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Abstract: Uniform flowerlike microspheres Cd2+/Fe3+ co-doped BiOBr were prepared with the aid
of the microwave hydrothermal process. The results indicate that the degradation performance of
Bi1−xCdxOBr and Bi1−xFexOBr are 1.31 and 2.05 times that of BiOBr for RhB, respectively. Moreover,
the novel Cd2+/Fe3+ co-doped BiOBr photocatalysts with ~0.42 eV impurity bands presented remark-
ably enhanced photocatalytic activities with being 3.10 times that of pure BiOBr, by achieving e−/h+

efficient separation and narrowed bandgap with the ions synergistic effect of Cd2+ and Fe3+. Based
on DFT insights, the photodegradation mechanism was systematically studied that the conversion of
multivalent Fe3+ ions promoted the production of •O2

−, and Cd2+ ions worked as electron transfer
mediators, which elucidated that the •O2

− and h+
VB mainly participated in the catalytic reaction.

The experimental and theoretical results show that the synergistic effects of multi-ion doping have
great potential in the field of photocatalysis.

Keywords: BiOBr; Cd2+/Fe3+-doping; density function theory; microsphere; photocatalytic activity

1. Introduction

In the past decades, with the increase of volumes of polluted water, the effective
treatment of polluted water has become an urgent problem [1–3]. Organic pollutants are
one of the main pollutants; although there are many methods to deal with them, there are
still many limitations to solve the problem, which has always been the driving force for
the development of water purification technology with low-cost and high-efficiency, so
as to solve serious environmental problems and meet the government’s environmental
requirements. As early as 1972, Honda and Fujishima proposed that TiO2 with single-
crystal electrodes as photocatalysts could be applied to decompose water under ultraviolet
irradiation [4–6]. Since then, photocatalysis, with economic, efficient, and environmental
characteristics, has attracted researchers’ attention in the wastewater treatment field.

Some of the existing oxide semiconductor materials (i.e., TiO2, ZnO) have been uti-
lized in the field of photocatalysis, and some researchers have paid more effort to modify
TiO2 [5,7,8] and study non-TiO2 semiconductors [9–11]. Unfortunately, these oxide semi-
conductors, with a high bandgap of above 3.0 eV, can only be activated under ultraviolet
light, which occupies less than 5% of the solar spectrum [12,13]. To be precise, photo-
catalysts with a larger bandgap exhibit lower utilization of the sunlight spectrum under
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the same conditions. With more understanding of semiconductor materials and photo-
catalysis mechanism, the application of semiconductor materials in the photocatalysis
field has made dramatic progress, which also contributes to environmental protection and
energy conservation.

Currently, the semiconductor photocatalysts with exposed different crystal planes
have been studied, and it has been proved that different exposed crystal planes would
result in different electron structures, which would further lead to various energy band
levels. More importantly, the energy band levels of the semiconductor materials directly
affect their photocatalytic performance [14–16]. Hence, layered Bi-based photocatalysts
have become a hot topic. The BiOX (X = Cl, Br, I), exhibiting potential value and prospects
in The field of photocatalysis, has been widely investigated [17–21]. BiOX has been proved
to be an ideal carrier for heterogeneous catalytic reactions because of its visible light
response, high chemical stability, etc. [22,23]. The doping process with rare-earth atoms and
transition metals (TMs) in materials is considered a new way to promote the photocatalytic
performance of materials. The doping can create vacancies or defects and change the
bandgap in BiOX materials. It can lead to modifications to the intrinsic properties of
materials by redistribution of electrons. The doped impurity atoms can provide impurity
energy levels and change charge transfer properties of materials, leading to enhanced
performance in some catalytic reactions [24–28].

A soft chemical method was applied to fabricate BiOBr oxyhalide photocatalysts,
which exhibited excellent photocatalytic ability in the light [29]. Hu et al. [30] successfully
prepared Bi1−xCexOBr via the hydrothermal process. It can be seen that the morphology
of samples gradually changed with the increase of Ce3+ doping amount, and a blueshift oc-
curred by increasing the bandgap of samples. Liu et al. [31] synthesized Bi1−xAlxOBr with
different Al3+ content with a solvothermal process. The high photocatalytic performance
was considered to arise due to the separation of e−-h+ and enough active sites. Ti-doped
BiOBr photocatalyst was prepared by a two-component process by Wang et al. [32]; the pho-
tocatalytic performance of Ti-doped BiOBr was improved by increasing BET surface area.
The La3+-doped BiOBr was prepared [33], and the high photocatalytic performance of sam-
ples was attributed to the effective separation of e−-h+ pairs and the narrow bandgap. The
holes were considered as the main active substances. The homogeneous porous Fe3+ and
Er3+ ions co-doped Bi5O7I (BiOI) microspheres were synthesized via the solvothermal de-
composition by Liu et al. [34]. Yuan et al. [22] successfully prepared Fe (III)-modified BiOBr
via a facile one-step route. Moreover, they believed that the H2O2 enhanced the perfor-
mance of organic dye degradation and benzyl alcohol oxidation. Liu et al. [35] synthesized
Fe3+ doped BiOBr based on Jace micromotor and explained the excellent photocatalytic
performance under mild pH conditions and concentration of H2O2. Huang et al. [36]
synthesized hierarchical Fe3+-modified BiOCl micro-flowers by a one-step solvothermal
method, which demonstrates that Fe3+-modified BiOCl plays an important role in pro-
moting the degradation of the gaseous decomposition acetaldehyde. Though Cd2+ is
highly toxic [37], Cd2+ ions not only change the properties of the original semiconductors
but also has a great influence on the whole catalytic activity with the increase of dop-
ing amount [38,39]. In addition to controlling the growth of crystal form and the size of
microcrystalline, the surface structure, spectral response range and bandgap energy of
the original semiconductor are further changed by introducing Cd2+ ions via chemical
method [40]. No previous studies about the preparation of Cd2+/Fe3+ co-doped BiOBr
flowerlike microspheres for the photo-decomposition of dye were found.

