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Increasing evidence suggests that gut dysbiosis plays vital roles in a variety of gut–brain

disorders, such as Alzheimer’s disease (AD). However, alterations of the gut microbiota

as well as their correlations with cognitive scores and host immunity have remained

unclear in well-controlled trials on Chinese AD patients. In this study, samples from

100 AD patients, and 71 age- and gender-matched, cognitively normal controls were

obtained to explore the structural and functional alterations of the fecal microbiota

targeting the V3–V4 region of the 16S rRNA gene by MiSeq sequencing, and to analyze

their associations with clinical characteristics. Our data demonstrated a remarkably

reduction in the bacterial diversity and alterations in the taxonomic composition of

the fecal microbiota of the AD patients. Interestingly, the abundant butyrate-producing

genera such as Faecalibacterium decreased significantly, where this was positively

correlated with such clinical indicators as the MMSE, WAIS, and Barthel scores in the AD

patients. On the contrary, abundant lactate-producing genera, such as Bifidobacterium,

increased prominently, and were inversely correlated with these indicators. This shift

in the gut dysbiosis of the microbiota, from being butyrate producers to lactate

producers, contributed to immune disturbances in the host that could be used as

non-invasive biomarkers to distinguish the controls from the AD patients. Moreover,

several predicted functional modules, including the biosynthesis and the metabolism

of fatty acids, that were altered in the microbiota of the AD patients could be utilized

by the bacteria to produce immunomodulatory metabolites. Our study established the

structural and functional dysbiosis of fecal microbiota in AD patients, and the results

suggest the potential for use of gut bacteria for the early, non-invasive diagnosis of

AD, personalized treatment, and the development of tailor-made probiotics designed

for Chinese AD patients.
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INTRODUCTION

Alzheimer’s disease (AD) is an age-related neurodegenerative
disease characterized by slowly progressive memory decline and
cognitive dysfunction, and no preventative or disease-modifying
treatments are available for it at present (Gaugler et al., 2019). AD
is a leading cause of dementia, and its prevalence is increasing
drastically among aging populations worldwide. According to
the World Alzheimer Report 2015, almost 47 million people
worldwide were expected to be affected by dementia in 2015, with
9.9 million new diagnoses each year. This number is estimated to
exceed 130 million by 2050, with the greatest increase expected
in low- and middle-income countries. In 2017, 121,404 deaths
caused by AD were recorded in USA, making it the sixth
leading cause of death among Americans of all ages and the fifth
leading cause among elderly Americans (age≥65 years) (Gaugler
et al., 2019). In addition, the economic costs of the disease are
formidable due to the care needed by the growing number of
patients with AD and other dementias. Thus, addressing the
rapidly growing incidence of AD should be regarded as a global
public health priority.

Numerous studies in recent decades have focused on
elucidating the etiopathology of AD, but its pathogeneses remain
unclear, and no therapeutic strategy is available to cure this
disease. The most important risk-related factor for AD is
advancing age, and as lifespans increase and demographic aging
occurs worldwide, the number of AD patients is expected to
increase drastically. The depositions of amyloid-beta peptide, a
product of the cleavage of the amyloid-beta protein precursor,
and the abnormal tau protein can be used as diagnostic markers
for AD (Holtzman et al., 2011). However, whether they are
the causes of AD or its consequences remains unknown. Many
recent studies have noted that several infectious agents, such as
Chlamydia pneumoniae, herpes simplex virus type 1, and several
types of spirochaete and fungi, are involved in the pathogenesis
of late-onset AD (De Chiara et al., 2012; Alonso et al., 2014;
Balin and Hudson, 2014; Itzhaki, 2014; Miklossy, 2015; Pisa
et al., 2015). This has prompted the suggestion that long-term,
largely subclinical pathogenic infection might contribute to the
characteristic neurodegeneration that occurs due to AD (Balin
and Hudson, 2014). Based on these findings, Reis et al. (2010)
considered AD itself as an infectious disease. Recent advances
have revealed that microbiota of the human gut have numerous

Abbreviations: ACE, abundance-based coverage estimator; AD, Alzheimer’s

disease; AUC, an area under the curve; Aβ, amyloid-β; BMI, body mass

index; CNS, central nervous system; FDR, false discovery rate; F/B,

Faecalibacterium/Bifidobacterium; IFN-γ, interferon gamma; IL, interleukin;

IP-10, interferon gamma-inducible protein 10; KEGG, Kyoto Encyclopedia of

Genes and Genome; LDA, linear discriminant analysis; LEfSe, linear discriminant

analysis effect size; MCP-1, monocyte chemotactic protein-1; MIP, macrophages

inflammatory protein; MMSE, Mini-Mental State Examination; MRI, magnetic

resonance imaging; no, numbers; OTU, operational taxonomic unit; PCoA,

principal coordinate analysis; PiCRUSt, phylogenetic investigation of bacterial

communities by reconstruction of unobserved states; QIIME, Quantitative

Insights Into Microbial Ecology; RDP, Ribosomal Database Project; SCFAs,

short chain fatty acids; SD, standard deviation; SparCC, sparse compositional

correlation; STAMP, Statistical Analysis of Metagenomic Profiles software package;

TNF-α, tumor necrosis factor-alpha; WAIS, Wechsler Adult Intelligence Scale.

beneficial functions, such as immune development and resistance
to pathogens, and serve as an important reservoir of pathogenic
bacteria, viruses, and fungi. Previous work has clarified the role of
gut microbiota in regulating multiple neuro-chemical pathways
through the gut–brain axis (Bonfili et al., 2017). The dysbiosis of
intestinal microbiota might impair intestinal mucosal integrity,
increase intestinal permeability, and then disturb the intestinal
homeostasis, where this can contribute to spreading potential
pathogens to the target organs, such as the brain. Several studies
have found altered gut microbiota in AD patients, which suggests
that gut microbiota may be involved in AD pathogenesis (Vogt
et al., 2017; Zhuang et al., 2018; Liu P. et al., 2019). Our group
has observed that the transplantation of probiotics, prebiotics,
and even fecal microbiota can ameliorate cognitive deficits and
neurodegeneration in a model of mice with AD through the
modulation of the gut microbiota (Sun et al., 2019a,b; Sun
et al., 2020). Thus, the eubiosis of gut microbiota might have
beneficial roles in preventing the occurrence and development
of AD and other gut–brain disorders. However, the changing
patterns of the composition and diversity of the gut microbiota
are not always uniform in AD patients, but vary with population,
geographical location, diet, and habits. The difference in the
genetic background of hosts and dietary constitutions between
Western and Chinese populations might contribute to the
baseline disparity in the composition of the microbiota between
them, which might in turn influence the roles of specific bacteria
in the etiopathology of AD.

