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Abstract

Class II terpene cyclases, such as oxidosqualene and squalene-hopene cyclases, catalyze some of 

the most complex polycyclization reactions. They minimally exhibit a β,γ-didomain architecture 

that has been evolutionarily repurposed in a wide range of terpene-processing enzymes and likely 

resulted from a fusion of unidentified monodomain proteins. Although single domain class I 

terpene cyclases have already been identified, single domain class II terpene cyclases have not 

been previously reported. Here we report high-resolution X-ray structures of a monodomain class 

II cyclase, merosterolic acid synthase (MstE). With a minimalistic β-domain architecture, this 

cyanobacterial enzyme is able to construct four rings in cytotoxic meroterpenoids with a sterol-like 

topology. The structures with bound substrate, product, and inhibitor provide detailed snapshots of 

a cyclization mechanism largely governed by residues located in a noncanonical enzyme region. 

Our results complement the few known class II cyclase crystal structures, while also indicating 

that archaic monodomain cyclases might have already catalyzed complex reaction cascades.
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Terpene cyclases are key biosynthetic determinants for the vast diversity of isoprenoids, 

currently encompassing more than 76,000 compounds (Dictionary of Natural Products. 

http://dnp.chemnetbase.com). These enzymes convert acyclic substrates to cyclized products 

that can feature multiple new stereocenters and carbon-carbon bonds1,2. Among the two 

major classes of terpene cyclases3, class I enzymes dissociate pyrophosphorylated substrates 

to generate a carbocation for cyclization4, while class II enzymes protonate olefinic or 

epoxide moieties5. In canonical type II cyclases, an Asp residue in a conserved DXDD 

motif is responsible for Brønsted acid catalysis6. Available cyclase structures contain up to 

three domains, termed α, β, and γ (Fig. 1)7–9. Single-domain architectures are currently 

only known for the α-domain microbial class I terpene cyclases10–13. Other class I enzymes 

feature αβ or αβγ architectures, with the α-domain containing the active site14–16. For class 

II terpene cyclases, which generate some of the most complex terpene skeletons, only βγ 
or αβγ architectures are known17–20 It has been proposed that plant αβγ diterpene cyclases 

evolved from bacterial progenitors by fusion of the α and βγ enzymes and subsequently 

gave rise to αβ-didomain synthases by loss of the γ domain7. The class II βγ enzymes 

likely evolved from monodomain proteins, but as the catalytic acid residue is located in the 

β-region, and the γ-region provides most of the remaining residues needed for polycyclic 

product formation, it was unknown how a single domain might achieve catalysis.
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Results and discussion

The structure of apo merosterolic acid synthase

Here we report merosterolic acid synthase (MstE) as a founding member of the monodomain 

class II cyclases and present detailed structural and functional insights into the formation of 

its polycyclic steroid-like product. MstE constructs the core scaffold of the cyanobacterial 

cytotoxin merosterol A (Fig. 2A, 1), isolated from Scytonema sp. PCC 10023, by generating 

the pentacyclic intermediate merosterolic acid A (2)21. Although MstE produces a steroid-

like skeleton, it does not act on a squalene-derived substrate but diverts the ubiquinone-type 

precursor 5-geranylgeranyl-3,4-dihydroxybenzoate (GG-DHB, 3) to specialized metabolism. 

X-ray structure analysis of MstE at resolutions up to 1.3 Å revealed atomic insights 

into this complex reaction (Supplementary Table 1). The monomeric state of MstE was 

confirmed by PISA calculations and size-exclusion chromatography22. It shows sequence 

homology to triterpene cyclases, such as squalene-hopene cyclases (SHCs, PDB-ID: 

1H3B23, 2SQC24) and oxidosqualene synthases (OSCs, 1W6K18), classifying MstE as a 

class II cyclase (Extended Data Fig. 1–2). It is, however, significantly smaller than the 

homologs (Supplementary Fig. 1). MstE exhibits a conserved α6-α6 barrel fold with outer 

(o) and inner (i) helices forming a tilted circular arrangement (base subdomain, Fig. 3A).

