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ABSTRACT: Evidence is presented that binding isotherms, simple or
biphasic, can be extracted directly from noninterpreted, complex 2D NMR
spectra using principal component analysis (PCA) to reveal the largest trend(s)
across the series. This approach renders peak picking unnecessary for tracking
population changes. In 1:1 binding, the first principal component captures the
binding isotherm from NMR-detected titrations in fast, slow, and even
intermediate and mixed exchange regimes, as illustrated for phospholigand
associations with proteins. Although the sigmoidal shifts and line broadening of
intermediate exchange distorts binding isotherms constructed conventionally,
applying PCA directly to these spectra along with Pareto scaling overcomes the
distortion. Applying PCA to time-domain NMR data also yields binding
isotherms from titrations in fast or slow exchange. The algorithm readily
extracts from magnetic resonance imaging movie time courses such as
breathing and heart rate in chest imaging. Similarly, two-step binding processes
detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or
regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and
time courses of reactions or fluctuations.

Affinity measurements are essential in understanding
molecular recognition and in assessing drug discovery.

Time courses of chemical and biological transformations are of
wide interest. A theme shared in monitoring either equilibria or
kinetics is to describe the shifts in population, the central
interest of this Article. We propose to marshal a classic method
of chemometrics to follow such shifts more generally.
In the case of ligand associations, a preferred spectral

approach has been heteronuclear NMR, due to its information
on binding site and suitability over a range of affinities.1−5

Typically, the ligand-binding equilibrium is monitored by shifts
of NMR peaks.1,2,4 Arriving at affinities, however, has meant
traveling through slow bottlenecks of spectral peak picking to
obtain binding isotherms, usually assignment of the peaks, and
global fitting of a binding isotherm consistent with the shifts of
multiple peaks of the protein or macromolecule.6 Despite the
advantages of this approach and rapidity of modern collection
of spectra,7,8 the time invested in interpreting these spectra is a
barrier to wider and faster applications. Below, we propose an
improved strategy that bypasses the selection of favorable peaks
in spectra and favorable features in images for analysis.
The stepwise population changes due to ligand binding in a

titration are usually accompanied by changes in NMR peaks
that depend on the exchange regime, i.e., the time scale of
chemical exchange relative to the chemical shift differences
between free and bound states. Behaviors of fast, slow, and
intermediate exchange regimes are depicted in Figure S1. Peak
shifts in the fast exchange regime are favored for modeling
binding isotherms.4,9 In the slow exchange regime, peaks

representing the free state can disappear and reappear
elsewhere in the bound state, complicating peak assignments.
In intermediate exchange, the nonlinearity of chemical shift
changes from titrations can corrupt binding isotherms with
sigmoidal distortion, resulting in skewed and unreliable fits of
the association4 (Figure S1).
Principal component analysis (PCA) reduces the dimension-

ality of data to reveal a simpler set of shared features or
patterns. It is efficient, robust, and widely applied in
chemometrics, analytical spectroscopy, and imaging.10,11 PCA
is often implemented using singular value decomposition
(SVD). The approach has only occasionally been applied to
reactions monitored by 2D NMR spectra.12−16 These included
resolution of time-dependent12 or pH-dependent components
(using CS-PCA).13 PCA filtered noise out of spectra to
improve global fits of binding.15 SVD of peak heights from in-
cell NMR spectra of proteins associating suggested the binding
site.16 The SVD of these NMR studies was applied to peak pick
lists,13−16 rather than to the stack of 2D NMR spectra
“unfolded” into a stack of vectors, which avoided peak lists and
worked well on sparse 2D NMR spectra.12 In NMR-detected
titrations, the applicability of PCA is regarded at this writing as
limited to the fast exchange regime.14,17,18 The need for wide
applicability to complex scenarios such as binding of multiple
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ligands, mixtures of chemical exchange regimes, and changing
linewidths was articulated.14 The work herein responds to this
need.
PCA can be computed by either SVD or eigenvector

decomposition of covariance, aiming at maximization of
variance with minimization of correlation and redundancy
(see the Supporting Information for more detail). PCA
computes new orthogonal components that are linear
combinations of the original experimental variables, with the
first principal component (PC1) reporting the largest variance.
Jolliffe asserts that PCA is often useful for data deviating from
Gaussian distributions and linear relationships of observed
variables to underlying components.19