In this work, Cd2+/Fe3+ co-doped BiOBr flowerlike microspheres were first prepared
by a hydrothermal process and investigated the photocatalytic performance of products by
the degradation of dye. Based on density functional theory (DFT), the enhanced photocat-
alytic activities of BiOBr by Cd2+/Fe3+-doping were discussed in detail. Furthermore, the
possible growth mechanism and photocatalysis mechanism of Cd2+/Fe3+ co-doped BiOBr
were investigated in the work.
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2. Experimental
2.1. Materials

The chemical reagents are all analytical grade in this work. Bismuth nitrate pentahy-
drate (Bi(NO3)3·5H2O) was obtained from Klamar (Shanghai, China). Hexadecyl trimethyl
ammonium bromide (CTAB), cadmium nitrate (Cd(NO3)2·4H2O), iron(III) nitrate non-
ahydrate (Fe(NO3)3·9H2O) and ethylene glycol((CH2OH)2) were purchased from Kermel
(Tianjin, China).

2.2. Catalyst Preparation

First of all, Bi(NO3)3·5H2O and CTAB with 1:1 molar ration (4 mmol) were dissolved
in 20 mL ethylene glycol (EG) with ultrasonication for 15 min, respectively. After 15 min
of magnetic stirring respectively, the above solutions were mixed for 30 min. Then it was
transferred to the Teflon-lined autoclave. Then it was reacted at 180 ◦C for 15 min. After
this, the gray products were cleaned by deionized water (DI) several times, last washed by
alcohol for once, and dried. The Cd2+-doped BiOBr and Fe3+-doped BiOBr microspheres
were synthesized by the above identical experimental procedure with the addition of
2 wt % Cd(NO3)2·4H2O or 2 wt % Fe(NO3)3·9H2O in the reaction solution, which was
denoted as Bi1−xCdxOBr and Bi1−xFexOBr (x = 0.02). The synthesis of Cd2+/Fe3+ co-doped
BiOBr microspheres, denoted as Bi1−x−yCdxFeyOBr (x = y = 0.02), also performed with the
same procedure as Cd(NO3)2·4H2O, with the addition of 2 wt % Fe(NO3)3·9H2O into the
reaction solution.

2.3. Growth Mechanism

The growth mechanism of flowerlike microsphere BiOBr with CTAB as Br source and
the effect of 3d transition metal doping were understood clearly as the purpose. The possi-
ble growth mechanism of flowerlike microsphere Cd2+/Fe3+ co-doped BiOBr photocatalyst,
composing of ultrathin nanosheets, could be proposed according to Scheme 1. After being
ultrasonicated, the Bi(NO3)3·5H2O was completely dissolved in EG with ultrasonication,
and many Bi3+ ions were produced, as shown in Formula (1). Meanwhile, the alkoxides
(Bi(OCH2CH2OH)2+) formed by coordination of EG with Bi3+ (as shown in Formula (2)),
which was linearly aligned structure and stable as a dense [41,42]. After this, the CTAB
was added into the above solution containing Bi3+ as the Bi source and ultrasonicated to
dissolve completely. The CTAB surfactant, acting as both Br source and template, was
forming the lamellar structure [43]. Subsequently, the combination of Br− in CTAB lamellas
with Bi(OCH2CH2OH)2+ induced the formation of a stable chain structure on the template
provided by CTAB (as shown in Scheme 1). In addition, the 2 wt % Cd2+ and 2 wt %
Fe3+ were then added to the above solution. As shown in Formula (3), the flowerlike
microsphere Cd2+/Fe3+ co-doped BiOBr consists of ultrathin nanosheets. The Cd2+/Fe3+

co-doped BiOBr nucleated grew anisotropically and shaped into the lamellar shape with
CTAB as the template (as shown in Scheme 1). Additionally, the layered molecular structure
of the sample (ball stick model) was also given in Scheme 1. In the beginning, the crystalline
nucleus was formed in a supersaturated medium, and then the crystal growth followed. In
hydrothermal reaction, enough energy (180 ◦C in our reaction system) input overcomes
the reaction barrier, so the inherent anisotropic growth habit can happen. The ion radius of
both Fe3+ (0.645 Å) and Cd2+ (0.97 Å) ions are smaller than that of Bi3+ (1.03 Å) ion, and
that of Fe3+ ion is the smallest. As a result, Fe and Cd atoms can easily replace Bi atoms
and form a new stable structure:

Bi(NO3)3·5H2O → Bi3+ + 3NO−3 (1)

Bi3+ + HOCH2CH2OH→ Bi(OCH2CH2OH)2+ + H+ (2)

Bi(OCH2CH2OH)2+ + C16H33(CH3)3N− Br + +xCd2+ + yFe3+

→ Bi1−x−yCdxFeyOBr ↓ + C16H33(CH3)3N+ + H2O + H+ (3)
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Scheme 1. The preparation steps of flowerlike Cd2+/Fe3+ co-doped BiOBr with hexadecyl trimethyl
ammonium bromide (CTAB) as bromine source.

2.4. Characterization

X-ray diffraction (XRD), operating at 40 kV and 30 mA, and the scanning rate of
2 degrees/min, was employed to identify the phase of specimens. Transmission electron
microscope (TEM, JEOL, Tokyo, Japan) was employed to investigate the micromorphology.
The morphology of as-prepared specimens was detected by a scanning electron microscope
(SEM, SIGMA, St. Louis, MO, USA) operating at 3 kV. The energy-dispersive X-ray spec-
troscopy (EDS, JEOL, Tokyo, Japan) was employed to describe the elemental mappings
of photocatalysts. The X-ray photoelectron spectroscopy (XPS, Kratos, Manchester, UK)
were applied to obtain types and valence states of elements. The absorption spectra were
measured by an ultraviolet-visible-near-infrared spectrometer (UV-vis, Metash, Shang-
hai, China) with fast scanning speed; the conversion wavelength of the light source was
310 nm, the slit width was 20 nm, the conversion wavelength of the grating was 720 nm,
and the data interval is 1.0 nm. The molecular vibration information of specimens was
characterized by a Raman spectrometer. The photoluminescence (PL) spectra of products
were obtained by spectrophotometer exciting at 325 nm.

2.5. Photocatalytic Tests

The photocatalytic performance of X-doped BiOBr (X = Cd, Fe, Cd/Fe) was estimated
by obtaining the degradation of Rhodamine B (RhB) under visible light irradiation at
ambient temperature. A 500 W long arc xenon lamp with AM 1.5 filter (100 mW·cm−2)
was employed to simulate the visible light. The 50 mg of the catalyst was dispersed
uniformly into 50 mL RhB solution (RhB = 10 mg·L−1) in a quartz catalyst tube to carry
out the decompose of RhB under visible light irradiation. The above RhB solution with
different samples was continuously stirred for 30 min to ensure an adsorption–desorption
equilibrium in the dark. The 5 mL of suspension was taken out every 15 min during the
irradiation and analyzed by using a UV1901PC ultraviolet-visible spectrophotometer. The
wavelength of RhB was detected at 556 nm. The degradation rate (η) of RhB was evaluated
by the following formula:

η = (C0/C)/C0 (4)

where C means the RhB concentrations at different intervals and C0 is the initial concentra-
tion, respectively.
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3. Results and Discussion

Figure 1 shows the SEM images of pure-BiOBr and X-doped BiOBr (X = Cd, Fe,
Cd/Fe). As shown in Figure 1a, the pure-BiOBr presents a uniform morphology, and the
average diameter is 2–3 µm. Figure 1(a1) shows HRSEM images of BiOBr. The porous
nanospheres formed through stacking a large number of nanosheets can be observed.
The SEM diagrams of Bi1−xCdxOBr (Figure 1(b,b1)), Bi1−xFexOBr (Figure 1(c,c1)) and
Bi1−x−yCdxFeyOBr (Figure 1(d,d1)) are shown, respectively. The average diameter of
Bi1−xCdxOBr and Bi1−xFexOBr microspheres is about 1.5–2 µm. In addition, the incorpora-
tion of Cd2+ and Fe3+ ions have made BiOBr microspheres lose, comparing with that of
pure-BiOBr. However, it can be seen that the particle size of Cd2+/Fe3+ co-doped BiOBr
is almost the same as that of pure-BiOBr, and the morphology is uniform and dense. The
possible reason for this may be the joint effect of Cd2+ and Fe3+ ions in the BiOBr lattice. It
can be seen (Figure 1(b1,c1,d1)) that the porous structure of X-doped BiOBr (X = Cd, Fe,
Cd/Fe) is particularly obvious, and the dispersion and crystallinity of X-doped nanosheets
are better than that of pure-BiOBr (Figure 1(a1)), which agrees with the XRD. In addition,
the surfaces of X-doped BiOBr (X = Cd, Fe, Cd/Fe) are composed of thin nanosheets,
which form porous structures with a large specific surface area. The layered structure
of X-doped BiOBr (X = Cd, Fe, Cd/Fe) provides possibilities for atoms to promote the
separation of e−/h+ pairs. Among all samples, the looseness of nanosheets composed of
Bi1−x−yCdxFeyOBr is the highest. Consequently, the photocatalytic properties of Cd2+/Fe3+

co-doped BiOBr are better than that of single doping [44].
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Figure 1. FESEM and HRSEM images of BiOBr (a,a1), Bi1−xCdxOBr (b,b1), Bi1−xFexOBr (c,c1), Bi1−x−yCdxFeyOBr (d,d1).