Interestingly, helix oH1 of MstE corresponds closely to the N-terminal helix of the β-domain 

in canonical βγ-didomain triterpene cyclases (Extended Data Fig. 1). While the γ-domain 

of SHCs and OSCs mediates association and product incorporation into membranes, MstE 

solely uses the pronounced coils between each o and i helix (head subdomain, Fig. 3B) to 

form an extended central cavity about 17 Å deep and 6 Å wide (Fig. 3C). Residues 157 to 

165, at the entrance of the head subdomain’s proposed terpene-binding site, are disordered 

in the apo structure (1.95 Å, PDB ID: 6SBB). Being lined with aliphatic and aromatic 

residues, the channel displays a negative electrostatic potential attracting hydrophobic 

molecules from the crystallization conditions (e.g. PEG) in absence of a natural ligand. 

Between the base and head subdomains, two Q-X5-W motifs located at the C-termini of 

oH4 and oH6 generate additional stability to endure the exergonic reaction. Found commonly 

in SHCs and OSCs17,25, they consist of tryptophan residues stacking with glutamine side-

chains that form H-bonds towards the neighboring helix.

Closed-state structure of MstE with non-reactive substrate

First insights into the reaction cascade were gained by the co-crystal structure of MstE 

and non-reactive pseudo-substrate farnesyl dihydroxybenzoate (FS-DHB, 8) at 1.35 Å 

(PDB ID: 6SBC, Extended Data Fig. 3B, Supplementary Fig. 2, 3). The surrogate is 

fully defined in the 2FO-FC electron density map and located inside the binding channel 

with its C15-isoprenylic moiety oriented towards the protein core. Both hydroxy groups 

in DHB form strong H-bonds with Glu339. Upon ligand binding, residues 157 to 165 

fold around the entrance in a substrate-induced fit, preventing access of solvent that could 

quench carbocations during the reaction. This is predominantly mediated by interactions 

between the DHB carboxylate and Tyr157 as well as the salt bridge between Asp162 and 

Arg337. Based on the structure of MstE:8, single-point mutants with impaired activity were 

constructed. Based on the protein alignment Asp109 was the likely protonating residue and 
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was therefore chosen for mutagenesis (Extended Data Fig. 1). Tyr157 was selected for its 

interaction with the carboxylic acid of the DHB and Glu339 for its H-bonds with the DHB 

hydroxyl groups. Arg337 was chosen because of its interaction with Glu339.

Structures of mutant MstE with natural substrate and product

Crystallization trials in presence of the natural substrate GG-DHB (3) provided structures 

for Y157F (1.3 Å, PDB ID: 6SBF), R337A (2.3 Å, PDB ID: 6SBG), D109N (1.4 Å, PDB 

ID: 6SBE) and D109A (1.4 Å, PDB ID: 6SBD). MstE_Y157F resembles the apo state 

with diffuse electron density in the prenyl-binding cavity and supports the role of Tyr157 

as a gatekeeper for substrate recognition (Extended Data Fig. 3F). 3 was identified in 

MstE_R337A (Extended Data Fig. 3E), but the lack of stabilization at the entrance resulted 

in low ligand occupancy. Intriguingly, MstE_D109N forms a complex with 3, where the 

ligand occupies the binding pocket entirely (Fig. 3D, Extended Data Fig. 3C, Supplementary 

Fig. 2). In accordance with the stereoisomeric configuration of the polycyclic product, all 

isoprenyl segments are forced into chair-like conformations. Together with the one-sided 

parallel alignment of all methyl groups, this compressed shape provides significant catalytic 

energy. In the superposition of MstE_D109N:3 and MstE:8 (RMSD-Cα: 0.12 Å) N109 takes 

the exact position of D109 and rests perpendicular to the terminal C=C bond of 3 at 3.2 

Å. The residue is positioned in a DXD-polar motif conserved among class II cyclases and 

known to initiate olefin protonation8. Unexpectedly, MstE_D109A co-crystallized with 3 
revealed cyclized product MA (2) in the binding pocket (Fig. 3E, Extended Data Fig. 3D, 

Supplementary Fig. 2). Presumably, the energy contribution through substrate coordination 

and product stabilization is sufficient for a minimal turnover within the time frame of 

crystallization experiments over several days (Supplementary Fig. 4). While the linear 

substrate observed in MstE_D109N:3 occupies the entire channel with a length of 17 Å, 

2 is condensed to 12 Å and bent by methyl repulsions. Notably, 2-methyl-2,4-pentanediol 

(MPD) from crystallization buffers occupies the vacant space and seals the channel bottom. 

