the reference configuration of
every triplet of states). The second is the group of transition
states whose volume is smaller than the volume of the

neighboring minima, V‡ < VA/B at ε = 0, thus ε⊥,A/B > 0, like the
purple line in Figure 9a. As we deform this group of transition
states (by imposing ε), they yield a free energy saddle point at
higher ε than the free energy minimum (e.g., around ε ≃ 0.01
for the purple line of Figure 9). For this group of transitions,
we can reasonably anticipate that the rate constant increases
upon extension and decreases upon compression, see also
Figure 9b, since the parabolic free energy curve of the saddle
point is translated to higher ε with respect to the parabolic free
energy curve of the minimum. Finally, there is a third group of
transition states that would produce the opposite behavior; i.e.,

Figure 9. Response of several transitions states, linked to the same reference local minimum, to deformation. (a) Free energy energy as a function
of strain for uniaxial extension/compression. (b) Transition rate as a function of the applied strain in the loading direction. All deformation
simulations are performed at T = 300 K.

Figure 10. Response of triplet of connected minima and transition state to deformation. (a) Helmholtz energy as a function of strain for pure
uniaxial extension/compression. (b) Potential energy as a function of strain.
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the transition states are characterized by higher volumes than
the neighboring minima, V‡ > VA/B or ε⊥,A/B < 0. We anticipate
that this group of transitions is the most important one, since
the transition states are slightly diluted allowing for easier
rearrangement of the atoms.
The dependence of the transition rate constant on strain is

complicated since it depends on the relative position (on the ε-
axis) of the minimal free energy of the potential energy
minimum and the potential energy saddle point. The overall
balance of the tendencies of the rate constants would probably
give rise to a “macroscopic” Eyring-type dependence of rate
constant on strain and eventually stress. It can be obtained
only after averaging all of the aforementioned groups of
transition states, and the immediate connection of the
microscopic measurements like Figure 9b to simplified
macroscopic models is still elusive.
The last point to deal with is the mechanism of collapse of

transition states onto the connected minima as a result of
applied deformation. Figure 10 presents the behavior of the
free energy and the potential energy as a function of imposed
strain for a triplet of connected states. Initially, we have a
triplet of connected states, depicted by the free energy curves
of different colors in Figure 10a. The transition state is initially
well-separated from the two minima. However, upon
compression, we observe that the transition state disappears
abruptly, collapsing onto one of the two minima. This event is
not smooth, even after decreasing the step-size in strain used
for the free energy calculations. We speculate that there are
two reasons for this sudden disappearance of the saddle point.
First, the system contains a complex molecular architecture
encompassing large side groups that behave as rigid domains
upon deformation, giving rise to irreversible (plastic) events,
e.g., the flip of a phenyl ring. Massive events of this kind are
extremely sensitive to the local environment shaped by the
deformation and give rise to sharp discontinuities. Another
reason contributing to the disappearance of stationary points
may be the finite size of our simulation systems. If we could
allow a macroscopically sized (in the limit of length-scales that
matter can be treated as a continuum) simulation box to
change shape in a continuous way (imposing one element of
the strain tensor and allowing all other elements of the strain
tensor to change independently), we might be able to observe
a smooth transition from the saddle point to the neighboring
minima. This is a point of ongoing research.

4. CONCLUSIONS
The response to temperature and imposed deformation of
transition states corresponding to elementary structural
rearrangement events were studied for atactic PS specimens.
A combination of methods allowed us to sample triplets of
connected states (pairs of minima connected to each other via
first-order saddle points) on the free energy landscape shaped
by the externally imposed constraints. All states were under the
same mechanical conditions (e.g., strain imposed in the
loading direction and pressure applied to the cross-section in
the lateral directions). The coupling of an efficient saddle point
searching method6 to a framework for performing minimiza-
tion of free energy functionals13 enables the transformation of
the potential energy landscape to a free energy landscape for
any system described by classical molecular force fields. This
provides a shortcut to the, otherwise intractable, problem of
exploring a free energy landscape where both the mircroscopic
(atomic coordinates) and macroscopic (simulation box

geometry) conditions change simultaneously. Our framework
is rigorous and can predict properties that are experimentally
accessible.
As far as the elementary transitions on the free energy