Magnetic resonance imaging (MRI) of brain and diseased
tissues presents opportunities for chemometrics, such as
comparing and registering images spatially, temporally, and
metabolically.20−24 Resolution of trends of change between the
frames of a stack of congruent images or 2D spectra can be
undertaken by three-way multiple image analysis such as
“unfold”-PCA, which simplifies the 3D stack into two
dimensions for standard PCA.12,25

We demonstrate how to extend unfold-PCA to extract
binding isotherms successfully from 2D NMR spectra of ligand
titrations in slow exchange and problematic intermediate
exchange by introducing preprocessing steps. Moreover, the
improved approach needs no peak picking or peak assignments.
The algorithm is even successful in deriving binding isotherms
from the unprocessed free induction decays (FIDs) from
titrations in fast or slow exchange. When a second binding
process has been detected spectrally, PCA can also derive it as
the second component of the reaction. Likewise, this
enhancement of unfold-PCA is general enough to extract
multiple and periodic time-varying components from MRI
movies. Applying PCA directly to a series of spectra or images
saves much time in handling them and in resolving the
processes present.

■ EXPERIMENTAL SECTION

Preprocessing of Spectra and Images for SVD. Each
spectrum or image in the series of measurements is collected
and processed under identical conditions, except for the
experimental variable changed (concentration, time, pH, etc.).
Each 2D spectrum or image (F1 × F2 points) is rearranged as a
1D vector arrayed over the experimental variable25 (Figure S2).
Each vector is compressed, by deleting unchanging positions, in
order to expedite computational manipulations of the matrix
X′. Low intensity regions of the vectorized spectra were usually
filtered out prior to SVD. Alternative choices of no scaling,
autoscaling, and Pareto scaling26 of the rows of X′ were
compared. The rows were mean-centered.11

Extraction of Principle Components. SVD of X′ can be
expressed as

′ =X U S Vmn mn nn nn
T

(1)

where U and VT are orthogonal matrices, S is a diagonal matrix,
and subscripts denote sizes of matrices. The eigenvectors of
X′T·X′ constitute the matrix VT containing the singular vectors
of interest, such as PC1 as the first row with the largest trend
(Figure S2) and PC2 as the second row with the second largest
trend. PC1 may depend on time,27 [ligand],15 or other
conditions.13 The simulations of NMR spectra used for part

of the testing PCA applied directly to them are described in the
Supporting Information.

■ RESULTS AND DISCUSSION

PCA Capture of Time Courses. We extended the unfold-
PCA strategy of converting a 3D stack of 2D NMR spectra
(perturbed by the experimental variable) into a 2D array of
vectors for SVD.12 To improve performance, we inserted
preprocessing steps for data compression, noise filtration, and
scaling options (Figure S2). We automated these processing
and calculation procedures for multiple data formats.28 This
algorithm avoids user selection of features in the data (Figure
S2). Its ability to capture main trends is introduced using time-
lapse images of a sunset or multiplying bacteria (Figure S3).
The trajectory of the setting sun is marked by PC1 (Figure
S3A,B). The exponential growth in bacteria is represented by
PC1, despite their motility (Figure S3C,D). Applying the same
PCA approach to time-lapse 2D NMR spectra captures a
reaction progress curve as PC1. Changes in 1H−15N correlation
spectra have been used to track dephosphorylation or
phosphorylation rates.29,30 PCA applied directly to time-lapse
TROSY spectra of a phosphoryl transfer enzyme reveals the
time course of dephosphorylation (Figure S3E,F). The kinetics
derived from unsupervised PCA of entire spectra echo those
obtained from global fitting of carefully selected peak height
changes29 but with new ease.