XRD patterns of as-prepared samples are presented in Figure 2a, all peaks of samples
can be assigned to BiOBr (JCPDS 09-0393) [45]. Moreover, no other peaks appeared. The
results indicate that the doping of Cd2+ and Fe3+ ions have no obvious effect on the structure
of the matrix. The peaks of X-doped BiOBr (X = Cd, Fe, and Cd/Fe) are all stronger than
that of BiOBr (Figure 2a), which illustrates that the doping of Cd2+ and Fe3+ can improve
the crystallinity of samples. The (102) and (110) peaks are enlarged after Fourier transform
processing, shown in Figure 2b: most of the signals, especially the (110) peak became more
obvious, (102) peak weakened gradually, which is attributed to Fe–O, Cd–O, and Cd–Br.
Consequently, the growth crystal plane along with the (110) crystal plane is enhanced
simultaneously, and the (102) plane is inhibited. The crystalline structure model of the
X-doped BiOBr (X = Cd, Fe, Cd/Fe) is shown in Figure 2c, indicating no obvious change in
the structure. The Raman spectra of as-prepared products are shown in Figure 2d to acquire
the detailed information of Cd2+ and Fe3+-doped BiOBr on the chemical bonds. The main
peak of pure-BiOBr centered with 112.3 cm−2 can be seen in Figure 2d, which is attributed
to the A1g stretching mode of Bi-Br bond. The internal Eg stretching mode of the Bi-Br
bond can be described as the peak of 160.3 cm−2 [46]. Notably, there is a peak at 86.6 cm−2,
which may be attributed to the first-order vibration of A1g during the growth of BiOBr [47].
The peak intensity of Cd2+ and Fe3+-doped BiOBr is lower than that of BiOBr, indicating
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that new chemical bonds formed. The stretching of the A1g and Eg chemical bonds of the
Bi-Br bond were inhibited, and the charge transfer characteristics changed in the BiOBr
crystal lattice [31]. It is found that the Raman spectra of Cd2+ and Fe3+-doped BiOBr shift
to the left, and the Raman spectra of Cd2+/Fe3+ co-doped BiOBr shift ~5.5 cm−1, which
attribute to the bond energy of Cd and Fe atoms with small atomic radius is greater than
that of Bi-O when they form a new bond with O. In addition, different chemical bonds
emerge different normal vibration with Raman activity when the laser is shining on the
sample surface, and the polarization also change.
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The microstructure of the Bi1−x−yCdxFeyOBr microspheres was characterized by TEM
(Figure 3a). The samples, assembled by nanosheets, present the quasi-microsphere-like
structure. The average size of the microspheres is about 2–3 µm. It can be seen that the edge
of samples shows some nanosheets (shown in Figure 3b). High-resolution TEM (HRTEM)
images (illustration in Figure 3) of Bi1−x−yCdxFeyOBr shows that the lattice fringe spacing
of 0.281 and 0.274 nm ascribed to the (102) and (110) crystal plane of monoclinic BiOBr
(PDF# 09-0393), respectively. These results imply that the Cd2+ and Fe3+ do not change
the main morphology of BiOBr. In addition, the element distribution corresponding with
TEM (Figure 3c) was detected. As shown in Figure 3d–h, the Bi, O, Br, Cd, and Fe elements
distributed well. The above results demonstrate that Cd2+ and Fe3+ were successfully
synthesized in the BiOBr materials, respectively.