Lishui is a city that features dense mountains with a vegetation
coverage of 80.79%, and has ranked second on China’s ecological
index behind Zhejiang for each of the past 13 years. It is also
called the longevity town of China, with nearly 200 centenarians.
The average life expectancy of the residents of Lishui is 80.06,
2.76 years higher than the national average. Its heredity, dietary
patterns, and natural geographical environment influence the
health of and incidence of diseases among the population, and
may also influence the overall structure and function of the
people’s gut microbiota. The higher depth of sequencing and
coverage with the advent of advanced sequencing techniques
have made it possible to decipher key unknown functional taxa
in Chinese AD patients. In this study, the fecal microbiota
associated with AD are analyzed in a large AD cohort and
matched healthy controls from Lishui by using the 16S rRNA
high-throughput gene MiSeq platform, and are correlated with
clinical indicators to provide novel targets for the early, non-
invasive diagnosis and personalized treatment of AD as well as
the development of tailor-made probiotics designed for Chinese
AD patients.

METHODS

Subjects’ Enrollment
A total of 100 well-controlled Chinese AD patients, who were
diagnosed based on the criteria of the National Institute of
Neurological and Communicative Diseases and Stroke/AD and
Related Disorders Association, were recruited from Lishui,
Zhejiang province (China) from February 2019 to November
2019, with 71 cognitively normal subjects as control. The
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cognitive and functional status were scored using the Mini-
Mental State Examination (MMSE, Chinese version), the current
version in the Wechsler Adult Intelligence Scale series (WAIS-
IV, published in 2008), and instrumental Barthel activities of
daily living. Each participant was scanned onmagnetic resonance
imaging (MRI), with AD patients diagnosed as brain atrophy.
The detailed demographic data and medical history (such as
hypertension, diabetes mellitus, hypercholesterolemia, coronary
heart disease, diarrhea, and constipation) were collected using
a set of questionnaire. The exclusion criteria included: family
history of dementia; any kind of other neurodegenerative disease
such as Parkinson’s disease; confirmed mental illness such as
schizophrenia; any kind of tumor; antibiotic, prebiotic, probiotic,
or synbiotic administration in the previous month; known active
infections such as viral, bacterial, or fungal infections; other
diseases such as inflammatory bowel disease, irritable bowel
syndrome, or other autoimmune diseases. These protocols for
the study were approved by the Ethics Committee of Lishui
Second People’s Hospital (Zhejiang, China) and written informed
consent was obtained from each of the subject or their guardian
before enrollment.

Fecal Sample Collection and DNA
Extraction
Approximately 2 g of a fresh fecal sample was collected in a sterile
plastic cup, and stored at −80◦C after preparation within 15min
until use. Bacterial genomic DNA was extracted from 300mg
of homogenized feces using a QIAamp R© DNA Stool Mini Kit
(QIAGEN, Hilden, Germany) according to the manufacturer’s
instructions, with additional glass-bead beating steps on a Mini-
beadbeater (FastPrep; Thermo Electron Corporation, Boston,
MA, USA). The amount of DNA was determined using
a NanoDrop ND-1000 spectrophotometer (Thermo Electron
Corporation); the integrity and size were checked by 1.0% agarose
gel electrophoresis containing 0.5 mg/ml ethidium bromide. All
DNA was stored at−20◦C before further analysis.

Amplicon Library Construction and
Sequencing
Amplicon libraries were constructed with Illumina sequencing-
compatible and barcode-indexed bacterial PCR primers
341F (5′-CCTACGGGNGGCWGCAG-3′)/785R (5′-
ACTACHVGGGTATCTAATCC-3′), which target the V3–V4
regions of the 16S rRNA gene (Fadrosh et al., 2014). All PCR
reactions were performed with KAPA HiFi HotStart ReadyMix
using the manufacturer’s protocol (KAPA Biosystems) and ∼50
ng of extracted DNA per reaction. Thermocycling conditions
were set at 95◦C for 1min, 55◦C for 1min, then 72◦C for 1min
for 30 cycles, followed by a final extension at 72◦C for 5min.
All PCR reactions were performed in 50 µl triplicates and
combined after PCR. The amplicon library was prepared using
a TruSeqTM DNA sample preparation kit (Illumina Inc, San
Diego, CA, USA). Prior to sequencing, the PCR products were
extracted with the MiniElute R© Gel Extraction Kit (QIAGEN)
and quantified on a NanoDrop ND-1000 spectrophotometer
(Thermo Electron Corporation) and Qubit 2.0 Fluorometer

(Invitrogen). The purified amplicons were then pooled in
equimolar concentrations and the final concentration of the
library was determined by Qubit (Invitrogen). Negative DNA
extraction controls (lysis buffer and kit reagents only) were
amplified and sequenced as contamination controls. Sequencing
was performed on a MiSeq instrument (Illumina) using a 300
× 2 V3 kit together with PhiX Control V3 (Illumina) (Ling
et al., 2019; Liu X. et al., 2019). MiSeq sequencing and library
construction were performed by technical staff at Hangzhou
KaiTai Bio-lab.

Bioinformatic Analysis
The 16S rRNA gene sequence data set generated from the MiSeq
run were first merged and demultiplexed into per samples using
the QIIME version 1.9.0 with default parameters (Caporaso
et al., 2010). Chimera sequences were detected and removed
using the USEARCH software based on the UCHIME algorithm
(Edgar et al., 2011). Open-reference operational taxonomic unit
(OTU) pick was then performed with USEARCH V7 referenced
against Greengenes database version 13.8 at 97% sequence
similarity (Edgar, 2010; Mcdonald et al., 2012). OTUs with a
number of sequences <0.005% of the total number of sequences
were discarded as recommended (Navas-Molina et al., 2013).
The result was an OTU table, which was used for subsequent
downstream analysis.