landscape of PS are concerned, we were able to unravel a
wealth of information. The sampled transitions follow
Arrhenius dependence on temperature to a very good
approximation; the relevant activation energies were found to
be in good agreement to the available experimental estimates.
For transitions in the range of the macroscopic γ-relaxation of
PS, a compensation relation between enthalpy and entropy was
observed, in line with recent experimental findings.51 The
dependence of transition rates on the pressure provided us
with an estimate of the size of the regions of the material that
participate to the transition. For the subglass relaxations (δ-
and γ-), the size of the participating regions was smaller than
the average size of a polymer repeat unit. Overall, for every
elementary structural transition (through a transition state that
is a first-order saddle point), we accessed both its time-scale
(and its dependence on temperature) and its length-scale (by
estimating the apparent activation volume of the transition).
By imposing uniaxial deformation instead of pressure, we could
study the response of the transition states to the imposed strain
and tried to connect our findings to empirical laws of the strain
dependence of transition rates. However, this is a formidable
task since each individual elementary transition behaves in a
completely different way. Any macroscopic behavior could
only be obtained by extensive averaging over a vast ensemble
of different transitions. Finally, the collapse of transition states
to their neighboring minima as a result of their deformation
was observed to be an abrupt discontinuity on the free energy
landscape. There is still a plethora of unresolved problems, e.g.,
the effect of temperature on the deformation pattern of a
triplet of connected states (two local minima communicating
over a transition state), or the extension of the methods to thin
films, which are going to be addressed in future studies.

■ AUTHOR INFORMATION

Corresponding Author
Markus Hütter − Polymer Technology, Department of

Mechanical Engineering, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands; orcid.org/0000-
0002-8161-9002; Phone: +31 40-247 2486;
Email: M.Huetter@tue.nl

Authors
Georgios G. Vogiatzis − Polymer Technology, Department of

Mechanical Engineering, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands; Dutch Polymer
Institute, 5600 AX Eindhoven, The Netherlands;
orcid.org/0000-0002-3817-7755

Lamber̀t C.A. van Breemen − Polymer Technology,
Department of Mechanical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands;
orcid.org/0000-0002-0610-1908

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcb.2c04199

Notes
The authors declare no competing financial interest.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04199
J. Phys. Chem. B 2022, 126, 7731−7744

7742

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Markus+Hu%CC%88tter"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8161-9002
https://orcid.org/0000-0002-8161-9002
mailto:M.Huetter@tue.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Georgios+G.+Vogiatzis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3817-7755
https://orcid.org/0000-0002-3817-7755
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lambe%CC%80rt+C.A.+van+Breemen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0610-1908
https://orcid.org/0000-0002-0610-1908
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04199?ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ ACKNOWLEDGMENTS
This research forms part of the research program of the Dutch
Polymer Institute (DPI), projects #745ft14 and #820. Inspiring
discussions with Prof. Doros N. Theodorou (National
Technical University of Athens, Greece) and Dr. Iain
McKenzie (TRIUMF Vancouver, Canada) are gratefully
acknowledged.

■ REFERENCES
(1) Goldstein, M. Viscous liquids and the glass transition: a potential
energy barrier picture. J. Chem. Phys. 1969, 51, 3728−3739.
(2) Debenedetti, P. G.; Stillinger, F. H. Supercooled liquids and the
glass transition. Nature 2001, 410, 259−267.
(3) Stillinger, F. H.; Weber, T. A. Hidden structure in liquids. Phys.

Rev. A 1982, 25, 978−989.
(4) Stillinger, F. H.; Weber, T. A. Dynamics of structural transitions
in liquids. Phys. Rev. A 1983, 28, 2408−2416.
(5) Theodorou, D. N.; Suter, U. W. Atomistic modeling of
mechanical properties of polymeric glasses. Macromolecules 1986,
19, 139−154.
(6) Vogiatzis, G. G.; van Breemen, L. C. A.; Hütter, M. Structural
Transitions in Glassy Atactic Polystyrene Using Transition-State
Theory. J. Phys. Chem. B 2021, 125, 7273−7289.
(7) Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem.
1970, 74, 4161−4163.
(8) Fukui, K. The path of chemical reactions - the IRC approach.

Acc. Chem. Res. 1981, 14, 363−368.
(9) Mousseau, N.; Barkema, G. T. Traveling through potential
energy landscapes of disordered materials: The activation-relaxation
technique. Phys. Rev. E 1998, 57, 2419−2424.
(10) Munro, L. J.; Wales, D. J. Defect migration in crystalline silicon.