The surface chemical composition of the BiOBr, Bi1−xCdxOBr, Bi1−xFexOBr,
Bi1−x−yCdxFeyOBr samples was investigated by XPS (Figure 4a–f. Figure S1 shows the
survey of Fe/Cd co-doped BiOBr, indicating that Bi, O, Br, Fe, Cd, and C atoms, without
other elements, existed on the surface of those samples. In the Bi 4f spectrum (Figure 4a),
two peaks, locating at 156.45 and 161.7 eV, are assigned to the Bi 4f7/2 and Bi 4f5/2 of Bi3+ in
Bi1−x−yCdxFeyOBr, respectively, which can be further fitted into two pairs of Bi3+ species
coordinated with lattice oxygen (157.4 eV) and surface oxygen (162.5 eV) species [48]. The
O 1 s spectrum in Bi1−x−yCdxFeyOBr (Figure 4b) is fitted into three peaks located at 527.3,
529.3, and 530.8 eV, associating with lattice oxygen, chemically adsorbed oxygen, and
oxygen vacancy, respectively [49,50]. The peaks at 65.35 and 66.3 eV are attributed to Br
3d (Figure 4c) [48]. Three peaks located at 282.35, 284, and 286.15 eV are assigned to C1s
(shown in Figure 4d); they are assigned to adventitious carbon species. The Cd 3d spectrum
of Bi1−x−yCdxFeyOBr (Figure 4e) can be fitted into two peaks located at 405.3 and 412.3 eV,
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which can be regarded as contributions from Cd-O. The Fe 2p spectrum (Figure 4f) was
seen at ~707.25 eV, which attributes Fe 2p3/2 to ferric (III) ions. Consequently, Fe and Cd
atoms have successfully replaced Bi atoms into the lattice and formed stable structures
with their stable valence states (Fe (III), Cd (II)).
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The photocatalytic performance of products was evaluated by the photodegradation
of Rhodamine B (RhB). Figure 5a shows the variation of RhB concentration (C/C0) with
the photodegradation time of all samples. The photodegradation rates of RhB solution
for BiOBr, Bi1−xCdxOBr, Bi1−xFexOBr and Bi1−x−yCdxFeyOBr reached 59.3%, 66.9%, 81.9%
and 98.8%, respectively. Obviously, the photocatalytic activity of Bi1−x−yCdxFeyOBr is the
highest among all the specimens. The UV-vis spectra of the RhB solution are presented in
Figure S2a–d. The results describe the gradient change of RhB concentration over pure-
BiOBr and X-doped BiOBr (X = Cd, Fe, Cd/Fe) with irradiation time. The characteristic
peak of as-prepared samples occurs at ~553 nm. Strangely, with the increase of irradiation
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time, the blueshift ~43.5 nm of the absorption peak of Bi1−xCdxOBr can be found obviously,
while the Bi1−xFexOBr does not. The reason for the relatively small blueshift (~20 nm) of
Cd2+/Fe3+ co-doped BiOBr is that the blueshift is inhibited by Fe3+ ions, which illustrates
the synergistic effect of Cd2+ and Fe3+ ions exists in the system. The peak intensity of doped
samples decreased by increasing irradiation time, and the characteristic peak of Cd2+/Fe3+

co-doped BiOBr systems become almost disappeared after 100 min. It proves that the
synergistic effect of Cd2+ and Fe3+ ions promote the degradation of organic pollutants.
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The data of the photocatalytic performance test of the product accords with the
pseudo-first-order model. The pseudo-first-order kinetic constant k is employed to evaluate
the photodegradation rate (Figure 5b) to clarify the reaction kinetics of RhB [51]. The
constants k of BiOBr, Bi1−xCdxOBr, Bi1−xFexOBr and Bi1−x−yCdxFeyOBr were calculated
to be 0.00795, 0.01038, 0.01628 and 0.02430 min−1, respectively (as shown in Figure 5c).
The data demonstrate that the constants k for RhB by Bi1−x−yCdxFeyOBr are 3.10 times
that of BiOBr. The kinetics study of the RhB dye has proved the ions matching and
synergistic effect of Cd2+ and Fe3+ in the Bi1−x−yCdxFeyOBr photocatalysts; therefore, the
photocatalytic performance on degrading RhB is improved greatly.

The absorption spectra of products are shown in Figure 6a. The spectrum, respond-
ing at ~430 nm, indicating that BiOBr is excited by UV and visible light. The spectral
absorption edge of Bi1−xFexOBr shows that a redshift of ~95 nm occurs, and the spectral
absorption of Bi1−xCdxOBr begins at 525 nm, which is earlier than that of BiOBr with the
absorption begins at 475 nm. The redshift of ~145 nm could be observed obviously with
the absorption edge of Bi1−x−yCdxFeyOBr. This result demonstrates that the absorption
range was extended by Cd2+, Fe3+ ions doping in visible light. The Cd2+/Fe3+ co-doped
BiOBr exhibits the strongest light absorption among samples. However, some drifts can be
seen in the absorbance spectra (Figure 6a), which attributes to the specular reflection and
hue of photocatalysts. Avoiding this spectral issue, the Kubelka–Munk equation, basing on
Tauc plots of (αhv)1/2 versus energy (hv) (as shown in Figure 6b), was employed:

αhv = A (hv − Eg)1/2 (5)
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In the formula, α, h, v, and A are absorption coefficient, Planck constant, optical
frequency, and proportional constant, respectively [30,52–54]. In addition, the absorption
edges and Eg of BiOBr, Bi1−xCdxOBr, Bi1−xFexOBr, and Bi1−x−yCdxFeyOBr photocatalysts
were calculated and listed in Table 1.

Table 1. Absorption edges and band gaps for photocatalysts.

Sample Absorption Edge (nm)
Bandgap (eV)

Theoretical Values Experimental Values

BiOBr 427.5 2.45 2.78
Cd@BiOBr 431.5 2.24 2.74
Fe@BiOBr 462.5 2.39 2.31

Cd/Fe@BiOBr 484 2.38 2.12

The photoluminescence (PL) spectra of pure-BiOBr and X-doped BiOBr (X = Cd, Fe,
Cd/Fe) were obtained (Figure 6c). The PL data were employed to interpret the recombina-
tion rate of photogenerated e− and h+, and the weaker PL intensity indicated the lower
recombination efficiency [54–59]. Peaks at 416 and 517 nm were detected, as shown in
Figure 6c. The PL intensity of doped BiOBr was dramatically lower than that of BiOBr, and
that of Bi1−x−yCdxFeyOBr was the lowest among all samples. The results indicate that Cd2+

and Fe3+ ions repress the recombination of e− and h+ and promote transferability carriers.
In addition, according to the band structure results calculated by DFT, the impurity level
was introduced into the BiOBr after doping of Fe3+ ions, which further contributed to
the separation of e− and h+. Consequently, the photocatalytic performance of BiOBr was
promoted [60].