For taxonomic assignment, the most abundant sequences
were chosen as the representative sequences of corresponding
OTUs. Taxonomic assignment of individual datasets were
classified against the Greengenes database version 13.8 using
both RDP classifier and UCLUST version 1.2.22 methods
implemented in QIIME (Wang et al., 2007; Edgar, 2010). Any
sequences that were identified as members of Eukarya, Archaea,
Mitochondria, Chloroplasts, and Cyanobacteria lineages, were
removed. Alpha diversity was calculated with QIIME software
with Python scripts base on the sequence similarity at 97% level,
including index of observed OTUs, abundance-based coverage
estimator (ACE), Chao1 estimator, Shannon, Simpson, Evenness,
and PD whole tree. Sequence coverage was assessed in mothur
by rarefaction curves and Good’s coverage (Good, 1953; Schloss
et al., 2009). Beta diversity was measured by jaccard, bray-curtis,
unweighted UniFrac, and weighted UniFrac distance calculated
with 10 times of subsampling by QIIME. These distances were
visualized by principal coordinate analysis (PCoA) (Lozupone
and Knight, 2005). Hierarchical clustering was performed and
heatmap was generated using a Spearman’s rank correlation
coefficient as a distance measure and a customized script
developed in the R statistical package. The output file was further
analyzed using Statistical Analysis of Metagenomic Profiles
software package (STAMP) version 2.1.3 (Parks et al., 2014).

For the predictive functional analyses, PiCRUSt software
package version 1.0.0 was used to identify predicted gene
families and associated pathways from inferred metagenomes
of taxa of interest identified from the compositional analyses,
which was based on the fact that phylogeny and function
are closely linked (Langille et al., 2013). Predicted functional
genes were categorized into Clusters of Orthologous Groups
(COG) and into Kyoto Encyclopedia of Genes and Genome
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(KEGG) orthology (KO), and compared across patient groups
using STAMP. Pathways and enzymes were assigned using
KEGG database options built into the pipeline. The pathways
that were non-prokaryotic, had fewer than 2 sequences
in each cohort, or had a difference in mean proportions
<0.1% were excluded from analysis. The characterization of
microorganismal features differentiating the gastric microbiota
was performed using the linear discriminant analysis (LDA)
effect size (LEfSe) method (http://huttenhower.sph.harvard.
edu/galaxy/) for biomarker discovery, which emphasizes both
statistical significance and biological relevance (Segata et al.,
2011). With a normalized relative abundance matrix, LEfSe
uses the Kruskal-Wallis rank sum test to detect features with
significantly different abundances between assigned taxa and
performs LDA to estimate the effect size of each feature. A
significant alpha at 0.05 and an effect size threshold of 3 were used
for all biomarkers discussed in this study.

Correlation analysis was performed using sparse
compositional correlation (SparCC) algorithm on the complete
OTU table collapsed to the genus level, which was introduced
by Friedman and Alm and was known for its robustness to
the compositional effects that are influenced by the diversity
and sparsity of correlation in human microbiome data sets
(Friedman and Alm, 2012). SparCC was employed to represent
co-abundance and co-exclusion networks between OTUs.
For SparCC, 1000 bootstrap replicates were used to calculate
significance values, and considered correlation coefficients
greater or <0.2 and −0.2, respectively, and p < 0.05. This
set of iterative procedures were applied separately to normal,
peritumor and tumor data sets to infer the basis correlation
values within and/or between paired sampling sites. Visualization
of the network was achieved using Cytoscape version 3.4.1.

Systemic Inflammatory Cytokines Analysis
Serum samples from these participants were obtained using
their fasting blood in the early morning. Using a 27-plex
magnetic bead based immunoassay kit (Bio-Rad, CA, USA), the
following cytokines were quantified: interleukin-1β (IL-1β), IL-
1 receptor antagonist (IL-1ra), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8,
IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17, Eotaxin, Fibroblast
growth factor-basic (FGF-basic), granulocyte colony-stimulating
factor (G-CSF), granulocyte-macrophages colony-stimulating
factor (GM-CSF), interferon gamma (IFN-γ), interferon gamma-
inducible protein 10 (IP-10), monocyte chemotactic protein-
1 (MCP-1), macrophages inflammatory protein-1α (MIP-1α),
platelet-derived growth factor (PDGF-bb), MIP-1β, regulated
upon activation normal T-cell expressed and secreted (RANTES),
tumor necrosis factor-alpha (TNF-α), and vascular endothelial
growth factor (VEGF). The Bio-Plex 200 system was utilized for
the analysis of Bio-Rad 27-plex human group I cytokines and
the Bio-Plex assay (Bio-Rad) was performed according to the
manufacturer’s directions. The results expressed as picogram per
milliliter (pg/mL) using standard curves integrated into the assay
and Bio-Plex Manager v5.0 software with reproducible intra- and
inter-assay CV values of 5–8%.

Statistical Analysis
White’s non-parametric t-test, independent t-test, or Mann-
Whitney U-test were applied for continuous variables. Pearson
chi-square or Fisher’s exact test were used for categorical variables
between groups. Spearman’s rank correlation test was utilized
for correlation analyses. Statistical analysis was performed using
the SPSS v19.0 (SPSS Inc., Chicago, IL) and STAMP v2.1.3
(Parks et al., 2014). R packaged and GraphPad Prism v6.0 were
used for preparation of graphs. All tests of significance were
two sided, and p < 0.05 or corrected p < 0.05 was considered
statistically significant.

Accession Number
The sequence data from this study are deposited in the GenBank
Sequence Read Archive with the accession number SRP262626.

RESULTS

Subject Characteristics
Table 1 shows the characteristics of the Chinese AD patients
as well as the age- and gender-matched cognitively normal,
healthy controls. There were no significant differences in terms of
gender, body mass index, smoking, drinking and comorbidities
of hypertension, hypercholesterolemia, diabetes mellitus, and
coronary heart disease between the healthy controls and the AD
patients (p > 0.05), while the MMSE, WAIS, and Barthel scores
were clearly lower in Chinese AD patients than in the healthy
controls (p < 0.05).

TABLE 1 | Characteristics of the participants.

Parameters AD patients

(n = 100)

Healthy

controls

(n = 71)

p

Age (y) 74.14 ± 9.21 73.11 ± 7.75 0.105

Gender (male/female) 43/57 35/36 0.415

BMI (Mean ± SD) 22.12 ± 3.45 23.45 ± 3.32 0.164

Smoking, no. 4 3 0.942

Drinking, no. 2 1 0.772

Antibiotics use, no. 0 0

Complications, no.

