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Abstract: COVID-19 has affected daily life in unprecedented ways, with dramatic changes in mental
health, sleep time and level of physical activity. These changes have been especially relevant in the
elderly population, with important health-related consequences. In this work, two different sensor
technologies were used to quantify the energy expenditure of ageing adults. To this end, a techno-
logical platform based on Raspberry Pi 4, as an elaboration unit, was designed and implemented.
It integrates an ambient sensor node, a wearable sensor node and a coordinator node that uses the
information provided by the two sensor technologies in a combined manner. Ambient and wearable
sensors are used for the real-time recognition of four human postures (standing, sitting, bending
and lying down), walking activity and for energy expenditure quantification. An important first
aim of this work was to realize a platform with a high level of user acceptability. In fact, through
the use of two unobtrusive sensors and a low-cost processing unit, the solution is easily accessible
and usable in the domestic environment; moreover, it is versatile since it can be used by end-users
who accept being monitored by a specific sensor. Another added value of the platform is the ability
to abstract from sensing technologies, as the use of human posture and walking activity for energy
expenditure quantification enables the integration of a wide set of devices, provided that they can
reproduce the same set of features. The obtained results showed the ability of the proposed platform
to automatically quantify energy expenditure, both with each sensing technology and with the
combined version. Specifically, for posture and walking activity classification, an average accuracy
of 93.8% and 93.3% was obtained, respectively, with the wearable and ambient sensor, whereas an
improvement of approximately 4% was reached using data fusion. Consequently, the estimated
energy expenditure quantification always had a relative error of less than 3.2% for each end-user
involved in the experimentation stage, classifying the high level information (postures and walking
activities) with the combined version of the platform, justifying the proposed overall architecture
from a hardware and software point of view.

Keywords: ageing adults; energy expenditure; posture classification; ambient sensor; wearable
sensor; AAL

1. Introduction

The world population continues to grow older rapidly, as fertility rates have fallen to
very low levels in most world regions and people tend to live longer. From 2025 to 2050,
the older population is projected to almost double to 1.6 billion globally, whereas the total
population will grow by just 34% over the same period [1]. An increased life expectancy is
certainly an opportunity, but it also has negative health aspects, such as physical, mental
and cognitive deterioration [2,3]. In the last two years, the new coronavirus (SARS-CoV-2)
has significantly changed the lifestyle of the world’s population, not only in terms of lives
lost but especially from an economic and social point of view. COVID-19 has had a very
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strong impact, especially on daily routines, due to restrictions put in place by various
governments that forced people to stay at home in isolation for very long periods [4–6]. In
this context, scientists have investigated in the direction of designing and implementing
easy-to-use technological platforms/solutions to monitor specific behaviors directly at
the home of the observed subject. It is obvious that such monitoring is more required
for fragile subjects and ageing adults. Consequently, there was an effort by the research
communities to increase the availability of different services and devices to the elderly
through dedicated technologies installed in the so-called “intelligent” home. This vision
relies on the potentials of pervasive Information and Communication Technology (ICT)
to make the house environment adaptable to the users’ needs in order to transform it
into an intelligent environment. For example, ambient and wearable sensors combined
with automatic behavioral analysis solutions create a living environment adaptable to the
characteristics of end-users [7]. In addition, it is worth highlighting that, in the Internet
Of Things (IOT) sector, research activities with the aim of providing automated tools for
the development of healthcare systems based either exclusively on Body Sensor Networks
(BSNs) [8] or on heterogeneous sensor systems [9] are increasingly common. One of
the most significant applications of this paradigm is Ambient Assisted Living (AAL),
allowing the elderly to live independently in their houses for as long as possible, delaying
hospitalization in the last part of their life and generally improving their quality of life
through personalized healthcare [10].

In this application field, it is very important to monitor the temporal trend of Physical
Activity (PA) and to quantify its level in an objective way in order to have an indicator
for the possible onset of pathologies, as it has been demonstrated that the lack of motor
activity can lead to chronic health disorders [11]. A PA evaluation, including the type,
intensity and duration of activities, is very important to prevent and/or correct bad habits.
In addition, the time spent in sedentary behavior grew significantly during the pandemic
period. It is widely known that a sedentary life-style is a risk factor for metabolic syndrome
or obesity [12,13], and independently of PA levels [14]. All this leads to the conclusion that
an objectively monitoring of PA and the associated estimates of Energy Expenditure (EE)
can provide important feedback, allowing for a person to regulate and modify the level of
PA and avoid having a sedentary lifestyle in order to maintain their physical well-being.

EE refers to the amount of energy an individual uses to maintain essential body
functions (respiration, circulation, digestion) and is a result of physical activity. The total
daily energy expenditure is determined by the resting or Basal Metabolic Rate (BMR),
food-induced thermogenesis, and energy expended as a result of physical activity.

EE can be measured in different ways. The gold standard is direct calorimetry, which
measures the actual heat emitted by the human body during activity or rest, in a special
room (room calorimeter) [15]. Another methodology for EE quantification is indirect
calorimetry [16], which measures the concentration of inhaled and exhaled gases. The
consumption of oxygen (O2) and the production of carbon dioxide (CO2) can be converted
into EE Weir’s equation [17]. Indirect calorimetry is one of the most used techniques due
to the existence of portable indirect calorimeters. Given the practical limitations of room
calorimeters and the cost of portable indirect calorimeters, several solutions have been
developed to estimate the EE through the PA analysis and using commercial sensors.

This work describes the design and implementation of a platform capable of auto-
matically quantifying the EE of a subject. This objective measurement is implemented
using commercial and low-cost ambient and wearable sensors and by an inexpensive
processing unit. The idea of using heterogeneous sensors is motivated by the fact that, in
this way, we expand the number of end-users, as they may accept only a certain type of
sensor technology.

The main contributions of the proposed work are listed below:

• An algorithmic framework for the classification of postures and walking activity using
commercial ambient and wearable sensors is designed and implemented;

• A data fusion algorithmic block is implemented on a low-cost processing unit;
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• Three different machine learning classification algorithms are compared to distinguish
between posture and walking activitiy after data fusion;

• EE was objectively quantified for each end user through the time trend of the postures
and the walking activity length via the lookup table of the corresponding MET values.