The electronic band structures of BiOBr, Bi1−xCdxOBr, Bi1−xFexOBr, and Bi1−x−yCdxFeyOBr
were obtained by DFT code to illustrate the Cd2+, and Fe3+-doping effects (Figure 7).
As shown in Figure 7a–d, the bandgap of pure-BiOBr, Bi1−xCdxOBr, Bi1−xFexOBr and
Bi1−x−yCdxFeyOBr was 2.45 eV, 2.24 eV, 2.39 eV and 2.38 eV, respectively. Noteworthily, the
experimental values measured by the UV-vis spectrum (shown in Table 1) were larger than
the theoretical ones. However, such deviation was common, especially when calculated
values via the VASP (Vienna Ab-initio Simulation Package) code [61]. The bandgap of
doped-BiOBr was smaller than that of BiOBr, which was in agreement with absorption
spectra (Figure 6a). The electronic energy level of doped-BiOBr was abundant, which
demonstrated additional electronic states occur near the Fermi level. This result could be
attributed to some impurity energy levels [62,63]. The bandgap width of doped BiOBr
occurred several notable changes: (1) the edge of the CB of Bi1−xCdxOBr (as shown in
Figure 7b) shifted ~0.22 eV towards the Fermi energy level; (2) the shift of ~1.2 eV occurred
in the edge of the CB of Bi1−xFexOBr (Figure 7c) towards the Fermi energy level; (3) the VB
of Bi1−xFexOBr shifted ∼1.14 eV away from the Fermi energy level; (4) the impurity energy
levels from −0.205 to 0.17 eV (0.375 eV) emerged in the Bi1−xFexOBr. Comparing with
the above results, the edge of the CB of Cd2+/Fe3+ co-doped BiOBr (Figure 7d) occurred
the shift of ∼0.71 eV towards the Fermi energy level, and the VB of Bi1−xFexOBr shifted
~0.66 eV away from the Fermi energy level. The impurity energy levels were broadened
from 0.375 (Fe-doping) to 0.42 eV (from 0.186 to 0.234 eV). Consequently, in the Cd2+/Fe3+

co-doped BiOBr system, the contribution of Cd2+ ions for electrons was mainly located at
the top of the valence band, and the contribution of Fe3+ ions for electrons was providing
the impurity energy band of ~0.42 eV (from 0.186 to 0.234 eV). With the synergistic effect of
Cd2+ and Fe3+ ions, the bandgap of the sample was reduced, and the energy level of the
impurities was provided, thereby achieving effective separation of electrons and holes. The
excellent photocatalytic performance of as-prepared products, owning a narrow bandgap,
and impurity energy levels could be obtained easily [64]. Moreover, Bi1−x−yCdxFeyOBr
were indirect bandgap semiconductors, which is confirmed in Figure 7. The indirect
semiconductor properties are beneficial to improve the photocatalytic activity [65].
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The total and part of the density of states (TDOS and PDOS) of BiOBr, Bi1−xCdxOBr,
Bi1−xFexOBr, and Bi1−x−yCdxFeyOBr are shown in Figure 7e–h, which can be applied
investigating the effects of the Cd2+ and Fe3+ ions of BiOBr photocatalyst. The Br 4p, 6p,
and O 2p orbitals in BiOBr (as shown in Figure 7e) were major components at −8–0 eV in
the VB region. The O 2p and Br 4p orbitals play the main role in contributing electrons.
The Bi 6s and 6p contribute the most electrons in the CB region. The electronic structures,
including the impurity state and the localized doped band existing near the Fermi energy
level, are shown in Figure 7f–h.