Hypertension 37 25 0.445

Diabetes mellitus 17 11 0.793

Hypercholesterolemia 18 10 0.495

Coronary heart disease 15 8 0.481

Diarrhea 2 3 0.395

Constipation 7 5 0.991

Cognitive and functional status

MMSE score 4.27 ± 6.06 27.21 ± 2.04 <0.01

WAIS score 35.31 ± 15.35 90.14 ± 10.04 <0.01

Barthel score 23.22 ± 23.15 76.75 ± 7.79 <0.01

BMI, body mass index; SD, standard deviation; no, numbers; MMSE, Mini-Mental State

Examination; WAIS, Wechsler Adult Intelligence Scale.
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Altered Overall Structure of the Fecal
Microbiota in AD
In total, 5,760,348 high-quality reads (2,421,229 reads of the
controls and 3,339,119 of AD patients), with an average of
33,686 reads per sample, were obtained for the subsequent
analysis of the microbiota. The value of Good’s coverage
was 99.24%, indicating that a majority of bacterial phylotypes
(2,366 OTUs) in the fecal microbiota had been identified.
Interestingly, the alpha-diversity indices, including Shannon’s
and Simpson’s indices, were significantly different between the
controls and the AD patients, indicating decreased bacterial
diversity in AD-associated microbiota (Figures 1A,B). Richness
indices, including the observed OTUs, ACE, and Chao1, were
also significantly higher in the controls than in the AD patients
(Figures 1C–E). Despite significant inter-individual variations,
the PCoA based on the Jaccard, Bray–Curtis, unweighted
UniFrac, and weighted UniFrac algorithms also divided the
two groups into different clusters (Adonis test: p < 0.01;
Figures 1F–I). Thus, the alpha- and beta-diversity analyses
demonstrated that the overall structure of the AD-associated
fecal microbiota had changed significantly compared with that
of the controls.

Composition of Changed Fecal Microbiota
in AD Patients
The compositions of the fecal microbiota in the AD patients and
the controls were assessed at different taxonomic levels. Using
the RDP classifier, the sequences were classified as 10 phyla, 76
families, and 203 genera. The distribution of the phyla and the
genera are shown in Supplementary Figures 1, 2, respectively,
and suggested significant inter-personal variations. By using the
LEfSe, our discriminant analyses showed that many key taxa were
clearly different between the AD and the control group (LDA
score >3, p < 0.05, Figure 2). Only bacterial phylotypes with an
average relative abundance ofmore than 0.01%were selected here
for the LEfSe. The representative cladogram demonstrated the
dysbiosis of AD-associated fecal microbiota in the Chinese AD
patients. Of these differential functional bacterial taxa, we found
that Actinobacteria andVerrucomicrobia had clearly increased in
the AD patients, while Firmicutes had significantly decreased at
the phylum level. At the family level, 13 key functional bacterial
families including Bifidobacteriaceae, Verrucomicrobiaceae,
Coriobacteriaceae, Erysipelotrichaceae, Enterococcaceae, and
Corynebacteriaceae had significantly increased in AD patients
while three families—Ruminococcaceae, Lachnospiraceae, and
Clostridiaceae 1—had drastically decreased. At the genus level,
24 key functional bacterial genera had changed significantly
between the groups while only eight genera—Faecalibacterium,
Roseburia, Clostridium sensu stricto, Gemmiger, Dialister,
Romboutsia, Coprococcus, and Butyricicoccus—had decreased
in AD patients. Supplementary Figure 3 shows the heatmap
of the bacterial genera in the AD patients and the controls. It
shows the relative percentages of most genera identified in each
sample. Intriguingly, traditionally beneficial genera, such as

Bifidobacterium and Akkermansia, had drastically increased in
the Chinese AD patients.

In addition, the structure of the fecal microbiota was
determined by dynamic interactions between these community
members. Our SparCC algorithm with FDR adjustments was
used to generate correlation-based networks of microbial
interaction based on the relative abundance of OTUs between
the groups (Figure 3). We found a more complex network of
interactions in healthy controls than that in the AD patients.
More positive and negative correlations among the bacteria were
found in the healthy controls than in the AD patients. Our
data indicate the structural dysbiosis of the AD-associated fecal
microbiota in the AD patients.

Fecal Microbiota-Based Signature
Discriminated Healthy Controls From AD
Patients
We identified several differential taxa in the AD-associated fecal
microbiota. We then evaluated the value of using six abundant
genera as biomarkers: Bifidobacterium, Faecalibacterium,
Roseburia, Akkermansia, Lactobacillus, and Enterococcus. The
differential features of these genera are shown in Figures 4A–F,
which show significant inter-personal variations. We first used
only one of the differential bacteria as predictor to generate the
area under the receiving operating characteristic curves to obtain
the area under the curve (AUC) ranging from 0.304 to 0.797
(Figure 4G). Figure 4 shows that enriched Faecalibacterium
was the best discriminant predictor for the healthy controls
(AUC: 0.797), with a best cut-off value of 3.2149%. Further,
multivariable stepwise logistic regression analysis was applied to
the list of AD-associated genera to determine the taxa that best
distinguished the controls from the AD patients. We found that
using all six abundant genera significantly improved predictive
performance (AUC: 0.836). We also assessed the predictive value
of the ratio of Faecalibacterium/Bifidobacterium (F/B ranged
from 0.0001 to 2876.2660, Figure 4H). We found that the ratio
of F/B could help discriminate between healthy controls and AD
patients with an AUC of 0.788. Interestingly, the best cut-off
value of the ratio of F/B was one. Therefore, these key differential
genera can be used as potential biomarkers for discriminating
between healthy controls and AD patients.

Microbial Functional Dysbiosis in AD
To identify the metabolic and functional changes in the fecal
microbiota between the AD patients and the controls, PiCRUSt
was used to analyze the functional potential of the microbiota
based on closed-reference OTU picking. We compared 64 KEGG
pathways at level 2 and identified seven KEGG categories with
clearly differential abundances between the AD patients and the
controls. We found that carbohydrate metabolism, xenobiotics’
biodegradation and metabolism, and transport and catabolism
significantly increased in the AD patients, while transcription,
immune system, environmental adaptation, and cell motility
significantly decreased (p < 0.05; Figure 5). Specifically, 15
pathways in level 3, including the metabolism of fatty acids
and lipoic acid, and folate biosynthesis, increased significantly,
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FIGURE 1 | The altered bacterial diversity and richness of the fecal microbiota in Chinese AD patients. The diversity indices of Shannon (A) and Simpson (B), and the

richness indices of the observed OTUs (C), ACE (D), and Chao1 (E) were used to evaluate the overall structure of the fecal microbiota in the AD patients and the

healthy controls. The data are presented as mean ± standard deviation. Unpaired t-tests (two tailed) were used to analyze the variation between the groups. Principal

coordinate analysis (PCoA) plots of individual fecal microbiota based on Jaccard (F), Bray–Curtis (G), and unweighted (H) and weighted (I) UniFrac distances in the

Chinese AD patients and the healthy controls. Each symbol represents a sample. *p < 0.05.

while 15 other pathways, including bacterial chemotaxis and
the biosynthesis of fatty acid, decreased prominently in the
AD-associated microbiota. Together, the functional dysbiosis of
the fecal microbiota may participate in the pathogenesis and
development of AD.