This might aid the selective binding of product even in excess of substrate.

Simultaneously, the DHB moiety of 2 loses H-bond contact to Glu339 at the meta-hydroxy 
group (Fig. 3E), and the carboxylate leaves the aromatic plane due to steric clashes with 

the generated C5-ring. As a result, the gatekeeper Tyr157 turns by 90° and Arg337 is 

displaced, forming a salt bridge with Glu339. The collective effect disorders the region 

between residues 330 and 335, supporting product release.

The structural snapshots at atomic resolution suggest that Asp109 initiates the reaction with 

its proton oriented in anti-configuration. This activated Brønsted acid forms a charge-relay 

system with Tyr216 and two water molecules (Extended Data Fig. 4, Supplementary Fig. 

5). After protonation of the terminal C=C bond in 3 and concomitant formation of the first 

cycle26,27, the acid is likely regenerated by bulk water through solvent-accessible channels. 

During the subsequent cascade, precisely positioned aromatic residues of the binding pocket 

would stabilize intermediate carbocations until final cyclization onto the DHB π-system28. 

Mutation of aromatic residues likely fulfilling this role in MstE were mutated, resulting 

in enzymes no longer converting substrate to any product (Supplementary Fig. 6). Based 

on the MstE_R337A structure, the strong salt bridge between the Arg residue and Asp162 
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increases the basicity of Glu339, which deprotonates the DHB meta-hydroxy group, pushing 

π-electrons into the ring (Extended Data Fig. 5). Subsequently, spontaneous deprotonation 

at C6 and keto-enol tautomerism restores the aromatic system (Fig. 2A).

Mutant MstE with expanded product specificity

Members of the triterpene synthase family generate a plethora of structural scaffolds based 

on active-site geometries, with particularly impressive diversification found in plants29. 

This raises prospects that our structural insights might facilitate engineering of soluble 

cyclases yielding modified products. Therefore, we screened structure-guided mutants of 

MstE for alterations to the polycyclization reaction (Supplementary Fig. 6, 7). Among these, 

MstE_Y157A, predicted to exhibit weakened interactions with the DHB head group, formed 

a new product 9 after incubation with GG-DHB (Supplementary Table 2, Supplementary 

Fig. 8–16). Characterization of 9, termed merosterolic acid B, by NMR identified a tricyclic 

isoprenoid moiety containing an exo-methylene group. The structure is consistent with the 

proposed role of Y157 and suggests that dislocation of the DHB π-system prevents attack by 

the third-ring carbocation intermediate, resulting in deprotonation as an alternative reaction 

path (Fig. 4). Interestingly, the artificial compound 9 resembles fascioquinols (10-11), 

meroterpene antibiotics reported from a deep-water sponge30.

SHCs are ancient enzymes that already existed 2.7 billion years ago and have been 

regarded as the origin of the βγ-didomain fold31. While the β-domain is preserved in 

most terpene cyclases (Fig. 1), MstE is active despite lacking a γ-domain, present in all 

other characterized di- and triterpene cyclases, revealing that class II synthases can assemble 

complex polycyclic scaffolds with monodomain architectures. It remains unclear whether 

the βγ-fold evolved through insertion of a γ-domain between oH1 and iH2 of an ancestral 

protein, or whether MstE derived from a βγ predecessor by the deletion of helices 2-13. To 

date, triterpene synthase-ligand interactions have only been reported for SHC bound to an 

inhibitor and OSC complexed with its product17,18. This study on MstE visualizes crucial 

steps in terpenoid biosynthesis at atomic resolution. The availability of a soluble cyclase that 

accepts pyrophosphate-free substrates offers augmented perspectives for chemoenzymatic 

synthesis using engineered enzymes as shown for MstE.