The remainder of this paper is structured as follows. Section 2 reviews the related
work. Section 3 reports an overview of the overall architecture of the proposed platform
and a detailed description of computational framework for human posture and walking
activity recognition in correspondence with each sensor technology. The same section
provides some information about the methodology designed and implemented for EE
quantification. Participant characteristics, data collection, experimental setup and results
are presented in Section 4. Finally, Section 5 shows both our conclusions and discussions
on some ideas for future work.

2. Related Work

Sensor technologies can be divided into two types: ambient and wearable. In a contact-
based sensor system (wearable), users must wear devices on body segments to measure
EE. The main advantage of contact-based systems is their suitability for outdoor activities.
However, wearing many sensors when performing PA is impractical and, moreover, the
scientific literature has demonstrated in many works that the position of a wearable sensor
greatly affects the accuracy of EE estimation. Moreover, the battery life of wearable devices
is a critical challenge.

Instead, non-contact approaches (based on an ambient sensor) have been proposed
to solve the problems of using wearable devices to estimate EE. This last category of
sensors, however, is subject to a lower acceptability, especially by the elderly, who see their
privacy violated. Moreover, EE quantification can be distorted by an incorrect recognition
of human postures and/or activities due to possible occlusions between the vision system
and the user.

The following is a brief state of the art pertaining to scientific works in which the two
sensory technologies have been used for EE quantification.

For example, a commercial device widely diffused and capable of measuring different
aspects of human behavior is the activPALTM (ACT) (PAL Technologies Ltd., Glasgow, UK).
ACT is a small lightweight electronic device worn under clothing, attached directly to the
skin on the midline of the anterior area of the thigh. ACT is qualified to detect posture
based on thigh acceleration, including the gravitational factor. Proprietary algorithms
(intelligent activity classification) are used to classify time as standing, sitting, lying down
and stepping. Moreover, ACT estimates EE and provides information on the number of
steps taken, rhythm and sit-to-stand and stand-to-sit transitions. ACT has been shown to
be a solid and valid analyzer of step counts in the elderly [18,19].

In [20], the authors compared differences in EE across three different postures: sitting,
standing and lying down. Moreover, they determined the associations between the change
in EE across the previous postures with anthropometric and body composition parameters
in young healthy adults. The EE measurements were performed by indirect calorimetry fol-
lowing the recommendations reported in [18]. They demonstrated that standing increases
EE above sitting and lying values (~10%), whereas sitting and lying paradoxically seem to
represent similar EE. Taken together, these findings suggested that decreasing lying and
sitting times could be a simple strategy to slightly increase EE.

Another interesting developed solution for the approximation of PA and subsequent
EE quantification is reported in [21], where the authors used the SenseWear Armband
(SWA) that permits collecting a diversity of physiological signs and integrates a bi-axial
accelerometer, a galvanic skin resistance sensor and a body temperature sensor. Generally,
the SWA is used for an accurate EE estimation and step count during treadmill effort,
providing a reasonably accurate measure of step count. However, the results reported
in the work have also demonstrated that the SWA permits quantifying, with a sufficient
accuracy level, the amount of PA, providing a methodology for amn automatic decision-
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making system for the increasing of activity in aged people. A limitation of the work is
that, while armbands technologies have proven to be fine devices for tasks of daily life (or
low to moderate activity), they have not been appropriate for higher intensity exercise, so
the usage of the commercial device for the evaluation of physical and sedentary levels is
not ideal.

On the other hand, the work proposed in [22] described a wearable system consisting
of a shoe equipped with a smart sensor and a mobile phone for signal processing, pattern
recognition and real-time user feedback of expended calories and other PA information. The
authors highlighted that the use of logistic discrimination or a multilevel perceptron instead
of a supervised classifier such as a Support Vector Machine (SVM) reduced the execution
time and memory requirements by a factor of >103, maintaining a comparable accuracy of
classification and EE estimation. Moreover, the overall high accuracy of EE estimation in
four different tested EE models has also pointed out the benefits of the proposed wearable
system relying on in-shoe sensors. A limitation of this study is that the EE of the subjects
was measured under a specific (although randomized) activity protocol, but, as affirmed
by the authors, the number of activities in free living is much greater and not so clear
cut. Another important limitation is that the study was conducted on a population mostly
consisting of young adults, not involving elderly people in the experimentation, for whom,
there is more need to monitor PA and EE.

In a very recent work [23], a comparison of the Absolute Error Rate (AER) of EE mea-
sured by the wrist-worn and the hip-worn ActiGraph GT3X over a 24 h period in free-living
conditions in young and older adults was reported. Obtained results demonstrated that
EE was overestimated when measured by the wrist-worn activity trackers. Furthermore,
they found a significant negative correlation between the AER and EE provided by the
hip-worn activity tracker in the overall population. Finally, they also reported an effect of
age on the AER, with a lower AER for young participants.

As for ambient sensors only, there are few scientific papers in the literature in which
this type of device is used to quantify EE. Nathan et al. [24] estimated the mechanical work
performed by the human body and estimated subsequent metabolic energy using predictive
algorithmic models and a Kinect sensor. They achieved the objective of EE quantification
through the following steps: (1) capturing the mechanical work and metabolic cost for a
range of exercises of varying intensity and movement type; (2) deriving biomechanically
appropriate features from mechanical work; (3) building a predictive multivariate model
using nonparametric regression based on the derived features. The results reported in
the work demonstrated that, for high-energy activities, such as standing or jumps, EE
estimation can be made accurately, but that, for low-energy activities, the posture of static
poses should be considered as a contributing factor. In [25], the authors developed a
noncontact method for EE estimation by using a camera and classical image processing
approaches. However, the EE estimation error reported in the study was high.