Correlations Between Differential Genera,
and Clinical Indicators and Host Immunity
We found that the clinical indicators—the MMSE, WAIS, and
Barthel scores—were significantly lower in AD patients (p <

0.01). By using the Bio-Plex ProTM human cytokine group I
panel 27-plex analysis, we observed that anti-inflammatory
cytokines, such as IFN-γ, had significantly decreased, such
pro-inflammatory cytokines as TNF-α had markedly increased,

and several chemokines, such as IL-8, MCP-1, and MIP-
1a, had clearly decreased. IP-10 had also decreased in the
Chinese AD patients (Supplementary Figure 4; p < 0.05).
To determine the associations between the deferential
genera of the AD patients, and the clinical indicators and
altered cytokines, we performed a correlation analysis using
Spearman’s rank correlation (Figure 6). Notably, such lactate
producers as Bifidobacterium and propionate producers such
as Akkermansia had the strongest negative correlations with
clinical indicators such as MMSE, WAIS, and the Barthel scores,
whereas butyrate-producing genera, such as Faecalibacterium,
Roseburia, Gemmiger, Coprococcus, and Butyricicoccus,
had positive correlations with the clinical indicators (p <

0.05). Bifidobacterium was negatively associated with IL-8,
Akkermansia was negatively correlated with IFN-γ but positively
correlated with IP-10, Enterococcus and Corynebacterium
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FIGURE 2 | Differential bacterial taxa between the Chinese AD patients and the healthy controls. The LEfSe identified the taxa with the greatest differences in

abundance between the Chinese AD patients and the healthy controls. Only the taxa meeting a significant LDA threshold value of >3 are shown (A). Comparisons of

the relative abundance of the abundant bacterial taxa at the level of bacterial phylum, family, and genus (B). The data are presented as the mean ± standard deviation.

Mann–Whitney U-tests were used to analyze variation between the Chinese AD patients and the healthy controls. *p < 0.05 compared with the control group.

were positively correlated with the pro-inflammatory cytokine
TNF-α, while Faecalibacterium, Roseburia, Gemmiger, and
Coprococcus were negatively correlated with TNF-α and IP-10
(p < 0.05). Taken together, the enriched lactate-producing

genera and the decreased butyrate-producing genera in the
fecal microbiota of AD patients performed distinct roles in
the progression of AD and differently modulated the immune
response of the host. The altered fecal microbial profiles and
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FIGURE 3 | Strengths of the correlation between abundant fecal microbiota in the Chinese AD patients and the healthy controls. Correlation network of the abundant

fecal microbiota in the healthy controls and the AD patients. The correlation coefficients were calculated with the Sparse Correlations for Compositional (SparCC) data

algorithm. Cytoscape version 3.4.0 was used for network construction. The red and blue lines represent positive and negative correlations, respectively. The

correlation network became simpler in AD patients.

their related host responses might be the key pathophysiology
of AD.

DISCUSSION

In recent years, multi-omics techniques have revealed that the
gut microbiota play a crucial role in promoting human health,
as a result of which they are often referred to as the “forgotten
organ.” Accumulating evidence indicates that the gut microbiota
constitute a key factor in maintaining gut homeostasis by various
complex mechanisms. Not only have the gut microbiota been
invoked as a contributor to every gastrointestinal ailment, but
the analyses of their influence have also been extended to other
organs, such as the central nervous system (CNS). Exploring the
roles andmechanisms of the gutmicrobiota in neurodegenerative
diseases is an emerging field of research. Recently, several lines
of research have suggested that changes in the composition and
function of gut microbiota significantly affect neuronal function
and, consequently, the host’s behavior (Wang T. et al., 2015). The
gut–brain axis of the microbiota has a proven role in regulating
multiple neuro-chemical pathways. Microbiota–gut–brain axis
signaling has uncovered a new era in psychiatry that is expected
to provide novel targets for the diagnosis and treatment of
psychiatric disorders and decipher their pathogeneses.

Aging is associated with an overstimulation of both innate and
adaptive immune systems, resulting in a low-grade, chronic state

of inflammation defined as inflammaging (Franceschi et al., 2000;
Franceschi, 2007). This can increase gut permeability (“leaky
gut”) and bacterial translocation (Ulluwishewa et al., 2011; Tran
and Greenwood-Van Meerveld, 2013). As a major age-related
neurodegenerative disorder, the onset of AD has been closely
correlated with alterations in the gut microbiota (Vogt et al.,
2017; Zhuang et al., 2018; Li et al., 2019; Liu P. et al., 2019;
Wang et al., 2019). Most of these previous “AD microbiome”
studies have been mainly conducted on a small scale of patients.
In this study, 100 well-controlled Chinese AD patients and 71
age- and gender-matched normal controls were enrolled for

AD microbiome analysis. In total, the deeper sequencing and

higher coverage allowed us to identify low-abundance taxa in

AD-associated fecal microbiota. In the results, structural changes
in the fecal microbiota were evident in Chinese AD patients,
with decreased alpha-diversity indices and altered beta-diversity
ones. Inconsistent with previous clinical studies on AD patients,
our study also indicated that Shannon significantly decreased in
the AD patients (Liu P. et al., 2019), and such richness indices
as the observed OTUs, ACE, and Chao1 were also significantly
reduced (Vogt et al., 2017). Liu P. et al. (2019) have also shown
significant compositional differences between AD patients and
controls in PCoA plots based on Bray–Curtis dissimilarity, which
were consistent with our study. Taken together, both alpha-
diversity and beta-diversity indices provide powerful evidence of
structurally dysbiotic AD microbiota in the AD patients.
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FIGURE 4 | The differential genera as AD diagnostic markers. The relative abundance and best cut-off values of the differential genera such as Bifidobacterium (A),

Faecalibacterium (B), Roseburia (C), Akkermansia (D), Lactobacillus (E), Enterococcus (F) in each sample. Receiver operating characteristic (ROC) curves for the

differential genera alone or in combination (G), and Faecalibacterium/Bifidobacterium (H), used to discriminate healthy controls from AD patients. AUC, the area under

the receiver operating characteristic curve.