Phys. Rev. B 1999, 59, 3969−3980.
(11) Baker, J.; Chan, F. The location of transition states: A
comparison of Cartesian, Z-matrix, and natural internal coordinates. J.
Comput. Chem. 1996, 17, 888−904.
(12) Page, M.; McIver, J. W. On evaluating the reaction path
Hamiltonian. J. Chem. Phys. 1988, 88, 922−935.
(13) Vogiatzis, G. G.; van Breemen, L. C.; Theodorou, D. N.;
Hütter, M. Free energy calculations by molecular simulations of
deformed polymer glasses. Comput. Phys. Commun. 2020, 249,
107008.
(14) Lempesis, N.; Vogiatzis, G. G.; Boulougouris, G. C.; van
Breemen, L. C.; Hütter, M.; Theodorou, D. N. Tracking a glassy
polymer on its energy landscape in the course of elastic deformation.
Mol. Phys. 2013, 111, 3430−3441.
(15) Mols, R. H. M.; Vogiatzis, G. G.; van Breemen, L. C. A.; Hütter,
M. Microscopic Carriers of Plasticity in Glassy Polystyrene. Macromol.
Theory Simul. 2021, 30, 2100021.
(16) Mott, P. H.; Argon, A. S.; Suter, U. W. Atomistic modelling of
plastic deformation of glassy polymers. Philos. Mag. A 1993, 67, 931−
978.
(17) Eyring, H. Viscosity, Plasticity, and Diffusion as Examples of
Absolute Reaction Rates. J. Chem. Phys. 1936, 4, 283−291.
(18) Malandro, D. L.; Lacks, D. J. Relationships of shear-induced
changes in the potential energy landscape to the mechanical
properties of ductile glasses. J. Chem. Phys. 1999, 110, 4593−4601.
(19) Malandro, D. L.; Lacks, D. J. Molecular-Level Mechanical
Instabilities and Enhanced Self-Diffusion in Flowing Liquids. Phys.
Rev. Lett. 1998, 81, 5576−5579.
(20) Lacks, D. J. Energy Landscapes and the Non-Newtonian
Viscosity of Liquids and Glasses. Phys. Rev. Lett. 2001, 87, 225502.
(21) Chung, Y. G.; Lacks, D. J. Atomic mobility in strained glassy
polymers: The role of fold catastrophes on the potential energy
surface. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 1733−1739.
(22) Maloney, C. E.; Lacks, D. J. Energy barrier scalings in driven
systems. Phys. Rev. E 2006, 73, 061106.

(23) Vogiatzis, G. G.; Megariotis, G.; Theodorou, D. N. Equation of
State Based Slip Spring Model for Entangled Polymer Dynamics.
Macromolecules 2017, 50, 3004−3029.
(24) Kopsias, N. P.; Theodorou, D. N. Elementary structural
transitions in the amorphous Lennard-Jones solid using multidimen-
sional transition-state theory. J. Chem. Phys. 1998, 109, 8573−8582.
(25) Lyulin, A. V.; Michels, M. A. J. Molecular dynamics simulation
of bulk atactic polystyrene in the vicinity of Tg. Macromolecules 2002,
35, 1463−1472.
(26) Vogiatzis, G. G.; Theodorou, D. N. Local segmental dynamics
and stresses in polystyrene−C60 mixtures. Macromolecules 2014, 47,
387−404.
(27) Born, M.; Huang, K. Dynamical Theory of Crystal Lattices;
Oxford Classic Texts in the Physical Sciences; Clarendon Press:
Oxford, UK, 1998.
(28) Flory, P. J. Foundations of rotational isomeric state theory and
general methods for generating configurational averages. Macro-
molecules 1974, 7, 381−392.
(29) Go̅, N.; Scheraga, H. A. On the use of classical statistical
mechanics in the treatment of polymer chain conformation.
Macromolecules 1976, 9, 535−542.
(30) Theodorou, D. N.; Suter, U. W. Geometrical considerations in
model systems with periodic boundaries. J. Chem. Phys. 1985, 82,
955−966.
(31) Sangster, M.; Strauch, D. Localized modes associated with
defects in ionic crystals. J. Phys. Chem. Solids 1990, 51, 609−639.
(32) Tidor, B.; Karplus, M. The contribution of vibrational entropy
to molecular association: The dimerization of insulin. J. Mol. Biol.
1994, 238, 405−414.
(33) Andricioaei, I.; Karplus, M. On the calculation of entropy from
covariance matrices of the atomic fluctuations. J. Chem. Phys. 2001,
115, 6289−6292.
(34) Weiner, J. Statistical Mechanics of Elasticity; Wiley-Interscience:
New York, 1983.
(35) Hetnarski, R.; Eslami, M. Thermal Stresses − Advanced Theory