Methods

Cloning of MstE for crystallization

The Scytonema sp. PCC10023 MstE gene (GenBank: ATN39899.1) was obtained from 

Eurofins Genomics (Ebersberg, Germany) after sequence optimization for recombinant 

expression in Escherichia coli. The gene was cloned into a pET-28b(+) vector (Invitrogen, 

Darmstadt, Germany) carrying an N-terminal H6-SUMO tag (Smt3p from Saccharomyces 
cerevisiae, residues 1-98). Single-point mutagenesis was carried out by QuikChange II 

site-directed mutagenesis (Agilent Technologies, Waldbronn, Germany). Sequence integrity 

was confirmed by Sanger sequencing at GATC Biotech (Konstanz, Germany).
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Recombinant protein expression and purification for crystallization

Transformed E. coli BL21 (DE3) strains (Novagen/Merck, Darmstadt, Germany) was 

grown in 2 L lysogeny broth (50 mg/L kanamycin) at 130 rpm and 37 °C until an 

OD600 of 0.6 was reached. Expression was induced by addition of 1 mM isopropyl 

β-D-1-thiogalactopyranoside (IPTG) and occurred over night at 20 °C. After harvest by 

centrifugation, cell pellets were washed in 0.9% (w/v) NaCl and stored at -20 °C. Cell 

pellets were resuspended in 60 mL buffer A (100 mM Tris/HCl, pH 7.5, 500 mM NaCl, 

20 mM imidazole, 10 mM β-mercaptoethanol) with 1 mg DNAse I and 5 mg Pefabloc 

(Sigma-Aldrich, Taufkirchen, Germany) and disrupted by sonication with a Branson Digital 

Sonifier 250 (G. Heinemann, Schwäbisch Gmünd, Germany). After centrifugation (40.000 

× g, 30 min, 4 °C) the supernatant was applied to a 5 mL HisTrap HP column equilibrated 

with buffer A using an ÄKTA prime plus system (GE Healthcare, Freiburg, Germany) at a 

flow-rate of 5 mL/min. The column was washed with 10 CV of buffer A prior to elution with 

a gradient of buffer B (0 - 100% in 50 mL). After addition of 0.5 mg SUMO protease (Ulp1 

from S. cerevisiae), the eluate was dialyzed against 5 L buffer C (20 mM Tris/HCl, pH 7.5, 

100 mM NaCl, 1 mM β- mercaptoethanol) overnight at 4 °C. Affinity chromatography was 

repeated, flow-through and wash fractions were collected and concentrated to 2 mL using 

Vivaspin ultrafiltration centrifugal concentrators (Sartorius, Göttingen, Germany). Protein 

concentrates were subjected to size-exclusion chromatography with a HiLoad Superdex 200 

16/60 column equilibrated with buffer D (buffer C with 5 mM dithiothreitol instead of 

β-mercaptoethanol) on an ÄKTA purifier system (GE Healthcare, Freiburg, Germany) at 1.5 

mL/min. Peak fractions were analyzed by SDS-PAGE, concentrated to at least 40 mg/mL 

using centrifugal filters and either applied directly in crystallography or flash frozen in 

liquid nitrogen and stored at -80 °C.

Protein crystallization and structure determination

Crystals of MstE were grown under conditions annotated in Supplementary Table 3 by the 

sitting drop vapor diffusion method. Co-crystallization was performed by adding 2 mM 

(final concentration) of the potential ligands. Crystals adequate for structure determination 

were soaked with cryo-protectant (50% reservoir solution with 50% glycerol) and frozen in 

liquid nitrogen. Diffraction datasets at 1.0 Å were obtained at the X-ray beamline X06SA 

(Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland). Diffraction intensities 

were evaluated by the XDS software package32. Molecular replacement was performed 

with Phaser by Patterson function calculations using coordinates of a squalene-hopene 

cyclase (PDB ID: 2SQC) truncated to a poly-alanine chain24,33. Restrained refinement 

of the structure with Refmac5 was alternated by model building with Coot34,35. ARP/

wARP solvent was applied to add water molecules prior to finalization by TLS (Translation/

Liberation/Screw) and restrained refinements until adequate values for Rwork and Rfree as 

well as all geometric parameters were reached (analyzed by the MolProbity webserver)36,37. 