The work of Yang et al. [26] is focused instead on the use of a smartphone camera
and on the development of algorithms for the analysis of body movement and the body’s
effort. The realized system is able to objectively assess the intensity and EE of popular
indoor workouts, including sit ups, push ups, jumping jacks and squats. In this work, the
algorithm is based on a hierarchical kinematic approach that analyzes the body movement
(and subsequent EE) in terms of different layers, each with an increasing level of details.
The authors compared the results obtained with the EE values assessed with the gold
standard indirect calorimetric method.

A very interesting work is described in [27], where the authors introduced a framework
for EE estimation from RGB-D data in a living room environment. They implemented a
cascaded and recurrent approach that explicitly detects activities as an intermediate to
select type-specific mapping functions for a final calorific estimation. A very important
contribution of this research activity is the introduction of a dataset (called SPHERE calorie)
linking more than 10 h of RGB-D video data to ground truth calorie readings from indirect
calorimetry based on gas exchange.
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The simultaneous use of ambient and wearable sensors is receiving a great deal of atten-
tion in specific areas of research, such as robotics [28], action or gesture recognition [29,30]
and AAL applications such as, for example, human behavior understanding, fall detection
and remote health monitoring [31,32]. Although the involvement in a platform of heteroge-
neous sensors has the advantage of complementing shortcomings of individual modalities,
wearing a multitude of sensors or being monitored 24 h a day through a vision sensor can
cause user acceptance issues.

3. Materials and Methods

The overall architecture of the proposed platform is depicted in Figure 1. It has a
hierarchical network topology, compounded by two detector nodes that manage, respec-
tively, an ambient sensor node and a wearable sensor node. These nodes provide high-level
information to a coordinator node. The use of the camera makes it possible to cover any
detection deficiencies exhibited by wearable sensors. Conversely, wearable sensors make it
possible to compensate for camera detection shortcomings, i.e., in the presence of occluding
objects (e.g., table, bed, etc.). In addition, using a 3D camera (stereoscopic in the specific
case) allows for resolving situations of perspective ambiguity. From the hardware point of
view, all of the components involved in the actual version of the platform were selected
to meet typical requirements of AAL applications. The computational framework comes
with features that allow for an easy integration into larger AAL systems. In fact, it was
conceived as a distributed, modular and open architecture implemented by coordinator
and detector nodes.

Figure 1. Schematic representation of the proposed platform for EE quantification. Two different
sensor technologies (ambient and wearable) transmit high-level information (e.g., posture label with
timestamp) to a coordinator node.

3.1. Computational Frameworks for Human Posture and Walking Activity Recognition
3.1.1. Ambient Sensor

The ambient sensor used in the actual version of the platform was the commercial
and low-cost RealSenseTM D435i camera [33] produced by Intel® (Figure 2). It integrates:
the latest Intel® RealSenseTM Vision Processor D4 to handle the complex depth algorithm,
an RGB sensor to collector color data, a stereo image sensor to capture and calculate
disparity between images and, finally, an infrared projector to illuminate objects and collect
depth data.

The powerful vision processor uses 28 nanometer (nm) process technology and sup-
ports up to 5 MIPI Camera Serial Interface and 2 channels to compute real-time depth
images and accelerate output, generating up to 90 frames per second (fps) in a depth video
stream. In addition, it integrates an advanced stereo depth algorithm and a new design for
more accurate depth perception and longer range. With the optimal calibration, the stereo
depth perception has an error rate as low as 1%. In the optimal environment, this camera
can capture data from a distance as far as 10 m in both indoor and outdoor environments.
In addition, with the global image shutter and wide field of view (69.4 × 42.5 × 77◦),
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the Intel® RealSenseTM Depth Camera D435i offers the capability to capture and stream
the depth data of moving objects effectively, providing high depth perception accuracy.
Postures and walking activity were estimated positioning the camera on a tripod at 143 cm
from the floor.

Figure 2. Intel® RealSenseTM model D435i. It integrates a RGB sensor, a stereo image sensor and an
infrared projector for the depth data collection.

The computational framework for posture estimation using the 3D camera consists of
the following functional blocks, as shown in Figure 3:

• Acquisition of RGB and depth frame from the 3D camera and their alignment;
• Extraction of the pose landmarks from the RGB frame;
• Estimation of the 3D coordinates of the pose landmarks from the depth frame;
• Definition, extraction and reduction in postural features;
• Posture and walking activity classification.

Figure 3. Proposed pipeline for posture and walking activity classification using an ambient sensor.
It consists of a pre-processing of the acquired images followed by a feature extraction and reduction
step and, at last, a classification block returning four different postures and walking activity at
different speeds.

The RGB and depth frames were acquired using the library supplied with the RealSenseTM

D435i camera in Python language. After the acquisition, the frames were aligned using
the same library to match the coordinates of corresponding points between the RGB and
depth image planes, as shown in Figure 4a,b. The library also provides the function for
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calculating the 3D coordinates starting from the 2D coordinates in the image plane of the
depth frame.

Figure 4. The RGB (a) and depth (b) frames and, then, the 33 landmark BlazePose model (c) used to
define postural features.

Regarding the postural features, a model-based approach was used to adapt a skeleton
composed of various pose landmarks of the body of the monitored subject. In order to
estimate the pose model, the open-source framework MediaPipe [34] was used in the form
of a Python library. MediaPipe provides a pipeline based on Machine Learning (ML) and
Deep Learning (DL) consisting of three independent models for estimating the monitored
subject’s pose, face and hands. Each model uses its input frame for real-time capture of the
video stream.

The MediaPipe pose detector, called BlazePose, was used to define the postural
features in this study. Using this pose model, it is possible to identify 33 pose landmarks,
as shown in Figure 4c, from each RGB frame (aligned with the corresponding depth frame).
It is important to note that this model was optimized to achieve real-time performance on
mobile devices in Python. In particular, the model uses a two-step pipeline, which detects
the region of interest of the person in the RGB frame and re-crops the frame to predict the
pose landmarks. Then, the 33 pose landmarks estimated by BlazePose on the RGB frame
were transformed into 3D coordinates using the specific function of the RealSenseTM library,
providing, as input, the corresponding aligned depth frame and the intrinsic parameters of
the RealSenseTM D435i camera.