Fast Exchange Scenarios. PCA was demonstrated on
peak pick lists of titrations with NMR peaks in the fast
exchange regime, where the shifts of the peak positions are
linear combinations of the basis spectra and suffice to indicate
population change.13,14,16 However, applying PCA directly to
noninterpreted spectra means that more information is
considered: not only selected peak positions but also line
shapes (widths, heights, volumes, etc.) throughout the
spectrum. Autoscaling32 and Pareto scaling26 perform accept-
ably when applying the improved algorithm to fast exchange
(Figure S4A,B). Autoscaling is, however, more accurate and
precise for fast exchange, especially with the threshold for
retention of spectral points set to 3- to 7-fold the noise level
(Figure S4A,B).
The list-based and improved spectrum-based implementa-

tions of PCA reproduce conventional results in obtaining
binding isotherms. An example of 1:1 protein−ligand binding
in the fast exchange regime with KD set to 270 μM is shown
with the simulated titration of Figure 1A. Application of PCA to
lists of all peaks provides an accurate binding isotherm as PC1
plotted vs [ligand]. Fitting to standard eq S4 places KD at 271
± 17 μM (Figure 1B). This indicates that PCA of all peak
positions, whether shifted by the ligand or not, matches
conventional global fitting of only the big shifts of well-resolved
peaks. It is more convenient and thorough to apply the
improved unfold-PCA algorithm directly to the spectra (Figure
S2). The binding isotherm captured as PC1 in this way
reproduces the true populations (Figure 1B). This is also
illustrated for the titration of a phosphoprotein binding domain
with a phosphoThr peptide in fast exchange31 (Figure 1C).
PC1 direct from the spectra delineates the binding isotherm
fitted by KD of 36 ± 4 μM (Figure 1D), which closely
resembles the binding isotherms and KD of 40 ± 5 μM globally
fitted previously to the shifts of multiple amide peaks.31 PCA of
lists of the spectral peaks picked from the titration provides
PC1 fitted by a similar KD of 34 ± 3 μM (Figure 1D).
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Parseval’s theorem suggests that signals in time and
frequency domains can be considered equivalent.33 With this
in mind, PCA of the unprocessed FIDs was also evaluated
(Figure 1). PC1 derived from the array of FIDs from the
simulation of fast exchange managed to obtain a binding
isotherm with nearly correct affinity but larger uncertainty, i.e.,
KD of 290 ± 68 μM (Figure 1B). This outcome is promising for
PCA overcoming the high level of noise added to the simulated
example (S/N of 5 at the median peak height). PCA of the sets
of FIDs from the protein titration with phosphoThr peptide in
fast exchange31 generated a binding isotherm with KD close to
the 33 ± 6 μM obtained by other methods (Figure 1D). The
smaller uncertainties when applying PCA after Fourier
transformation might reflect increased sensitivity from integra-
tion of the signals or from better signal resolution.
Slow Exchange Scenarios. Binding isotherms can be

constructed conventionally in the slow exchange regime (with
slower koff and higher affinities) from changes of peak volumes
or heights but with more difficulty and rarity. Tracking the
appearance of bound state peaks is preferred4 but can be
complicated by challenging peak assignments and peak
attenuation by line broadening. PCA of the simulated titration
(KD set at 270 μM) in the slow exchange regime derives a
binding isotherm as PC1 that is virtually indistinguishable (KD
of 262 ± 9 μM) from the simulated populations (Figure 2B).
SVD of the series of spectra derives robust binding isotherms
from titrations in slow exchange. The fits to them are precise
with all three options of scaling, provided that with autoscaling

the threshold for data inclusion is kept ≤7-fold the noise level
(Figure S4E,F). PC1 extracted from simulated FIDs provides a
binding isotherm resembling the simulated populations, with
slight deviations in points and fitted KD of 290 ± 14 μM
(Figure 2B). PCA was applied to the entirety of crowded 15N
TROSY spectra of the 52 kDa PMM enzyme titrated by its
inhibitor xylose 1-phosphate (X1P), exhibiting slow exchange
behavior (Figure 2C). The binding isotherm globally fitted to
the increasing peak heights of several selected bound state
peaks estimates KD at 23 ± 6 μM. (The blue curve in Figure 2D
summarizes many normalized peak heights fitted.) The points
of PC1 obtained directly from the spectra are fitted by KD of 27
± 13 μM and PC1 from FIDs by KD of 32 ± 11 μM (Figure
2D). These PC1-derived binding isotherms match well those
obtained from conventional global fitting of bound peak heights
but with the advantages of minimal data handling or
interpretation.