Ramachandran compliance was additionally tested with Procheck38. The monomeric state 

of MstE was underlined by PISA webserver calculations 22. Structurally similar proteins 

were identified by a Dali search39. Figures were prepared using Molscript and PyMol40,41. 

The crystal structures were deposited at the RCSB Protein Data Bank under accession codes 

6SBB, 6SBC, 6SBD, 6SBE, SBF and 6SBG, respectively.
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Cloning, expression and purification of MstE for mutant screening

To generate point mutants of MstE, pET-29b MstE was used from the previous study21. 

Point mutations were introduced with the QuikChange mutagenesis method (Agilent 

Technologies) and confirmed by sequencing. Primers were designed using the PrimerX 

tool (http://www.bioinformatics.org/primerx/). The generated plasmids containing mutant 

MstE were transformed into E. coli BL21 tuner (DE3) cells (Novagen). For expressions, 

cells were grown in terrific broth supplemented with 50 μg/mL kanamycin to an OD600 of 

approximately 0.8 at 30 °C, induced with 0.1 mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG) and incubated at 16 °C for another 20 h. Cells were harvested by centrifugation 

(20 min, 5000 × g, 4 °C), resuspended in buffer (50 mM phosphate buffer pH 7.8, 300 

mM NaCl, 10 mM imidazole) and lysed by sonication (10 × 10 s pulses with 10 s breaks, 

on ice). After centrifugation at 15000 × g and 4 °C for 30 min, MstE was purified from 

the supernatant with Ni-NTA (Macherey-Nagel). The column was washed with buffer 

containing 20 mM imidazole and the protein was eluted stepwise with buffer containing 100 

mM imidazole followed by 200 mM imidazole. Elution fractions were run on an SDS-PAGE 

and used for enzymatic assays directly.

Enzymatic assays

For quick assays, 1 mM of 3-geranylgeranyl-4,5-dihydroxybenzoic acid (3, 100 mM stock in 

DMSO, synthesized in previous study21) was dissolved in 50 μL buffer (50 mM phosphate 

pH 7.8, 300 mM NaCl). 50 μL of the protein elution fraction was added and the mixture was 

incubated at room temperature for 16 h.

The assays were quenched with 1 μL formic acid (FA) and extracted 3 times with 100 

uL ethyl acetate. Organic phases were combined, dried in vacuo, resuspended in 100 uL 

methanol and analysed by liquid chromatography/high-resolution mass spectrometry (LC/

HRMS) on a Thermo Scientific Q Exactive mass spectrometer coupled to a Dionex Ultimate 

3000 UPLC system. We used a Phenomenex Kinetex C18 (4.6x150 mm) with a gradient 

from 5% acetonitrile + 0.1% FA in water + 0.1% FA to 100% acetonitrile + 0.1% FA in 10 

minutes. To minimize substrate inhibition, protein concentrations were set to 200 μM and 

substrate concentrations to 0.5 mM.

Synthesis General Procedures

For the synthesis of 8 the procedure described by Lang M. and Steglich W. (2005) was 

followed42. For detailed procedures see supplementary information.

Purification of merosterolic acid B and NMR analysis

The ethyl acetate extracts of large-scale assays were separated by reversed-phase HPLC 

(Phenomenex Kinetex C18, 10 × 250 mm) with an isocratic run of 85% acetonitrile 

+ 0.1% formic acid in water + 0.1% formic acid and a flow rate of 2 mL/min. The 

fraction containing the compound of interest was further purified by reversed-phase HPLC 

(Phenomenex phenyl-hexyl, 10 × 250 mm) with an isocratic run of 73% acetonitrile + 0.1% 

formic acid in water + 0.1% formic acid. Purifications from assays containing approximately 

700 mg of MstE Y157A yielded 300 - 400 μg of product. NMR spectra were recorded on 
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a Bruker Avance III spectrometer equipped with a cold probe at 600 MHz for 1H NMR 

and 150 MHz for 13C NMR. For details on the structure elucidation see supplementary 

information.