and Applications; Solid Mechanics and Its Applications; Springer
Netherlands: Dordrecht, NL, 2008.
(36) Li, J. C. M.; Oriani, R. A.; Darken, L. S. The Thermodynamics
of Stressed Solids. Z. Phys. Chem. (Berlin, Ger.) 1966, 49, 271−290.
(37) McLellan, A. G.; Denbigh, K. G. The chemical potential in
thermodynamic systems under non-hydrostatic stresses. Proc. R. Soc.
London, Ser. A 1968, 307, 1−13.
(38) Barron, T. H. K.; Munn, R. W. Thermodynamics of solids
under stress. Pure Appl. Chem. 1970, 22, 527−534.
(39) Morris, J. W., Jr. Notes on the Thermodynamics of Solids;
University of California: Berkeley, 2007; pp 366−411.
(40) Barkema, G. T.; Mousseau, N. Event-based relaxation of
continuous disordered systems. Phys. Rev. Lett. 1996, 77, 4358−4361.
(41) Baker, J. An algorithm for the location of transition states. J.

Comput. Chem. 1986, 7, 385−395.
(42) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current Status
of Transition-State Theory. J. Phys. Chem. 1996, 100, 12771−12800.
(43) Page, M.; Doubleday, C.; McIver, J. W. Following steepest
descent reaction paths. The use of higher energy derivatives with ab
initio electronic structure methods. J. Chem. Phys. 1990, 93, 5634−
5642.
(44) Arrese-Igor, S.; Arbe, A.; Frick, B.; Colmenero, J. Glassy
dynamics of polystyrene by quasielastic neutron scattering. Macro-
molecules 2011, 44, 3161−3168.
(45) Grigoriadi, K.; Putzeys, T.; Wubbenhorst, M.; Breemen, L. C.
A.; Anderson, P. D.; Hutter, M. Effect of low-temperature physical
aging on the dynamic transitions of atactic polystyrene in the glassy
state. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1394−1401.
(46) Dyre, J. C. A phenomenological model for the Meyer-Neldel
rule. J. Phys. C: Solid State Phys. 1986, 19, 5655−5664.
(47) Yelon, A.; Movaghar, B. Microscopic explanation of the
compensation (Meyer-Neldel) rule. Phys. Rev. Lett. 1990, 65, 618−
620.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04199
J. Phys. Chem. B 2022, 126, 7731−7744