Given the 3D coordinates of the 33 pose landmarks and the total height of the subject,
a 100-dimensional feature space was obtained. A specific study was conducted in order
to reduce the dimensionality of the feature space, optimizing, in this way, the processing
performance on devices of limited capacity. Observing that the pose landmarks relative to
the body are positioned at the joint of the limbs and near the extremities of the torso, the
first reduction in dimensionality was obtained by assuming the distance between the pose
landmarks (i.e., junction nodes and extremities of the torso) as constant and considering
only the angles subtended by consecutive segments.

Subsequently, the classification performances (in terms of accuracy) and the computa-
tional load (in terms of execution time) were evaluated in correspondence with different
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combinations of segments and angles. The feature analysis indicated that the best tradeoff
was to consider segments (more precisely, their angles) that join the head, torso and legs,
with the addition of the overall height of the monitored subject. A further reduction in
the features was obtained by combining the following pairs of pose landmarks A = (9, 10),
B = (11, 12), C = (23, 24), D = (25, 26), E = (27, 28) (see Figure 4c), substituted by the midpoint
of their 3D coordinates. The further analysis step made it possible to reduce the junction
nodes, ultimately maintaining only the midpoints A, C and D.

Posture and walking activity classification represents the last block of the framework,
implemented using a multi-class classifier of the SVM type [35]. SVM can be considered a
technique that uses a linearly separated hypothesis space in a multi-dimensional feature
space, trained using a learning algorithm based on optimization theory and derived from
statistical learning theory. SVM was initially developed to model separation hyperplanes
for classification problems. Subsequently, SVM was generalized to construct nonlinear
separation functions for real-valued approximation functionals. To make the framework
computationally light, a polynomial-type SVM classifier of degree equal to three and kappa
parameter equal to 0.61 was adopted in this study, determined by exhaustive research.

3.1.2. Wearable Sensor

The wearable system consists of an elastic band integrating the Shimmer3 IMU inertial
device [36], which is equipped with the following sensors:

• Tri-axial accelerometer;
• Magnetometer;
• Pressure and temperature sensor;
• Tri-axial gyroscope.

In order to recognize postures and walking activity over time, attention was focused
only on the analysis of signals from the triaxial accelerometer, as they allow for good per-
formance for motion analysis with low computational cost. The Shimmer3 accelerometer is
DC coupled, so it is possible to evaluate both accelerations in static and dynamic conditions
along the three axes. The device features a low-power wireless Bluetooth connection for
non-invasive data transmission. The life duration of its battery is approximately 8 h in
streaming mode. The data were acquired with a sampling frequency of 50 Hz, which is
enough to evaluate human postures. The data are in the decimal format and represent the
acceleration values with full scale in the range of ±2 g. The utilized wearable system is
shown in Figure 5: the band allows for an optimal adherence and stability of the device to
the chest, reducing noise on the signal due to improper movements of the device. It was
decided for the sensor to be placed on the chest because accelerometers in that position
have been proven to be better for posture recognition according to [37].

Figure 5. Wearable system integrating an elastic band (left) and Shimmer3 IMU inertial device
(right) equipped with the following sensors: tri-axial accelerometer, magnetometer, pressure and
temperature sensor and tri-axial gyroscope.
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The acceleration data on three axes were sent to a Raspberry Pi 4 and processed with a
software developed in Python programming language. The most relevant phases of the
software framework are summarized in Figure 6.

Figure 6. Proposed pipeline for posture and walking activity classification using a wearable sensor.
It consists of a calibration stage to verify that the device was worn correctly, pre-processing of
the acquired accelerometer signals followed by a feature selection/extraction step and, at last,
a classification block returning four different postures and walking activity at different speeds.

In the pre-processing step, the data were converted into gravitational units to represent
acceleration data in the range of ±2 g; in this way, it is possible to extract the angle of the
user posture with respect to the vertical direction, as described in [38]. Then, the samples
were filtered out by a low pass 8-order, 10 Hz cut-off Finite Impulse Response (FIR) filter to
reduce the noise due to environment and human tremor.

Regarding the calibration phase, it was introduced to verify that the device was worn
correctly and to calculate the initial conditions necessary for data processing. Calibration is
performed whenever the user wears the device. The calibration process has a duration of
30 s and memorizes the user’s static acceleration values on the three axes while the user
is in a motionless and standing position. If the acquired acceleration values are within
a predefined tolerance range, the calibration is successful and the next step of feature
extraction can be performed.

The data thus processed were used for the feature extraction phase. The purpose of this
phase is to obtain relevant information from the accelerometric signals useful for posture
assessment. Several time domain and time–frequency domain features utilized in medical
and technical applications for monitoring the human posture were investigated for this
study [39]. Through the Lasso feature selection method [40], the following features were
chosen: average, energy, dynamic and static acceleration variation, kurtosys and skewness
for each axes. The size of the sliding window was set to 300 ms, with an incremental
window of 50 ms.

Finally, for the classification, a supervised approach was adopted. In particular, SVM,
K-Nearest Neighbors (KNN) and Random Forest (RF) were tested and the best performing
were obtained by using the RF classifier. The RF algorithm [41] creates a collection of
predictors from a set of decision trees that are produced at random in datasets. It represents
a decision tree in terms of hyper-parameters. To classify the input vector, each classifier is
constructed using a vector that is independent of the input vector, and each tree votes for
the largest number of classes. RF adds more randomness to the model while increasing
the trees. It detects the best feature in a random subset of features. In our approach, the
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number of estimators in the forest was fixed to 29, whereas the maximum tree depth was
set to 26.