In parallel with other similar studies, the structural dysbiosis
observed in ours shows that the compositions of the AD-
associated fecal microbiota also changed significantly. The
distributions of bacterial taxa in the AD patients, at the
levels of the phylum, family, and genus, were significantly
different from those in healthy controls. An enrichment
of the phyla Actinobacteria and Verrucomicrobia, and a
decrease in the phylum Firmicutes were observed in AD-
associated microbiota, while the amounts of such abundant
phyla as Proteobacteria and Bacteroidetes did not change
significantly, which is not consistent with previous studies
(Zhuang et al., 2018; Liu P. et al., 2019). One aging indicator,
the decreased ratios of Firmicutes/Bacteroidetes (Mariat et al.,
2009), also did not change significantly in AD-associated
microbiota. However, the ratios of Firmicutes/Actinobacteria
were found to have decreased significantly (p < 0.05),
which could reveal the bacterial dysbiosis in AD-associated
microbiota. Several bacterial families—such abundant families
as the Ruminococcaceae, Lachnospiraceae, and Clostridiaceae 1—
decreased significantly in AD patients, while Bifidobacteriaceae,

Verrucomicrobiaceae, Coriobacteriaceae, Erysipelotrichaceae, and
Enterococcaceae increased significantly. Ruminococcaceae and
Lachnospiraceae can produce different types of short-chain
fatty acids (SCFAs). Among the SCFAs, butyrate has received
particular attention in research owing to its beneficial effects
on maintaining health. Butyrate can influence gastrointestinal
physiology, the peripheral immunity of the liver metabolism,
and the integrity of the blood–brain barrier, which can
indirectly contribute to the functions of the brain (Fung
et al., 2017). In addition, it can drive the maturation of
the microglia, and is needed for the maintenance of mature
microglia (Erny et al., 2015). However, the amounts of
Bifidobacteriaceae, Verrucomicrobiaceae, Coriobacteriaceae, and
Enterococcaceae, mainly lactate producers, increased in AD
patients. Inconsistent with this study, Liu P. et al. (2019) found
that the family Enterobacteriaceae is correlated with the presence
and progression of AD, which can help distinguish between AD
patients and healthy controls (AUC: 0.698). The changed fecal
bacteria at the levels of phylum and family represent the dysbiosis
of AD-associated fecal microbiota, but this is not suitable for
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FIGURE 5 | PiCRUSt-based examination of the fecal microbiome of the Chinese AD patients and the healthy controls. The different bacterial functions were evaluated

between them based on two-sided Welch’s t-test. Comparisons between the groups for each KEGG functional category (levels 2 and 3) are shown by percentage.

The Benjamini–Hochberg method was used for multiple testing correction based on the false discovery rate (FDR) through STAMP.

a non-invasive diagnosis of AD using fecal bacteria at higher
taxonomic levels.

In agreement with the altered bacteria at the family level,
many such genera as the Bifidobacterium, Akkermansia,
Faecalibacterium, Collinsella, and Roseburia and changed
significantly in content the AD-associated fecal microbiota.
Interestingly, traditionally beneficial bacteria, such as the
Bifidobacterium and Akkermansia, increase in these AD patients
while Faecalibacterium and Roseburia decrease significantly.
Our ROC curves also show that these differential genera can
be used as biomarkers to discriminate the controls from the

AD patients, alone or together, which provides novel targets
for a non-invasive diagnosis of AD. Bifidobacterium, mainly a
lactate producer, is highly beneficial to humans, and has been
used as a food supplement in dairy products (Camfield et al.,
2011). An open-label, single-arm, preliminary clinical study
conducted by Kobayashi et al. (2017, 2019) found that oral
supplementation using Bifidobacterium breve A1 can improve
the cognitive function and maintain the quality of life of the
elderly by suppressing the gene expression of inflammation
and immune-reactive genes. Different from previous studies on
animals and clinical studies (Vogt et al., 2017), this traditionally
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FIGURE 6 | Correlation between fecal microbiota, and pro- and anti-inflammatory cytokines and chemokines and clinical indicators. The heatmap shows partial

Spearman’s correlation coefficients between 34 genera, and clinical indicators and host immunity in AD patients. Spearman’s rank correlation (r) and probability (p)

were used to evaluate statistical importance. *p < 0.05.

beneficial genus was among the most abundant genera in
the AD-associated fecal microbiota, which suggests that the
Bifidobacterium genus may play a crucial role in the pathogenesis
and development of AD. It is challenging to link species to 16S
metagenomic data, but different species of Bifidobacterium may
have different effects that can explain why Bifidobacterium spp.
are commonly associated with healthy and diverse microbiota
but sometimes also isolated in other conditions (Pineiro and
Stanton, 2007). Thus, we needed to re-examine the therapeutic
potential of Bifidobacterium in terms of maintaining cognitive
function and treating dementia. Our data also showed that
Bifidobacterium was significantly negatively correlated with
the MMSE, WAIS, Barthel, and IL-8, which also shows that
Bifidobacterium was not a beneficial genus in our clinical study.
Akkermansia, a specialized mucin-degrading genus, can utilize
mucin-derived sugars like fucose to produce propionate through
the propanediol pathway (Ottman et al., 2017). Previous work
has shown that Akkermansia muciniphila (typical strain) is
associated with protection against obesity, enhancement of
wound healing, augmented antitumor responses, and induced