7743

https://doi.org/10.1063/1.1672587
https://doi.org/10.1063/1.1672587
https://doi.org/10.1038/35065704
https://doi.org/10.1038/35065704
https://doi.org/10.1103/PhysRevA.25.978
https://doi.org/10.1103/PhysRevA.28.2408
https://doi.org/10.1103/PhysRevA.28.2408
https://doi.org/10.1021/ma00155a022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma00155a022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.1c02618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.1c02618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.1c02618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100717a029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar00072a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevE.57.2419
https://doi.org/10.1103/PhysRevE.57.2419
https://doi.org/10.1103/PhysRevE.57.2419
https://doi.org/10.1103/PhysRevB.59.3969
https://doi.org/10.1002/(SICI)1096-987X(199605)17:7<888::AID-JCC12>3.0.CO;2-7
https://doi.org/10.1002/(SICI)1096-987X(199605)17:7<888::AID-JCC12>3.0.CO;2-7
https://doi.org/10.1063/1.454172
https://doi.org/10.1063/1.454172
https://doi.org/10.1016/j.cpc.2019.107008
https://doi.org/10.1016/j.cpc.2019.107008
https://doi.org/10.1080/00268976.2013.825018
https://doi.org/10.1080/00268976.2013.825018
https://doi.org/10.1002/mats.202100021
https://doi.org/10.1080/01418619308213969
https://doi.org/10.1080/01418619308213969
https://doi.org/10.1063/1.1749836
https://doi.org/10.1063/1.1749836
https://doi.org/10.1063/1.478340
https://doi.org/10.1063/1.478340
https://doi.org/10.1063/1.478340
https://doi.org/10.1103/PhysRevLett.81.5576
https://doi.org/10.1103/PhysRevLett.81.5576
https://doi.org/10.1103/PhysRevLett.87.225502
https://doi.org/10.1103/PhysRevLett.87.225502
https://doi.org/10.1002/polb.23166
https://doi.org/10.1002/polb.23166
https://doi.org/10.1002/polb.23166
https://doi.org/10.1103/PhysRevE.73.061106
https://doi.org/10.1103/PhysRevE.73.061106
https://doi.org/10.1021/acs.macromol.6b01705?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.6b01705?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.477522
https://doi.org/10.1063/1.477522
https://doi.org/10.1063/1.477522
https://doi.org/10.1021/ma011318u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma011318u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma402214r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma402214r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma60039a022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma60039a022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma60052a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma60052a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.448472
https://doi.org/10.1063/1.448472
https://doi.org/10.1016/0022-3697(90)90140-B
https://doi.org/10.1016/0022-3697(90)90140-B
https://doi.org/10.1006/jmbi.1994.1300
https://doi.org/10.1006/jmbi.1994.1300
https://doi.org/10.1063/1.1401821
https://doi.org/10.1063/1.1401821
https://doi.org/10.1524/zpch.1966.49.3_5.271
https://doi.org/10.1524/zpch.1966.49.3_5.271
https://doi.org/10.1098/rspa.1968.0170
https://doi.org/10.1098/rspa.1968.0170
https://doi.org/10.1351/pac197022030527
https://doi.org/10.1351/pac197022030527
https://doi.org/10.1103/PhysRevLett.77.4358
https://doi.org/10.1103/PhysRevLett.77.4358
https://doi.org/10.1002/jcc.540070402
https://doi.org/10.1021/jp953748q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp953748q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.459634
https://doi.org/10.1063/1.459634
https://doi.org/10.1063/1.459634
https://doi.org/10.1021/ma2001178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma2001178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/polb.24883
https://doi.org/10.1002/polb.24883
https://doi.org/10.1002/polb.24883
https://doi.org/10.1088/0022-3719/19/28/016
https://doi.org/10.1088/0022-3719/19/28/016
https://doi.org/10.1103/PhysRevLett.65.618
https://doi.org/10.1103/PhysRevLett.65.618
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(48) Yelon, A.; Movaghar, B.; Crandall, R. S. Multi-excitation
entropy: its role in thermodynamics and kinetics. Rep. Prog. Phys.
2006, 69, 1145−1194.
(49) Floudas, G.; Reisinger, T. Pressure dependence of the local and
global dynamics of polyisoprene. J. Chem. Phys. 1999, 111, 5201−
5204.
(50) Harmandaris, V. A.; Floudas, G.; Kremer, K. Temperature and
Pressure Dependence of Polystyrene Dynamics through Molecular
Dynamics Simulations and Experiments. Macromolecules 2011, 44,
393−402.
(51) McKenzie, I.; Fujimoto, D.; Karner, V. L.; Li, R.; MacFarlane,
W. A.; McFadden, R. M. L.; Morris, G. D.; Pearson, M. R.; Raegen, A.
N.; Stachura, M.; Ticknor, J. O.; Forrest, J. A. A β-NMR study of the
depth, temperature, and molecular-weight dependence of secondary
dynamics in polystyrene: Entropy−enthalpy compensation and
dynamic gradients near the free surface. J. Chem. Phys. 2022, 156,
084903.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04199
J. Phys. Chem. B 2022, 126, 7731−7744

7744

https://doi.org/10.1088/0034-4885/69/4/R04
https://doi.org/10.1088/0034-4885/69/4/R04
https://doi.org/10.1063/1.479774
https://doi.org/10.1063/1.479774
https://doi.org/10.1021/ma102179b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma102179b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ma102179b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0081185
https://doi.org/10.1063/5.0081185
https://doi.org/10.1063/5.0081185
https://doi.org/10.1063/5.0081185
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04199?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