3.1.3. Elaboration Unit

To favor a wide diffusion of the proposed solution, the system presented in this work
foresees the involvement of a low-cost processing unit, easily available on the market and
generally used for the development of open platforms. Raspberry Pi 4 Model B (Figure 7) is
the latest product in the popular Raspberry Pi computer versions. Processor speed, memory,
connectivity and multimedia performance are better than previously released Raspberry
Pi versions. The Raspberry Pi Foundation provides Raspbian, a Debian-based Linux
distribution for download. It has Broadcom BCM2711, quad-core Cortex-A72 (ARM v8),
64-bit 1.5 GHz processor; 1 GB, 2 GB or 4 GB LPDDR4 (depending on model) memory; LAN,
Bluetooth 5.0, Gigabit Ethernet, 2 USB 3.0 and 2 USB 2.0; 40 general-purpose input/output
(GPIO) pins and a micro SD card slot for loading operating system and data storage [42].

As for interfacing with the sensors, the wearable sensor was connected to Raspberry
via Bluetooth protocol, whereas the ambient sensor required a wired USB connection.

Algorithms for the acquisition and processing of sensory data were implemented
on the elaboration unit, as well as logics for the management of the fusion of high-level
information classified by the sensory nodes.

Figure 7. Elaboration unit (Raspberry Pi 4 Model B) for the acquisition and processing of sensory
data and the fusion of high-level information classified by sensor nodes. Used case on the left and
electronic board on the right.

3.1.4. Data Fusion

As illustrated in the previous sub-sections, both the ambient sensor and the wearable
sensor were used for automatic recognition of four different human postures and walking
activities at different speeds. It is well known that there are recognition rate limitations
when using a single modality sensor, as no single mode can address all of the issues that
occur in the real-world setting. In our case, for example, the difficulty in classifying standing
and sitting postures with the wearable sensor was managed using the ambient sensor,
which, however, presents difficulties in classifying postures in the presence of occlusions,
but this last problem was not present in the wearable sensor. Therefore, the simultaneous
involvement of the two technologies may allow them to compensate for their shortcomings
and improve total recognition performance. Although each sensor technology can operate
independently, a data fusion scheme is required to merge the information coming from
each subsystem, thus improving the reliability of the overall platform. For this reason,
the proposed platform for EE quantification was accompanied by a coordinator node (see
Figure 1), which has the task of integrating algorithmic logics for the fusion of high-level
information received from the ambient and wearable detector node. Several techniques
have been developed over the years to fuse different data modalities for posture and
activity recognition. While data fusion is a very broad topic, in the present work, two very
specific techniques were considered: (a) decision-level fusion, and (b) feature-level fusion.
Decision-level fusion, or fusion of classifiers, consists of processing the classification results
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of prior classification stages. The main goal of this procedure is to take advantage of the
redundancy of a set of independent classifiers to achieve higher robustness by combining
their results [43]. On the other hand, a feature-level fusion scheme integrates unimodal
features before learning concepts [44]. The two main advantages of this scheme are the use
of only one learning stage and taking advantage of mutual information from data.

From the analysis of the application context described in this paper and considering
the type of high-level features used for EE quantification obtained from each sensing
technology, it is beyond doubt that decision-level fusion technique has a main point of
weakness, which is that, if the data of one sensor are missing, then its full capabilities cannot
be exploited. Consequently, the actual version of the framework integrates a feature-level
fusion scheme in the coordinator node.

Features used for the postures estimation with the selected data fusion technique
are the following: average, energy, dynamic and static acceleration variation, kurtosys,
skewness for each axis (eighteen features extracted from the wearable sensor), overall
height of the monitored subject and three midpoints of 3D coordinates for points A, C and
D as shown in Section 3.1.1 (ten features extracted from the ambient sensor), obtaining
twenty-eight features in total.

3.2. Methodology for EE Quantification

EE can be subdivided into Resting Metabolic Rate (RMR), thermic effects of food and
PA. A graphic representation of EE composition is shown in Figure 8. RMR is the quantity
of energy needed to maintain body temperature, repair internal organs, support cardiac
function, maintain ionic gradients across cells and support respiration. This constitutes
approximately two-thirds of total EE. The second largest component of EE is required
for physical work. The EE required to move the body is related directly to body weight,
to the distance that weight is moved and to the state of physical fitness. Generally, EE
quantification is the most reliable quantity for PA estimation. EE is normally estimated in a
unit called Metabolic Equivalent of Task (MET) [45], which represents the energy (1 Kcal) or
volume of oxygen (3.5 mL O2) consumed by a person at rest per kilogram of body weight
per minute. This estimation varies for each person [46]. Consequently, one MET (the energy
equivalent expended by an individual while seated at rest) and EE can be defined by the
following equations:

1 MET =
1 Kcal
kg ∗ h

=
3.5 mL O2

kg ∗min
(1)

EE =
3.5 ∗MET ∗weight

200
(2)

EE unit of measurement is kilocalories burned ×minute.
It is important to note that there are different approaches in the literature for quantify-

ing MET values with respect to the specific PA performed. Generally, they are experimen-
tally and statistically derived from a sample of persons as indicative averages, since the
level of intensity could deviate from the representative experimental conditions used for
the calculation of the standard MET values [47]. Table 1 reports MET values associated with
postures and walking activity that were used in the present work to quantify EE, inspired
by the lookup table for the equivalent MET of a series of activities reported in Table 1.

If, for example, we wanted to calculate the EE of a subject with a weight of 75 kg who
walks for 18 min at a speed of 2.0 km/h (with a MET equals to 2.6 as reported in Table 1),
using the above formulas, we obtain the following value:

EE (Kcals) =
3.5 ∗ 2.6 ∗ 75

200
∗ 18 = 61.42 (3)
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Figure 8. Total EE composition. It is composed of three major components: physical activity (PA), the
internal effects of food and Resting Metabolic Rate (RMR).

The flowchart and pseudocode for the designed and implemented algorithmic pipeline
are shown in Figure 9 and in Algorithm 1, respectively.

Figure 9. Flowchart clarifying the implemented platform’s operation. The information processed
by the sensory nodes integrated in the platform classifies, after the data fusion step, four different
postures and walking activities at three different speeds. Using lookup tables for MET and weight of
the end-user, it is possible to quantify EE.

Table 1. Lookup table for EE through the MET values associated with the different postures and
walking activity classified with the ambient and wearable sensor.