intestinal adaptive immune responses during homeostasis
(Everard et al., 2013; Greer et al., 2016; Routy et al., 2018;
Ansaldo et al., 2019). Combinations of Akkermansia, two
strains of Clostridium, one strain of Eubacterium, one strain of
Bifidobacterium, and inulin have recently been used as special
synbiotics to treat type-2 diabetes mellitus. The discovery of
Akkermansia muciniphila has opened new avenues for the use of
this abundant intestinal symbiont in next-generation therapeutic
products, and they can be used to target the dynamics of
microbiota. Surprisingly, our data indicate that Akkermansia
was among the most abundant genera in the AD-associated
fecal microbiota. Similarly to Bifidobacterium, Akkermansia
was negatively correlated with clinical indicators of AD, such
as MMSE, WAIS, and Barthel, and anti-inflammatory cytokine
such as IFN-γ. Based on our present observations, Akkermansia
cannot always be considered a potentially beneficial bacterium,
it might be harmful for the gut–brain axis in the context of the
AD development in the elderly. Of these AD-enriched genera,
Clostridium IV, Desulfovibrio, and Corynebacterium have been
reported to be involved in the pathologic development of AD
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and other CNS diseases (Zhou et al., 2019), which is consistent
with our findings. Clostridium IV was closely associated with
type-2 diabetes and obesity in mice as well as the risk factors in
AD development (Haan, 2006; Yamaguchi et al., 2016), which
in turn is correlated negatively with the MMSE. Sawin et al.
(2015) have also shown that Desulfovibrio can induce decreased
levels of SCFAs that can influence pathologic conditions of
CNS disease (Sampson et al., 2016). Previous studies have also
found a decreased amount of Corynebacterium in patients
suffering from depression and autism spectrum disorder
(Strati et al., 2017; Yu et al., 2017), while Corynebacterium
has been positively correlated with pro-inflammatory TNF-α.
Different from Vogt’s and Liu’s studies, we found that such
non-abundant genera as Collinsella, Enterococcus, Olsenella,
Eubacterium, Christensenella, Anaerotruncus, and Halomonas
were also enriched in AD-associated fecal microbiota (Vogt
et al., 2017; Liu P. et al., 2019). Collinsella, one of the most
abundant genera in the phylum Actinobacteria, was found to
have increased prominently in the AD patients, but decreased
in cases of relapsing–remitting multiple sclerosis (Chen et al.,
2016), which was negatively correlated with MMSE, WAIS, and
Barthel. Enterococcus (typical strain E. faecalis) can generate
early Alzheimer-like neurofibrillary epitopes in primary rat
cortical neurons (Underly et al., 2016), which can serve as
harmful bacteria in AD etiopathology. Similarly to our findings,
Christensenella was found to be increased in amounts in patients
with Parkinson’s disease in comparison with healthy controls
(Petrov et al., 2017). These enriched AD-associated fecal genera,
mainly lactate and propionate producers, may play a crucial role
in the pathogenesis and development of AD.

However, reductions in the levels of Faecalibacterium,
Roseburia, Clostridium sensu stricto, Gemmiger, Dialister,
Romboutsia, Coprococcus, and Butyricicoccus were observed
in AD-associated fecal microbiota. In particular, Biagi et al.
(2016) and Wang F. et al. (2015) have shown that such butyrate
producers as Faecalibacterium, Roseburia, and Coprococcus
are negatively correlated with age. Our study found that these
bacteria were positively correlated with AD clinical indicators,
such as the MMSE, WAIS, and Barthel, and were negatively
correlated with inflammatory cytokines, such as TNF-α and
chemokines, such as IP-10. Faecalibacterium (typical strain
F. prausnitzii), a major member of the Firmicutes phylum, is
considered to be among the most important bacterial indicators
of a healthy gut, and can modulate the inflammation of the
level of the gut epithelium (Sokol et al., 2008). Beneficial
Faecalibacterium has been found to be reduced in case of many
intestinal disorders. Van Tongeren et al. (2005) observed a
decreased relative abundance of Faecalibacterium in frail and
elderly patients. In line with these findings, the decreased
proportion of Faecalibacterium and increased Bifidobacterium
have been found in elderly patients with Parkinson’s disease
(Scheperjans et al., 2015; Unger et al., 2016). All these changes
may lead to a pro-inflammatory gut environment that may
altogether lead to the chronic low-grade inflammation found
in elderly persons with declining health. Previous studies have
found that Faecalibacterium has anti-inflammatory properties
due to its capability to produce butyrate and induce a tolerogenic

cytokine profile (Sokol et al., 2008; Qiu et al., 2013), which can
help extenuate these alterations in elderly AD patients. Liu J.
et al. (2020) found that high-altitude Tibetan fermented milk
can increase microbial diversity, and can elevate the levels of
Bacteroides and Faecalibacterium in AD mice model, which are
associated with cognitive improvements in mice afflicted with
AD. The clinical comparative analyses and studies on animal
mechanics confirm the beneficial roles of Faecalibacterium on
mental health, which has prompted interest in considering this
bacterium as a new-generation probiotic or psychobiotic. Gut
Roseburia is part of commensal bacteria-producing SCFAs,
especially butyrate, that affect immunity maintenance, colonic
motility, and anti-inflammatory properties. The concomitant
decreases in the well-known butyrate-producing bacterial
genus Roseburia in many intestinal disorders (including type-2
diabetes, obesity, irritable bowel syndrome, nervous system
conditions, and allergies), which suggests the potential of these
bacteria as indicators of intestinal health (Tamanai-Shacoori
et al., 2017). Consistently with our data, Keshavarzian et al.
(2015) demonstrated the anti-inflammatory properties of
Roseburia, and found that its levels are more abundant in
feces of controls than in those of patients with Parkinson’s
disease. Neyrinck et al. (2011) found that the amount of
Roseburiawas inversely correlated with important markers of the
metabolism and obesity of the host lipid. The role of Roseburia
in protecting the nervous system from diseases has lately been
highlighted, and has been shown to reduce neuroinflammation
by regulating the gut–brain axis through its metabolite butyrate.
Coprococcus, a less abundant bacterium in the large intestine,
produces butyrate from fructose and propionate from lactate
(via the acrylate pathway) (Reichardt et al., 2018). Together
with Faecalibacterium, the butyrate-producing Coprococcus has
been consistently associated with higher quality-of-life (QoL)
indicators, which have been positively associated with several
QoL scores (Valles-Colomer et al., 2019). Our previous study
showed that Coprococcus is depleted in patients of depression
(Jiang et al., 2015), even after correcting for the confounding
effects of antidepressants (Valles-Colomer et al., 2019). Parashar
and Udayabanu (2017) also found a reduction in fecal bacteria
in the genus Coprococcus in patients with Parkinson’s disease.
Inconsistent with our microbiome study on AD patients here,
Nagpal et al. (2019) found increased levels of Coprococcus in
mild cognitive impairment participants in comparison with
the controls. On the contrary, our study demonstrated that
Coprococcus is positively correlated with clinical indicators of
AD. Butyricicoccus, a butyrate-producing Clostridium cluster IV
genus, was reduced in the feces of the AD patients. Butyricicoccus
was found to be positively associated with the clinical indicators
MMSE, WAIS, and Barthel, and anti-inflammatory cytokine
IFN-γ, and negatively correlated with the pro-inflammatory
cytokine TNF-α. Devriese et al. (2017) also found that reduced
mucosa-associated Butyricicoccus activity in patients with
ulcerative colitis was correlated with aberrant expressions of
claudin-1, supporting its use as a pharmabiotic that preserves
epithelial tight junction integrity. Zhang et al. (2017) also showed
that the abundance of Butyricicoccus clearly decreases in a mouse
model of AD in comparison with age-matched controls. Shen
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et al. (2019) observed that the regulation of gut microbiota
by using silibinin and silymarin, especially with an increase in
Butyricicoccus, might prohibit AD. Another Clostridium cluster
I genus, Clostridium sensu stricto, was found to have decreased
in AD patients (Vogt et al., 2017). Clostridium sensu stricto was
positively associated with HDL and negatively associated with
VLDL particles (Vojinovic et al., 2019), which are associated
with a decreased risk of cardiovascular disease and stroke
(Holmes et al., 2018). Gemmiger, also an SCFAs-producing
genus, was positively related with the Montreal Cognitive
Assessment scale score in patients with post-stroke cognitive
impairment (Liu Y. et al., 2020). Our study also found that
decreased levels of Gemmiger were positively associated with
the MMSE, WAIS, and Barthel, and negatively correlated with
inflammatory cytokines such as TNF-α and chemokines such as
IP-10. Consistent with our study, Vogt et al. (2017) found that the
genus Dialister (belonging to Veillonellaceae) was less abundant
in AD participants, and exhibited the strongest correlations
with such AD biomarkers of cerebrospinal fluid as Aβ42/Aβ40,
p-tau, and p-tau/Aβ42. Therefore, all these decreased levels of
AD-associated fecal genera, interacting with the AD-enriched
genera, where this contributed to shifts in the SCFAs, might have
participated in the pathogenesis and development of AD.