Protein alignments and phylogenetic analysis

Protein sequences were retrieved from the UniProt database, and β domains were identified 

based on alignment to available crystal structures for each domain architecture (MstE from 

this study, 1SQC, 1W6K, 2ONG, or 3PFP). Sequences corresponding to the β domain and 

up to 10 residues on either side were aligned using MUSCLE43. MEGA 7 was used to 

generate the tree (Extended Data Fig. 2) from the alignment using the Maximum Likelihood 

method based on the Whelan and Goldman model44,45. All positions with less than 20% site 

coverage were eliminated, and the resulting tree with the highest log likelihood is shown. 

Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join 

and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, 

and then selecting the topology with superior log likelihood value. A discrete Gamma 

distribution was used to model evolutionary rate differences among sites (5 categories (+G, 

parameter = 3.5036)).
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Extended Data

Extended Data Fig. 1. Protein alignment
Structure-guided alignment of merosterolic acid synthase (MstE) with squalene-hopene 

cyclase (SHC; PDB 2SQC; 15.91 % identity*) and oxidosqualene cyclase (OSC; PDB 

1W6K; 15.26 % identity*). Alpha helices are indicated with cylinders under the sequences, 

beta strands with arrows. These secondary structural elements are colored yellow if they 

are part of the core scaffold of the γ domain and blue if they are part of β domain. 
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Non-conserved secondary structures are depicted in grey. They catalytic aspartate residue is 

indicated with a red asterisk. *Identity percentages were calculated without the γ-domains 

of SHC and OSC.

Extended Data Fig. 2. Phylogenetic tree of selected terpene cyclase β domains.
Maximum-likelihood tree of β domains from functionally characterized and unknown 

terpene cyclases, as described in the Materials and Methods above. Organisms are colored 

according to the phylogeny of their origin: Protists grey, animals gold, fungi red, plants 

green, and bacteria blue. Terpene enzyme class, domain architecture, and product are also 

indicated.
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Extended Data Fig. 3. Structures of MstE in complex with different ligands.
Left: Side- and top-views (rotated by 90°) of MstE (A), MstE:FS-DHB (B), 

MstE_D109N:GG-DHB (C), MstE_D109A:MA (D), MstE_R337A:GG-DHB (E) and 

MstE_Y157F (F) as cartoons with helices and β-sheets colored in pink and blue, 

respectively. Dashed loops indicate disordered regions in the crystal structures and are 

labeled accordingly. Carbon atoms of ligands, if present, are shown as sticks in gold, with 

the DHB moieties in black. Double bonds and newly formed C-C bonds are highlighted in 

black. Right: Close-up views of the active sites. The 2Fo-FC electron density maps (gray 
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mesh, contoured to 1.0 σ) of ligands, if present, are shown together with residues engaged 

in ligand binding. Side-views of all ligands (rotated by 90°) are depicted on the far right. 

Dashed lines represent important interactions. Mutated residues are colored green. Diffuse 

electron density in F indicates the presence of a ligand at low occupancy.

Extended Data Fig. 4. A proton relay conveys protonation of GG-DHB.
(A) The structure of MstE:FS-DHB superpositioned with MstE_D109N:GG-DHB (RMSD-

Cα: 0.12 Å) reveals that Asp109 adopts anti-position for protonation of the terminal C=C in 

GG-DHB. Two water molecules align between Tyr216 and Asp109 to activate the Brønsted 

acid and replace the proton after reaction. Oxygen atoms are highlighted in red; the protons 

(light blue) were added with PyMol (37) and oriented according to potential interactions 

represented as dashed lines (distance given in Å). (B) The primary amine of Asn109 

in MstE_D109N:GG-DHB displaces one of the water molecules by 0.6 Å, flipping the 

orientation of all protons in the cluster.
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Extended Data Fig. 5. A charge relay supports deprotonation of GG-DHB.
The structure of MstE_D109N:GG-DHB reveals the formation of a triad between Glu339, 