The CB of Bi1−xCdxOBr mainly consists of Cd 3s + Cd 3p + Bi 6p + O 2p orbital
(Figure 7f). The Cd 3d + Bi 6p + O 2p hybrid orbitals are the main part of states in the VB
region from −8 to 0 eV, and the states of the electronic contribution of Cd 3d hybrid orbital
is ~−6 eV. Corresponding to the result of the energy band structure, the energy level at
−6 eV of the VB is denser and flatter than that of pure-BiOBr. The CB of Bi1−xFexOBr is
made up with Fe 3p + Fe 3d + Bi 6p + O 2p hybrid orbital (Figure 7g), and the Fe 3d hybrid
orbital contributes more electrons. After doping Fe3+, the shift of the Fermi energy level
can be observed towards the minimum conduction-band. Additionally, the charges transfer
from Fe 3d to Fe 3s + Fe 3d + Bi 6p + O 2p orbitals (As shown a dotted box in Figure 7g).
Therefore, defect states at 0 eV generate within the bandgap of BiOBr. Compared with pure
BiOBr, the electronic structure of Bi1−xFexOBr has an impurity state of 0 eV, and there is a
local Fe3d energy band in its energy band structure. Moreover, when Cd2+ and Fe3+ are
doping into the BiOBr (Figure 7h), the CB of Bi1−x−yCdxFeyOBr is made up with Fe 3p +
Fe 3d + Bi 6p + O 2p orbitals. The Fermi energy level occurs the shift towards the minimum
valence-band, which attributes to the doping of Cd2+ ions. The fact that charges transfer
from Fe 3d to Fe 3s + Fe 3d + Bi 6p + O 2p orbitals (As shown in Figure 7h with the dotted
box) is promoted by the contribution electrons of Cd2+ ions to valence band electrons in
the Bi1−x−yCdxFeyOBr. Consequently, with the synergistic effect of Cd2+ and Fe3+ ions,
the photogenerated e−/h+ pairs can be separated effectively. The separated electrons and
holes play different roles at CB and VB, completing the photodegradation.

The possible degradation mechanism of Bi1−x−yCdxFeyOBr as photocatalyst was
investigated (Figure 8). The EVB of BiOBr surpassed the reaction potential of OH−/•OH
(2.38 eV) [66], indicating that the •OH radicals could form by reacting h+ with OH− ions.
The LUMO (Lowest Unoccupied Molecular Orbital) of RhB (−1.77 eV) [67] was negative:
electrons from RhB migrate into the CBMs of products, and some of them react with O2,
and •O2

− radicals could be obtained. Moreover, the HOMO (Highest Occupied Molecular
Orbital) of RhB (~0.47 eV) Inhibition of •O2

− formation (−0.05 eV), implying that •O2
−

reacts by h+, which comes from HOMO, the e− were again migrated into HOMO (as shown
in Figure 8a).
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As for RhB, it is well-known that the degradation process of RhB includes: N-
demethylation and destruction of conjugated structure [68]. The results of the experiment
were analyzed synthetically, and the peak at ~553 nm is interpreted as effects from the
chromosphere structure of RhB. The absorption peak decreased by increasing irradiation
time, indicating that the process of destruction of the conjugated structure occurred in
the system. Moreover, the absorption peak of pure BiOBr and Fe3+-doped BiOBr show
no obvious blueshift, demonstrating that the N-demethylation process of RhB did not
occur [69]. However, the blueshift of ~42 nm and 23 nm occurred in the absorption peak
of Cd2+-doped BiOBr and Cd2+/Fe3+ co-doped BiOBr, respectively, implying that the N-
demethylation process of RhB happened by Cd2+ ions during the reaction. Consequently,
it can be concluded that the synergistic effect of Cd2+ and Fe3+ ions would have a positive
influence on the degradation processes of RhB in the BiOBr photocatalyst.

From the perspective of photocatalysts, the morphology of Bi1−x−yCdxFeyOBr (shown
in Figure 1d) showed that the flowerlike nanospheres are self-assembled from ultra-thin
nanoflakes, which is consistent with Scheme 1. A large number of active sites can be found
in the products, which can increase the probability of catalytic reactions. In addition, the
electrons in Bi1−x−yCdxFeyOBr can be excited easier than BiOBr. The Eg of Cd doped
BiOBr is smaller than that of BiOBr, and the Fermi level of Cd is lower than that of BiOBr;
therefore, the photogenerated electrons occurred movement toward Cd, attributing to
the formation of the Schottky barrier [70,71]. Second, the photogenerated electrons are
transferred to the surface of Bi1−x−yCdxFeyOBr to participate in the reduction reactions.
Third, The Fe atom replaced the Bi atom into the BiOBr lattice and existed as metastable
Fe3+ ions. Meanwhile, Fe3+ ions can further form Fe2+ and Fe4+ ions by capturing e− and
h+ during photocatalysis. However, the Fe2+ and Fe4+ ions with six and four electrons in
the 3d orbital are not stable in the catalytic system. Therefore, the charges captured by Fe2+

and Fe4+ will easily release and migrate to the surface of Bi1−x−yCdxFeyOBr to participate
in the catalytic reaction. The Fe2+ ions are oxidized and converted to the metastable Fe3+

ions on the surface of Bi1−x−yCdxFeyOBr. The •O2
− radicals can be converted from O2

by obtaining electrons. Meanwhile, Fe4+ ions are converted to metastable Fe3+ ions [72].
The trapped holes play an indispensable role in decomposing RhB dye in the catalytic
system. Thereby the electrons and the holes can be separated, and more •OH radicals form
onto the Bi1−x−yCdxFeyOBr surface due to the higher concentration of holes. Because of
photogenerated electrons, more •O2

− free radicals can be formed. The emerging •OH
and •O2

− radicals would foster reactions. The •OH radicals with positive electronic states
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prefer capturing the holes from the VB. The electrons in the CB can induce the formation of
photogenerated •OH radicals.