Posture MET

Standing 1.2
Sitting 1.0

Bending 0.9
Lying down 1.0

Walking MET

Very low speed (<1.5 km/h) 1.9
Low speed (1.5–3.0 km/h) 2.6

Medium speed (3.0–4.5 km/h) 3.4
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Algorithm 1 Pseudocode of the Implemented Pipeline for EE Quantification

Input wearable sensor: Xt, Yt, Zt (raw accelerometer data at time t)
Input ambient sensor: RGB/DEPTH image at time t
Input end-user weight: w
Output: EE.
1: procedure WEARABLESENSOR
2: while i < window_calibration_lenght do
3: Xcal , Ycal , Zcal ← CALIBRATION(Xi , Yi , Zi)
4: end while
5: for each sliding window of lenght h do
6: for p = 1 . . . h do
7: Xp, Yp, Zp ← PREPROCESSING(Xcal , Ycal , Zcal)
8: FEATURESELECTION/EXTRACTION(Xp, Yp, Zp)
9: end for

10: end for
11: return wearable features
12: end procedure
13: Postures← CLASSIFICATION(wearable features)
14: procedure AMBIENTSENSOR
15: for each RGB/DEPTH image at time t do
16: RGBp/DEPTHp ← PREPROCESSING(RGBt/DEPTHt)
17: FEATUREEXTRACTION/REDUCTION(RGBp/DEPTHp)
18: end for
19: return ambient features
20: end procedure
21: Postures← CLASSIFICATION(ambient features)
22: procedure FEATUREFUSION
23: total_feature_set = wearable features + ambient features
24: end procedure
25: Postures← CLASSIFICATION(total_feature_set)
26: procedure EEQUANTIFICATION
27: EE = 0
28: for i = 1 . . . m (minutes) do
29: EE (Kcals) = EE + 3.5∗MET(Posturesi)∗w

200
30: end for
31: return EE
32: end procedure

4. Results
4.1. Participants, Experimental Setup and Protocols

The validation was conducted in the “Smart Living Technologies Laboratory” located
in the Institute of Microelectronics and Microsystems (IMM) in Lecce, Italy. Due to COVID-
19 restrictions, it was only possible to validate the entire platform with 11 ageing subjects,
whose characteristics are shown in Table 2.

Table 2. Participant characteristics. Gender, age, weight and body mass index are reported for
each end-user.

Participant No. Gender Age (year) Weight (kg) Body Mass Index (BMI)

1 MALE 67 81 27.06
2 FEMALE 71 55 23.19
3 FEMALE 70 59 23.04
4 MALE 70 75 27.54
5 MALE 65 66 21.30
6 FEMALE 68 61 26.40
7 FEMALE 68 52 18.42
8 MALE 69 83 31.23
9 FEMALE 65 54 20.83

10 MALE 69 78 28.65
11 MALE 73 70 23.66

The experimental design can be seen in Figure 10. A typical living environment was
replicated within the laboratory, in which, there is a chair, an additional and partially
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visible chair positioned behind a desk, a bed and a space for walking. The performance
of each detector involved in the actual version of the platform was estimated by using a
common experimental setup in which the participants were asked to perform a predefined
set of postures and walking activities. During such experimental sessions, data were
collected simultaneously by ambient-installed camera and by the smart device worn by
each participant. In order to obtain feedback on their walking velocity, each user wore a
smartwatch that displays this on the screen.

Figure 10. Experimental setup. The image on the left shows the laboratory area used for experimen-
tation, the image on the right details the ambient sensory node.

To replicate as many behaviors close to reality as possible, each user performed
three different data acquisition sessions, following the three protocols reported in Table 3.
Sequences of static postures and walking at different speeds were varied in the three
protocols so as to evaluate the classification performance of each individual sensory node,
even in situations that would impair the accuracy of classification. This was carried out in
order to evaluate the advantages of the integrated sensor solution.

Table 3. Used protocols. Each activity is reported with the following acronyms: St = standing;
Si = sitting; Be = bending; Ly = lying down; W vls = walking very low speed; W ls = walking low
speed; W ms = walking medium speed.

Protocol 1 Protocol 2 Protocol 3

Posture/Action Dur (s) Posture/Action Dur (s) Posture/Action Dur (s)

W vls 30 W vls 60 Si 30
St 60 Ly 30 St 30

W ls 30 St 30 W ls 30
Si 90 Be 30 Ly 60

W ls 30 W ls 30 St 30
St 30 Ly 60 Be 30

W ms 30 W ls 30 W vls 30
Be 30 St 60 Si 60

W vls 60 W ms 60 St 30
Si 30 Si 30 W vls 30

Total dur (m) 7 7 6

4.2. Classification Performance

For each detector node, the classification performances were evaluated using accuracy
and Cohen’s kappa as metrics.
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In particular, accuracy is the ratio between all correctly classified samples and all
samples, and is defined by the following expression:

Acc =
TP + TN

TP +TN + FP + FN
(4)

where TP (True Positive) is an outcome where the model correctly predicts the positive
class. Similarly, TN (True Negative) is an outcome where the model correctly predicts the
negative class. FP (False Positive) is an outcome where the model incorrectly predicts the
positive class. FN (False Negative) is an outcome where the model incorrectly predicts the
negative class.

Since our study consider a multiclass classification problem, only the accuracy does not
provide a complete overview of the classifiers’ performance. So, as shown in literature [48],
Cohen’s kappa is another important performance indicator. Specifically, Cohen’s kappa is
used to measure the agreement between the instance’s true label and the one predicted by
the selected classifier. It is defined as:

k =
po − pe

1− pe
(5)

where po represents the observed label and pe is the expected label. Cohen’s kappa always
assumes values between 0 and 1. In Table 4, the correspondence between Cohen’s kappa
and agreement is reported.

Table 4. Cohen’s kappa vs. agreement.