The level of endogenous SCFAs is influenced by many factors,
of which gut bacterial metabolism is the most important. The
dysbiosis of microbiota in patients of AD can change the
balanced levels of SCFAs in the human body, while abnormal
levels of SCFAs may negatively affect human health. Zhao et al.
(2018) have claimed that the SCFAs serve as the bridge within
this associations among diet, intestinal microbiota, and health.
We observed that several metabolic pathways, such as those
for carbohydrate metabolism, xenobiotics biodegradation and
metabolism, and the immune system, changed significantly in
AD-associated fecal microbiota. The characteristics of the AD
microbial profiles changed from butyrate producers, such as
Faecalibacterium into lactate producers, such as Bifidobacterium.
These alterations contributed to shifts in metabolic pathways
from butyrate to lactate, which might have participated in the
pathogenesis of AD. However, the specific roles of the AD-
associated signatures and their functions should be explored in
further studies.

Our study is limited in some ways. First, it used the 16S
rRNA amplicon rather than metagenomic sequencing, which
limited us to the finding of specific bacteria related to AD at
the species level. Second, our cross-sectional study investigated
only healthy controls and confirmed AD participants. To
decipher the dynamic interplay between microbiota and AD,
a longitudinal follow-up case-control study should include
different stages of AD, such as the preclinical stage and the
mild cognitive impairment stage, that signify the transition from
health to AD. Third, the fecal microbial signatures and the
corresponding metabolites as well as the non-invasive diagnostic
model associated with AD still need a larger sample size of clinical
studies to be validated. Fourth, culturomics should be used
to obtain the AD-associated bacteria, and animal experiments
can help determine the cause–effect relationship between these
bacteria and the pathogenesis of AD.

In summary, we found altered bacterial composition and
decreased bacterial diversity of the fecal microbiota in AD
patients compared with healthy elderly subjects. The structural
dysbiosis of the fecal microbiota of the AD patients was
characterized by reductions in butyrate-producing bacteria, such
as Faecalibacterium, and increases in lactate-producing ones,
such as Bifidobacterium, which were both significantly correlated
with host pro- and anti-inflammatory cytokines as well as clinical
indicators of AD in the host. These changes in key functional
bacteria, such as the Faecalibacterium and Bifidobacterium, can
be used as non-invasive biomarkers to discriminate between
healthy elderly subjects and AD patients. Transformations
of the gut microbiota from lactate producers into butyrate
producers through personalized diet or intervention from
beneficial microbiota may be useful for patient-tailored early
intervention in cases of AD. In addition, the functional dysbiosis
in AD-associated fecal microbiota also suggests that the changed
fecal microbiota is associated with changed functions and
metabolic activities of the patients, which might play vital roles
in the pathogenesis and development of AD. Therefore, our
investigation of fecal microbiota using a large and confirmed
AD cohort provides novel insights into disease pathogenesis,
which can provide new avenues for the scientific trajectory
of managing neurodevelopmental disorders by modulating the
gut microbiome.
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Supplementary Figure 1 | Variations in the compositions of fecal microbiota in

the Chinese AD patients and the healthy controls. Relative proportions of bacterial

phyla in AD patients (n = 100) and healthy controls (n = 71).

Supplementary Figure 2 | Variations in the composition of fecal microbiota in the

Chinese AD patients and the healthy controls. Relative proportions of bacterial

genera in AD patients (n = 100) and healthy controls (n = 71).

Supplementary Figure 3 | Heatmap of the genus-level taxa in the fecal

microbiota of the Chinese AD patients and the healthy controls. The color of the

spots in the panel represents the relative abundance (normalized and log10
transformed) of the genus in each sample. The relative abundance of the bacteria

in each genus is indicated by a gradient of colors from blue (low abundance) to

red (high abundance). The taxonomic classifications of the family are shown on

the right. The corresponding Shannon’s index in each sample is shown under the

heatmap.

Supplementary Figure 4 | Mean concentrations (pg/ml) of pro- and

anti-inflammatory cytokines and chemokines in patients with AD and in healthy

controls determined using Bio-Plex immunoassays. The concentrations of TNF-α

(A) and IP-10 (D) increased significantly in patients with AD, while those of IL-8

(B), MCP-1 (E), MIP-1a (F), and IFN-γ (C) decreased significantly. ∗p < 0.05.
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