Consequently, the synergistic effect of the Cd2+ and Fe3+ ions reduced the bandgap
width of BiOBr photocatalyst and provided impurity energy levels for the electronic
transition. As a result, the electrons and holes can be separated efficiently and participated
in the photocatalytic reaction. The detailed reaction processes are the following:

BiOBr/RhB + hv→ BiOBr/RhB (e− + h+) (6)

Fe3+ + e− → Fe2+ (7)

Fe2+ + O2 → Fe3+ + •O2
− (8)

O2 + Fe3+ + e− → Fe2+ (9)

Fe3+ + h+ → Fe4+ (10)

Fe4+ + e− → Fe3+ (11)

OH− + h+
VB → •OH (12)

O2 + e−CB → •O2
− (13)

h+ or •O2
− + RhB→ CO2 + H2O (14)

Furthermore, the calculated charge density difference of Bi1−x−yCdxFeyOBr photocat-
alysts was calculated to investigate the distribution of charges on the surface of Cd and Fe
atoms. As shown in Figure 8b, many blue regions can be seen around the Fe and Cd atoms;
more precisely, the Fe and Cd atoms are completely surrounded. These regions represent
the accumulated charges in the bonding electron coupling process. The accumulated
charges of the Cd atom are concentrated relatively, while that of the Fe atom is dispersed.
The result indicates that the outermost electrons of the Fe atom are easy to exchange and
move with the outermost electrons of O atoms surround it. In addition, the yellow regions
in Figure 8b represent the depleted charges in the bonding electron coupling, which are
mainly located around the O and Br atoms adjacent to the Cd and Fe atoms. Consequently,
the charge transfer between doped atoms and their surrounding atoms (O and Br atoms) is
realized in different ways, especially the exchange between Fe atoms and the outermost
electrons of the surrounding O atoms, forming a high-speed moving public electron band,
which is expected to promote the effective separation and transfer of e−/h+ species in the
catalytic system. Additionally, the calculated charge density difference of Bi1−xCdxOBr and
Bi1−xFexOBr is provided in supporting materials (Figure S3). In conclusion, the synergistic
effect of Cd2+ and Fe3+ plays a key role in promoting the transfer of electrons on the surface
of materials.

The Bi1−x−yCdxFeyOBr photocatalyst was cycled five times under the same reaction
conditions to investigate the photocatalytic stability. The result of relatively stable photo-
catalytic performance is shown in Figure 9a. It can be seen that Bi1−x−yCdxFeyOBr photo-
catalyst still retains a relatively high photocatalytic performance, with catalytic efficiency
of 86%, for the RhB degradation after five cycles. The sedimentation and the transferring
processes can be a major reason for the decreased photocatalytic performance. Figure 9b
shows XRD patterns of Bi1−x-yCdxFeyOBr photocatalyst before and after the photocatalytic
cyclic reactions, indicating that the phase has no significant change after the photocatalytic
cyclic reaction. Figure 9c shows SEM images of Bi1−x−yCdxFeyOBr photocatalyst before
and after the photocatalytic cyclic reactions, which indicates the microstructure has no sig-
nificant change after the photocatalytic cyclic reaction. Figure 9d–f shows High-resolution
XPS spectra of Cd2+ and Fe3+ and survey spectrum of Bi1−x−yCdxFeyOBr photocatalysts
after the photocatalytic cyclic reactions. The EDS spectrum of Bi1−x−yCdxFeyOBr photocat-
alysts after cycle test shown in Figure 9g indicates that the chemical composition of the
photocatalysts has no changes. Therefore, the Bi1−x−yCdxFeyOBr photocatalyst shows a
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highly efficient photocatalytic activity and outstanding recyclability for the degradation of
RhB dye under visible light irradiation.
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4. Conclusions

The uniform flowerlike microspheres Cd2+/Fe3+ co-doped BiOBr photocatalysts, as-
sembled by ultrathin nanosheets, were synthesized by hydrothermal synthesis. The results
demonstrate that the Cd2+-doping and Fe3+-doping can promote the photocatalytic perfor-
mance of BiOBr to a certain extent by reducing the bandgap and introducing the impurity
band, respectively. Moreover, the novel Cd2+/Fe3+ co-doped BiOBr photocatalysts pre-
sented a remarkably photocatalytic performance for the decomposition of organic dyes,
comparing with pure BiOBr, by achieving synergistic effects of the enhanced photogen-
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erated e−/h+ separation and narrowed the bandgap with the ions synergistic effect of
Cd2+ and Fe3+. The reasonable growth mechanism and catalytic mechanism confirmed the
rationality of the experimental results, which shows that the synergistic effects of multi-ion
doping have great potential in the field of photocatalysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/2/423/s1, Figure S1. The survey spectra of Bi1-x-yCdxFeyOBr. Figure S2. The UV–vis spectral
of RhB solution of BiOBr (a), Bi1-xCdxOBr (b), Bi1-xFexOBr (c) and Bi1-x-yCdxFeyOBr (d). Figure S3.
The calculated charge density difference of Bi1-xFexOBr (a) and Bi1-xCdxOBr (b).
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