Cohen’s Kappa Agreement

k < 0.20 slight
0.21 ≤ k < 0.40 fair
0.41 ≤ k < 0.60 moderate
0.61 ≤ k < 0.80 good
0.81 ≤ k ≤ 1.00 perfect

To reduce classification bias, a 10-cross-validation [49] was applied perturbing the
training set of the classifier to randomize the original data set. Therefore, the classifier was
trained for each fold using 80% of data, whereas 10% was used for validation and, at last,
10% for testing. The procedure was repeated 10 times training the classifier with a different
training, validation and testing with a separated test set. It is important to highlight that
the same samples do not appear in the training, validation and test sets at the same time.

Table 5 shows the performance of the two sensor nodes in accordance with the three
previously described protocols. Reported values were obtained by calculating the average
of the metrics considered on all users involved in the experiment. The results show that,
with both sensors, an average accuracy of over 93% and a perfect agreement for kappa were
achieved. A more detailed analysis demonstrates that the wearable sensor performs best in
protocol 1, which contained fewer time intervals, with postures such as sitting or standing
that are more difficult to distinguish with the accelerometer data. In contrast, the ambient
sensor obtained the best performance in protocol 3, with fewer walking activities than in
the other two protocols, because it was more difficult to estimate the different walking
speeds from the images.

In a multi-class problem, such as this study, the only metrics presented in Table 5
could not be exhaustive due to the impossibility of inspecting the separation level in
terms of correct classifications among classes. To overcome this limitation, in Figure 11,
the confusion matrices of the average accuracies obtaining varying sensory nodes and
protocols are reported.

Since an objective of the present work is to quantify EE using information extracted
from both sensory nodes simultaneously, in Table 6, the average accuracy and kappa for
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each considered experimental protocol are shown, considering three different ML classifiers
(SVM, KNN, RF) widely used in the literature. The optimal selected parameters for each
classifier were obtained through a grid search technique [50]. In particular, in SVM, we set
decision_function_shape = ovo, max_iter = 50, kernel = polynomial; in RF max_depth = 30
and n_estimators = 25 were fixed; lastly, in KNN, n_neighbors = 13, metric = minkowski
were considered.

Table 5. Classification performance for ambient and wearable sensors not considering data fusion
and at three varying different protocols.

Sensor Node
Protocol 1 Protocol 2 Protocol 3

Accuracy k Accuracy k Accuracy k

Ambient 0.905 0.890 0.941 0.931 0.953 0.945
Wearable 0.957 0.950 0.939 0.928 0.919 0.906

The performance obtained in numerical terms proved that the accuracy of the inte-
grated platform is always above 96%, with an increase of approximately 3% compared to
the single use of the sensor nodes, confirming the goodness of the made choice.

Table 6. Classification performance for ambient and wearable sensors considering data fusion and at
three varying different protocols.

Classifiers
Protocol 1 Protocol 2 Protocol 3

Avg Accuracy
Accuracy k Accuracy k Accuracy k

RF 0.984 0.978 0.972 0.931 0.973 0.969 0.976
SVM 0.980 0.968 0.970 0.958 0.967 0.942 0.972
KNN 0.975 0.956 0.968 0.960 0.963 0.937 0.968

The considered classifiers were found to be equivalent with regard to their perfor-
mance, with a minimum improvement obtained with RF. Confusion matrices were also
considered for integrated versions of the platform. For the sake of brevity, the matrices
containing average accuracies for each classifier are shown in Figure 12.

Since the goal of the present work is to automatically quantify the EE of an end-user
from the sequences of postures and/or walking activities classified by the sensor nodes, it
is appropriate to report the differences between an EE measurement used as ground truth
and the EE quantifications obtained considering the single-sensor platform configuration
and the integrated version (using the features obtained from both sensor nodes after the
fusion process). The differences (reported in Tables 7–9) were estimated in terms of the
relative error defined by:

RE(i)(%) =
|EEgt(i)− EEs(i)|

EEgt(i)
∗ 100 (6)

where EEgt(i) is the EE used as the ground truth of the i-th end-user involved in the
experimentation stage, whereas EEs(i) is the estimated EE using each sensing technology
in both single and combined modes.

For the ground truth, EE was quantified analytically from the protocols detailed in
Table 3 and the respective MET reported for each posture and different walking speed in
Table 1.

From the results obtained, it is evident that the EE quantification estimated by the
ambient sensor node appears to be less reliable when the level of physical activity increases
(more frequent walking activities), and this is due to the classification performance obtained
by this detector node and reported in the previous confusion matrices. In the same way,
the EE quantification estimated by the wearable sensor node has a higher relative error at
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the protocol execution where standing and sitting postures are most frequently present,
but this result was expected given the greater difficulty in distinguishing these postures
with the aforementioned sensor device.

A further conclusion from analysing the data in the three previous tables above is
that, thanks to the fusion of the features for classifying postures and walking activity, the
estimated EE quantification always has a relative error of less than 3.2% for each user,
confirming the correctness of the algorithmic choices and demonstrating the usefulness for
measurement purposes of the entire implemented platform.

Table 7. Evaluation of RE (expressed in %) for EE quantification using ambient sensor, wearable
sensor and the integrated solution (Protocol 1).

User EEgt (Kcal)
RE (%)

Ambient Wearable Integrated

1 16.15 9.4 3.5 2.7
2 14.96 7.6 4.1 3.0
3 13.16 8.1 3.7 2.9
4 16.55 7.7 3.4 2.8
5 15.56 6.6 4.4 2.5
6 13.96 7.8 4.0 3.0
7 10.97 9.0 7.7 3.2
8 11.77 13.3 3.9 2.5
9 12.16 8.1 3.5 2.2
10 10.37 8.0 7.2 2.4
11 10.77 8.9 4.0 2.7

Figure 11. Cont.
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Figure 11. Confusion matrices for seven classes of posture and walking activities for ambient (a–c)
and wearable (d–f) sensors.

Figure 12. Confusion matrices for seven classes of posture and walking activities for integrated
platform using RF (a), SVM (b), and KNN (c).