Intermediate Exchange Scenarios. Intermediate ex-
change is most problematic for estimating affinities due to its
sigmoidal plots of NMR peak shifts4 vs [ligand] (Figures S1F
and 3B). These nonlinear shifts can be fitted erroneously with
deviations up to 2 orders of magnitude from actual.4 It can also
be misconstrued as evidence of cooperativity.
In intermediate exchange, both line shapes and peak

positions appear to be critical for capturing population change.
As a simple and extreme case, NMR spectra of a titration were
simulated with intermediate exchange broadening in all peaks
in the 1H dimension. The application of standard autoscaling32

Figure 1. PC1 from SVD of titrations in fast exchange, simulated or
measured, represents Langmuir binding isotherms. (A) Simulated
spectral shifts in the fast exchange regime. The colors of the contours
progress with ligand additions up to 10-fold excess. (B) Binding
isotherms were obtained by applying SVD to the simulated spectra
without peak picking (triangles), peak pick lists (circles), or the
simulated raw FIDs (open squares). Black squares mark conventional,
global fitting of the shifts of individual peaks. ||..|| denotes
normalization of the peak shifts. (C) Superposed 15N HSQC spectra
of a phosphoprotein-binding FHA domain (600 μM) titrated with a
phosphopeptide from a protein kinase exhibit fast exchange
behavior.31 (D) Binding isotherms were derived from the titration
shown in (C) by applying SVD directly to the spectra (open triangles),
lists of the peaks of each spectrum (squares), or FIDs (circles). The
KD of 40 ± 5 μM globally fitted to the peak shifts of multiple amide
peaks31 is closest to the KD fitted to PC1 of the spectra.

Figure 2. SVD of titrations featuring slow exchange, in simulated or
measured NMR spectra, distills binding isotherms as PC1. (A) Overlay
of HSQC spectra simulated with slow exchange. Protein ligand ratios
of 1:0, 1:1.3, and 1:10 are represented by red, cyan, and darker blue,
respectively. Insets are 1D slices of peak pairs indicated by black
arrows. (B) PC1 derived from the simulated series of spectra
(triangles) in panel A provides binding isotherms equivalent to
plotting heights of disappearing peaks of the free state (black squares).
PC1 was also calculated from peak lists (circles) or the FIDs (open
squares). (C) Spectra from a slow exchange titration of an enzyme
with an inhibitor. 15N TROSY spectra of PMM (52 kDa, 800 MHz, 25
°C) titrated with X1P are superposed and contain amide peaks in slow
exchange. PMM/X1P ratios of 1:0, 1:0.6, and 1:8 are represented by
red, cyan, and blue, respectively. (D) PC1 of either the spectra or FIDs
from this titration captures the binding isotherm. Standard global
fitting of peak heights is shown with blue symbols for comparison.
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in the algorithm of Figure S2 falls short of the accuracy and
precision needed (see purple box in Figure S4C,D). For
obtaining a binding isotherm of high accuracy and precision
from intermediate exchange behavior, Pareto scaling of the
rows is required and improved by the threshold remaining
small (Figure S4C,D). Though the shifts of all peaks are
sigmoidal (Figure 3A,B), PCA of the Pareto-scaled, linearized
spectra avoids any such distortion of PC1; it is best fitted by a
KD of 102 ± 15 μM that agrees with the simulated KD (Figure
3B). Pareto scaling with a low threshold increases the weighting
of weak peaks broadened by intermediate exchange and appears
to move the data closer to a Gaussian (Figure S6), the
distribution optimal for PCA.19

Mixtures of Regimes. It is much more typical of titrations
with NMR peaks in intermediate exchange to be accompanied
by other peaks in fast or slow exchange. We simulated a
titration with a mixture of all three regimes and 34% of the
peaks in intermediate exchange (Figure S8A). The sigmoidal
shifts of the latter are enough to cause PCA of the lists of all
picked peaks to extract PC1 which is sigmoidal and
unacceptable as a binding isotherm (Figure S8B). The
application of PCA to these spectra instead (with Pareto scaling
for accuracy) successfully captures the simulated population
change as PC1 with fitted KD within 7% of the simulated value
(Figure S8B). When using only peaks in intermediate exchange
from this simulation (Figure S8C), the sigmoidal distortion of
PC1 from PCA of peak lists worsens, but PCA of the Pareto-
scaled spectra still suppresses distortion of PC1, as is evident
from fitted KD within 13% of the actual value (Figure S8D).