Arg337 and Asp162. Asp162 forms a salt bridge with the guanidino group of Arg337. This 

pushes electrons towards the secondary amine which in turn polarizes the carboxylate of 

Glu339, strengthening the H-bond with the meta-hydroxy group of DHB and increasing 

basicity. After deprotonation, this cluster acts as a proton-relay, before it is promptly broken 

and reordered to accommodate the product. Heteroatoms are highlighted in red (O) and blue 

(N); the proton (light blue) was added with PyMol. Interactions are represented as dashed 

lines (distance given in Å).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

Crystallographic data were deposited in the RCSB Protein Data Bank with the PDB IDs: 

6SBB, 6SBC, 6SBD, 6SBE, 6SBF and 6SBG. All other data are available in the text or in 

the supplementary information.
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Fig. 1. Architectural variants of class I and class II terpene cyclases.
The central scheme displays the proposed evolution of terpene cyclases from ancestral 

mono-domain enzymes3. Structurally related domains are colored and labeled α, β or γ 
accordingly, while parentheses indicate the absence of an active site. Cartoon representations 

to the left (class I) and right (class II) visualize the structural domain arrangement in 

selected examples with the respective PDB entry code noted below. So far, single domain 

architectures have only been described in microbial class I terpene cyclases, while MstE 

is a potential ancestor of βγ-assemblies in class II enzymes. Proposedly, bifunctional αβγ 
diterpene cyclases formed through fusion of α and βγ precursors and later diversified into a 

broad array of specialized enzymes.
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Fig. 2. Merosterol biosynthesis and comparison with the lanosterol and hopene cyclization 
pathways.
(A) MstE cyclizes GG-DHB (3) to generate the merosterol core skeleton for cytotoxin 

biosynthesis. Cyclization is initiated by direct protonation of the terminal double bond and 

the final carbocation is quenched by electrophilic aromatic substitution. Aromaticity of the 

carboxylic acid moiety is restored by deprotonation at C6. (B) Reaction catalyzed by the 

oxidosqualene cyclase (OSC) in steroid biosynthesis. In this case, a terminal epoxide is 

protonated for initiating the cyclization cascade. Additional methyl and hydrogen shifts are 

omitted. (C) Reaction catalyzed by squalene-hopene cyclase (SHC) in membrane hopanoid 

biosynthesis.
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Fig. 3. The structure of MstE.
(A) Topological analysis of MstE in complex with GG-DHB (3, double bonds are 

highlighted,). Left: Top view with secondary structure elements shown as cartoon. The 

outer (oH1-6) and inner α6-ring (iH1-6) are colored in dark and light pink, respectively. 

The substrate is lined by an additional helix (H, gray) and β-sheets (S1-4, blue). N- and 

C-termini are labeled. Right: Topology diagram depicting polar (black) and aromatic (green) 

interactions between residues of MstE and 3 (close contacts indicated by green bars). Purple 

squares show the relative position of two distinct QW-motifs. (B) Side view of the terpene 

cyclase highlighting head and base subdomains. (C) Surface representation of MstE with 

colors indicating negative and positive electrostatic potentials. Left: MstE aligned with 3 
from the D109N crystal structure. Right: MstE D109A in complex with merosterolic acid A 

(MA, 2). (D) Close-up view of the active site of MstE_D109N. The 2FO-FC electron density 

map (gray mesh, contoured to 1.0 σ) of 3 is shown together with residues engaged in ligand 

binding. (E) MstE_D109A retains the cyclic product (MST) carrying the dislocated DHB 

head-group (2) and 2-methyl-2,4-pentanediol (MPD, purple sticks). C-C bonds formed by 

cyclization are colored black.
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Fig. 4. Biosynthesis of new product by mutant MstE Y157A.
Without the stabilizing effect of Y157 the aromatic ring of the benzoic acid can rotate away 

from the carbocation, allowing for premature deprotonation at the methyl group and the 

production of merosterolic acid B (9) in addition to 2. The new product shows structural 

similarity to the antibiotic fascioquinols A and B (10, 11), for which only the relative 

configuration is known.
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