Finally, the numerical results reported in the previous three tables allow us to make
specific analyses of the appropriateness of the followed protocol. In fact, for example, the
relative errors reported in users 7 and 10 are indicators of improper elastic band placement
(and relative orientation of the Shimmer sensor). In addition, the relative errors measured
with respect to the ambient sensor show an outlier performance for user 8. This difference
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is probably due to the physical characteristics of the subject, which may have influenced
the feature extraction procedure.

Table 8. Evaluation of RE (expressed in %) for EE quantification using ambient sensor, wearable
sensor and the integrated solution (Protocol 2).

User EEgt (Kcal)
RE (%)

Ambient Wearable Integrated

1 18.78 6.8 4.5 2.5
2 17.39 6.0 4.7 2.7
3 15.30 5.3 4.2 2.8
4 19.24 6.1 4.9 3.0
5 18.08 5.8 5.4 2.6
6 16.23 6.0 5.3 3.1
7 12.75 7.2 7.9 2.9
8 13.68 11.1 4.6 2.2
9 14.14 7.9 5.0 3.0

10 12.05 6.1 9.5 2.5
11 12.52 6.2 5.3 2.6

Table 9. Evaluation of RE (expressed in %) for EE quantification using ambient sensor, wearable
sensor and the integrated solution (Protocol 3).

User EEgt (Kcal)
RE (%)

Ambient Wearable Integrated

1 11.26 3.4 7.4 2.1
2 10.43 4.1 7.7 2.2
3 9.18 3.9 6.3 3.1
4 11.54 4.2 6.8 2.7
5 10.85 3.9 7.6 2.4
6 9.73 4.1 8.0 2.8
7 7.65 4.2 10.4 3.2
8 8.20 8.0 6.9 2.5
9 8.48 3.3 6.6 2.5

10 7.23 4.0 11.8 2.8
11 7.51 3.5 7.7 2.7

5. Discussion and Conclusions

In the previous sections, we have described the design and implementation of a plat-
form that provides a novel tool for the automatic quantification of EE. The advantages
of the proposed solution are to be found in the involvement of heterogenous sensor tech-
nologies able to classify the same set of postures and the walking activity. The distributed
architecture follows the Ambient Intelligent (AI) paradigm pursuing a series of objectives,
such as assisting ageing adults in their daily life activities, detecting abnormal patterns or
abnormal behavior, providing help in risky situations and monitoring specific quantities
(in our case, EE) to enable ageing adults to live independently. From the usability point
of view, the platform is consistent with the independent living context since it allows us
to obtain an objective measure that can be analyzed offline by a doctor for subsequent
clinical evaluations. A very important feature of the analyzed platform is its versatility,
which stems from the consideration that it can potentially operate with any sensor/detector
that is able to classify the four postures and the activity of walking. The actual version of
the platform has been validated by two detectors based on sensing principles that are all
compatible with the AAL scenario.
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The use of the commercial devices used in this paper and a processing unit such as
Raspberry makes the entire solution affordable from a cost perspective, thus ensuring its
wide deployment.

Looking specifically at the obtained results, there were no substantial deviations in the
detected accuracies between the different sensor types. The performance, when varying the
designed protocols, is in line with the specific characteristics of the sensor node type. The
ambient sensor proved more accurate in classifying static postures, whereas the wearable
sensor distinguished the walking activity at different speeds better. It is worth noting that
the feature set considered in the algorithmic pipelines was focused on the output posture
and activity set of the present study. From the EE quantification point of view, there is a
very good approximation of the measurement by the simultaneous use of the sensors.

Regarding purely software development aspects, the algorithmic pipelines, as high-
lighted in the previous paragraphs, were developed in Python programming language vers.
3.7. For data acquisition from the two sensor nodes, freely available libraries were used.

For the purpose of this paper, processing times were not considered to be evaluated
because the output information of each sensory node was sampled at 1 s, allowing for
real-time operation as well.

To the best of the author’s knowledge, exclusively the work reported in [51] considers
the use of environmental and wearable sensors for EE quantification through the fusion of
extracted information from heterogeneous sensors. However, differences exist with respect
to our work regarding sample demographics (we have considered only ageing subjects)
and employed sensory devices.

In conclusion, it is possible to highlight the following strengths of the entire system
designed and implemented: (1) the algorithmic pipeline allows for objective EE quantifica-
tion with multi-sensor devices that are readily available on the market, low cost and user
friendly; (2) the use of heterogeneous sensors allows is to increase the acceptability level
of the whole solution, as some end-users may prefer contact monitoring over non-contact
monitoring (and vice versa); (3) the use of posture trends over time for EE quantification
allows for the integration, in future versions of the platform, of further sensor nodes capable
of reproducing the same set of features.

However, the present study has limitations, which are listed as follows. First, the
number of involved ageing subjects was not very high due to the pandemic situation.
Consequently, the obtained results may not be statistically consistent. In addition, the eleven
subjects involved in the trial did not have mobility disorders and so it was not possible to
evaluate the algorithmic framework with this type of subject. Secondly, the methodology
used as ground truth does not correspond to the gold standard, i.e., indirect calorimetry. The
ground truth methodology used in this paper is valid in settings where ideal conditions for
EE quantification can be reproduced. Such conditions may not be present in a typical AAL
environment. Thirdly, the operating ranges of the two sensor devices limit the monitoring
area due to the specifications of the Bluetooth protocol integrated in the wearable sensor
and the field of view and resolution of the ambient sensor. Finally, an important limitation
is related to the small number of activities recognized by the sensory nodes since, within
a living environment, they vary significantly, and activities that are different to walking
are common.

Future work will consider the evaluation of additional commercial sensors, the devel-
opment of appropriate pipelines for the recognition of a larger set of activities and, finally,
the extraction of sensory data that would also allow for the assessment of the observed
subject’s health status.

With respect to the latter consideration, for example, the measurement of vital param-
eters (such as heart rate or breath rate) during the performance of Activities of Daily Living
(ADLs) could be evaluated in order to provide indications about the mood and/or stress
level of the observed subject. Such information turns out to be of paramount importance
when considering elderly subjects, as it heavily affects their lifestyle and leads to the onset
of disorders or diseases.
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