15N HSQC spectra of an FHA domain titrated with a
phosphoThr peptide31 exhibit intermediate-fast exchange

(Figure 3C). Though numerous unaffected peaks are also
present, fitting of the PC1-derived binding isotherm matches
the KD of 20 ± 3 μM measured independently by isothermal
titration calorimetry (Figure 3D). PCA is not recommended for
application to FIDs with intermediate exchange broadening
because of the skewing of PC1 that results (Figure S9E,F).
Applying unfold-PCA to spectra along with the preprocess-

ing recommended herein (Figures S2 and S4) reliably defines
the binding isotherms. This is much easier than seeking KD
through fitting of line shapes or competition experiments4

requiring prior knowledge of relative ligand affinity. Use of PCA
does not change the need for [protein] to be 0.2 to 0.8 of KD
for best accuracy in fitting KD and within 10-fold for acceptable
accuracy.5,9 When affinities are too tight to use this range
(evident as an abrupt transition), competition can then be
introduced to weaken the affinity of interest into the
concentration range where it can be fitted accurately.4,5,15

Two-Step Binding. Next, we attempted resolution of two
binding events, reactions determined to be sequential.34 In the
course of multiple ligand binding, mixed exchange regimes are
likely to complicate previous strategies of analysis. Cogliati et al.
reported a challenging mixture of exchange regimes in the two-
step binding of two molecules of sodium glycochenodeox-
ycholate (GCDA) to bile acid binding protein34 (Figure 4A).

The titrations display a mixture of fast, slow, and intermediate
exchange regimes accompanying the complex binding (Figure
4B). The authors exploited line shape analysis to selected amide
NMR peaks undergoing intermediate exchange broadening; see
those marked with black arrows in Figure 4B.34 This enabled
them to estimate the proportions of the apo (P), intermediate
(PL), and ligand-saturated (PL2) states through the course of
titrations34 (green in Figure 4C).
The application of SVD directly to the same spectra without

peak picking and with Pareto scaling results in PC1 accounting

Figure 3. Suppressing the intermediate exchange distortion of binding
isotherms by applying PCA directly to spectra. (A) HSQC spectra
simulated to be intermediate to fast in exchange for 1H chemical shift
changes and line shapes. The inset shows slices through a shifted and
broadened peak. (B) In intermediate to fast exchange, the ligand-
induced peak shifts deviate sigmodally from a 1:1 binding isotherm
when applying PCA to the peak pick lists (dashed line). The lag is
suppressed in PC1 (green triangles) from SVD of Pareto-scaled
spectra. (C) A region of the 15N HSQC spectrum of the FHA domain
titrated with a phosphopeptide displays intermediate-fast exchange
behavior at the peaks of four amino acids labeled. (D) PC1 of the
spectra yields a binding isotherm fitted by KD of 21 ± 8 μM, which
agrees with the KD of 20 μM measured by isothermal titration
calorimetry.31

Figure 4. Principal components from SVD of spectra agree with the
populations estimated earlier by line shape analysis34 for a titration of
two sequential binding events. (A) Scheme of the two-step binding
mechanism hypothesized. (B) Chicken liver bile acid binding protein
with disulfide bridge was titrated with GCDA and underwent
intermediate exchange broadening, as is evident for two peaks marked
with arrows in the superposed HSQC spectra.34 (B) HSQC spectra of
this protein titrated with GCDA, specifically ligand/protein ratios of 0,
0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, and 3.5, with contours
ranging from red to blue. Black arrows indicate peaks in intermediate
exchange.34 (C) Comparison between normalized PCs (purple) and
populations of the states P, PL, and PL2 previously calculated using
line shape analysis (green, adapted from Figure 3e in ref 34 with
permission, copyright 2010 John Wiley & Sons).
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for 61% of the variances and PC2 accounting for 12% (Table
S2). PC1 approximates the disappearance of the apo state P.
The quantity 1 − PC1 (not shown) resembles but slightly
exceeds the formation of the fully bound state PL2 (Figure 4C).
PC2 resembles the rise and fall of the population of the singly
ligated intermediate PL, once PC2 is normalized to the scale of
PC1 (Figure 4C). Since the population changes of P and PL2
are highly correlated (R= −0.93) and hence statistically related,
it is mathematically unrealistic to distinguish these two
correlated components by PCA, a decorrelation technique.
When no ligand is present (L/P = 0) or the bile acid binding

protein is saturated with the GCDA ligand (e.g, L/P = 3.5),
PC1 and PC2 sum to 1.0 in agreement with the proportions of
PL and PL2 summing to 1.0. Consequently, the sum of PC1
and PC2 is renormalized to 1.0. This implies that PL2 should be
modeled by 1-PC1-PC2, which matches well the fractional
concentrations of PL2 estimated previously34 (Figure 4C).
Nonlinearity and Applicability of PCA. Are the non-

linear peak shifts of the peaks in intermediate exchange (see
Figures 3, 4, and S8) suitable for PCA? Neither SVD nor
covariance calculations require Gaussian distributions.19 The
series of NMR spectra and time-lapse images analyzed in this
study all have a degree of the nonlinear character (non-normal
distributions) exemplified more dramatically by a chaotic
system (Figure S7). This may result from the spectra and
images containing more components than lists of their peaks or
features. It would require multiple PCs to capture most of the
greater complexity to reconstruct the original measurements
(with matrix U in eq 1). However, for this study’s more modest
goal of extracting the largest population shifts among the
spectra or images, the nonlinearity (Figure S7) does not
interfere in the largest PCs capturing the main processes. When
these largest trends are abstracted from matrix VT (eq 1), they
robustly withstand nonlinearity. The central limit theorem
generates an approximation of normality for most data sets, as
they have the large size required by the theorem. The scaling of
the data matrix of spectra appears to shift it toward a normal-
like distribution (Figure S6). Thus, discovering the main trends
requires far fewer PCs from matrix VT than needed for faithful
reconstruction of nonlinear spectra and images using matrix U.
Periodic and Multiple Components from MRI by PCA.

We tested the fitness of this SVD approach for wider
applications to measurements paralleling macromolecular
NMR spectra in being complex and responsive to coordinated
processes, e.g., MRI movies. The SVD algorithm extracts from
an MRI movie of brain fluctuations35 the periodic flow of
cerebral spinal fluid as PC1 (Figure 5A,B). PC1 from the full
breadth of the movie frames appears similar to the reported
modulation of image intensities within the box confined to the
third ventricle36 (Figure 5A,B). PC1 represents the 5 cycles of
respiration, each with 2.5 s of inspiration and 2.5 s of expiration,
similarly to the conventional plot of the localized intensities of
the MRI signal36 (Movie S1). PC1 being smoother than the
local intensity changes may reflect the integration of more
covarying data and the noise filtering that is intrinsic to PCA.
We also applied this PCA approach to an MRI movie of a

chest cross-section37 through the large arteries (the aorta and
pulmonary trunk) and vein (superior vena cava) each
connected to the heart (Figure 5C). The aorta, pulmonary
trunk, and superior vena cava pulse in unison upon contraction
of the heart, while chest dimensions undulate more slowly with
breathing37 (Movie S2). Applying unfold-PCA to the standard
magnitude view of the MRI movie easily extracts four time

courses as PC1 to PC4. PC1 represents breathing with three
cycles of inspiration and expiration (red in Figure 5D and
Movie S2). PC2 represents the pulsation of the major arteries
and superior vena cava upon heart contraction for ten
consecutive heart beats; the troughs mark the expansion of
the vessels (blue in Figure 5D and Movie S2). The process
represented by PC3 is unclear but is synchronized to breathing
and repeats at exactly twice the frequency of PC1 and
breathing. Movie reconstruction28 using only PC3 suggests
subtle fluctuations in the pulmonary trunk (not shown), which
ties to the lungs. PC4 is clearly synchronized to the cardiac
cycle. Movie reconstruction28 reveals that PC4 affects the
pulmonary trunk the most and the aorta slightly. The crests of
PC4 (Figure 5D) probably represent contraction of the heart
(systole) because they are narrow and immediately precede the
bolus of blood that appears in the arteries (troughs in PC2).
The broad troughs of PC4 probably represent the relaxation of
the heart known as diastole, with its rapid filling and
subsequent slower filling phases; these are evident as the
steeper and more gradual slopes at the bottom of the troughs
(Figure 5D). Thus, the strategy of applying PCA directly to the
series of images resolves multiple concurrent processes. Two
PCs are as intuitive as breathing and heart beat while another
PC represents phases of the cardiac cycle.

Tallying Meaningful Principal Components. Determin-
ing the number of meaningful PCs can become important when
there are concurrent processes. Scree plots of the contributions

Figure 5. SVD extracts the time courses of pulsation in MRI movies of
cross sections through the brain35 or chest.37 (A) Frames from the
brain imaging (Movie S1, adapted from ref 35 with permission,
copyright BiomedNMR/CC-BY-SA-3.0) feature cerebral spinal fluid
flow most apparent within the box pointed out by an arrow in frame
2.35,36 (B) PC1 from the movie captures five cycles of breathing,
plotted with the red line. Signal intensities within the boxed central
region with the arrow in the third ventricle are plotted with the black
dashed line. (C) A frame from the movie of ref 37 (adapted with
permission, copyright 2014 John Wiley & Sons) is labeled AA for
ascending aorta, DA for descending aorta, PT for pulmonary trunk,
RPA for right pulmonary artery, and SVC for superior vena cava. (D)
The time courses of the four PCs generated by unsupervised SVD are
plotted and suggest four types of periodic fluctuations. This movie37 is
synchronized with plotting of its PC1 and PC2 in Movie S2.
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of PCs are widely trusted and give especially clear suggestions
of the significant PCs for the peak lists and movies that we
analyzed. Additional strategies of counting significant PCs were
proposed (e.g., singular values and RMSD)15,38 but appear
inconclusive in all applications of unfold-PCA to the series of
spectra and images that we have examined, except to highlight
the ubiquity of nonlinear behavior (Figure S7). Even for a
simple titration with NMR peaks in slow to intermediate
exchange, using the percentage of the variances accounted for
cannot judge the adequacy of the single component (Figure
S6). The criterion that a PC be smooth (high autocorrelation),15

however, appears more reliable for recognizing a meaningful
component, when coupled with some understanding of the
processes. For example, in 1:1 protein−ligand binding, the
hyperbolic PC1 curve represents the binding isotherm
regardless of the proportion of variance contributed by PC1.
This inspection of PC1 works for the slow-intermediate
exchange example (Figure S6). When more than one significant
component is present, the shapes of lesser PCs need to be
checked.15 In analyses of protein−ligand titrations with two
reactions (see Figure 4), PC1 and PC2 are smooth and clearly
larger than other PCs (Figure S10).
Limits to Applications of PCA to Spectra and Images.

We have encountered instances of deterioration or failure of the
improved unfold-PCA algorithm. PCs were corrupted when
spectral windows, signal averaging, management of water
suppression, or gain were not uniform. This is usually overcome
by applying SVD to peak pick lists. SVD of unprocessed FIDs
diminished by simulated intermediate exchange failed to
represent the binding isotherms of the titrations (Figure
S9F). This is avoided by Fourier transformation. When SVD is
applied to 1D spectra of abnormally low digital resolution, the
accuracy of the binding isotherm deteriorates (Figure S6).
However, PCA appears remarkably reliable in representing at
least two processes from a series of 2D measurements.
Potential Applications to Digital Data. Unfold-PCA,

improved by preprocessing steps described, can process many
kinds of series of comparable spectra and images. It makes most
sense to apply it to data that are complex but that respond to
one or more concerted processes, for the purpose of finding the
main trends. Macromolecular NMR and MRI provide good
examples. Plotting the course of protein folding intermediates
recorded by expedited NMR spectra39 is another potential
application. Potential applications may extend to other series of
2D measurements such as spectra, gels, and imaging of
microarrays,40 chromatographic separations,41 electrochemis-
try,42 and chemical biology signals.43,44

■ CONCLUSIONS

The application of this PCA strategy (enhanced by
preprocessing) to a series of spectra or MRI images offers
convenience and wide applicability to characterizing concerted
processes. Such applications will expand the accessibility of
affinities, equilibria, kinetics, and time-evolving processes. This
will include noninterpreted, unassigned, and overlapped
features in spectra and movies, which may number two or
more concurrent processes. For example, NMR studies will be
enabled to elucidate binding isotherms masked by intermediate
exchange and/or two or more concurrent processes.
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