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Abstract

Background: Salmonid fishes exhibit high levels of phenotypic and ecological variation and are thus ideal model
systems for studying evolutionary processes of adaptive divergence and speciation. Furthermore, salmonids are of
major interest in fisheries, aquaculture, and conservation research. Improving understanding of the genetic
mechanisms underlying traits in these species would significantly progress research in these fields. Here we
generate high quality de novo transcriptomes for four salmonid species: Atlantic salmon (Salmo salar), brown trout
(Salmo trutta), Arctic charr (Salvelinus alpinus), and European whitefish (Coregonus lavaretus). All species except
Atlantic salmon have no reference genome publicly available and few if any genomic studies to date.

Results: We used paired-end RNA-seq on Illumina to generate high coverage sequencing of multiple individuals,
yielding between 180 and 210 M reads per species. After initial assembly, strict filtering was used to remove duplicated,
redundant, and low confidence transcripts. The final assemblies consisted of 36,505 protein-coding transcripts for
Atlantic salmon, 35,736 for brown trout, 33,126 for Arctic charr, and 33,697 for European whitefish and are made
publicly available. Assembly completeness was assessed using three approaches, all of which supported high quality of
the assemblies: 1) ~78% of Actinopterygian single-copy orthologs were successfully captured in our assemblies, 2)
orthogroup inference identified high overlap in the protein sequences present across all four species (40% shared
across all four and 84% shared by at least two), and 3) comparison with the published Atlantic salmon genome
suggests that our assemblies represent well covered (~98%) protein-coding transcriptomes. Thorough comparison of
the generated assemblies found that 84-90% of transcripts in each assembly were orthologous with at least one of the
other three species. We also identified 34-37% of transcripts in each assembly as paralogs. We further compare
completeness and annotation statistics of our new assemblies to available related species.

Conclusion: New, high-confidence protein-coding transcriptomes were generated for four ecologically and
economically important species of salmonids. This offers a high quality pipeline for such complex genomes, represents
a valuable contribution to the existing genomic resources for these species and provides robust tools for future
investigation of gene expression and sequence evolution in these and other salmonid species.
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Background
Salmonid fishes are globally recognised for their eco-
nomic and ecological value. Several species, particularly
from the genera Salmo, Onchorhynchus and Salvelinus,
contribute significantly to the economy through aqua-
culture, wild stock fisheries and recreational fishing, and
to the environment via their promotion of ecosystem
function and biodiversity [1, 2]. In addition, salmonids
exhibit exceedingly high levels of diversity in their life
histories, behaviour, morphology and physiology, with
patterns of trait variation often replicated within and
across species, as well as across different freshwater sys-
tems [3–7]. This makes salmonids particularly interest-
ing in the context of fundamental and applied research
on intra- and inter-specific diversity in morphology,
physiology and ecology.
To drive this research forward, we need to understand

the genetic basis associated with ecological and evolu-
tionary processes in salmonids. Genetic studies of salmo-
nids are complicated by a whole genome duplication
(WGD) event that occurred in their common ancestor
approximately 80–100 Mya (Fig. 1; [8–12]). Neverthe-
less, several important resources have been established
through the efforts of consortia such as cGRASP
(Consortium for Genomic Research on All Salmonids
Program, http://www.sfu.ca/cgrasp/index.html), ICSASG
(International Collaboration to Sequence the Atlantic
Salmon Genome), and SalmonDB (http://salmondb.cm
m.uchile.cl). These include expressed sequence tag (EST)
databases, microarray gene expression platforms, and SNP
Fig. 1 Phylogenetic relationship of salmonids and the closest teleost out-g
follow [11]. The highlighted tree branches represent the phylogenetic posi
current study, yellow = Atlantic salmon, green = Brown trout, blue = Arctic c
arrays. Consortia efforts have generated extensive EST da-
tabases for Atlantic salmon (Salmo salar) and rainbow
trout (Oncorhynchus mykiss) [13–18], as well as on a
smaller scale for other salmonid species such as chinook
salmon (Oncorhynchus tshawytscha), sockeye salmon
(Oncorhynchus nerka) and lake whitefish (Coregonus clu-
peaformis) [13]. cGRASP have also generated dense micro-
array (44 K oligo array) and SNP-chip (~130 K) platforms
for Atlantic salmon [19–23].
A further major advance in salmonid genomic re-

search, promoted by consortia efforts, is the recent pub-
lication of reference genomes for rainbow trout [10] and
Atlantic salmon [12]. The release of these reference ge-
nomes presents exciting opportunities for tackling key
topics in ecological, evolutionary and fisheries research.
In addition, they provide a solid platform for generating
genomic resources for other salmonid species. The latter
point forms the primary objective of the FAASG (Func-
tional Annotation of All Salmonid Genomes), a recent
initiative developed by the ICSASG, which aims to gen-
erate functionally annotated resources for nine species
of salmonids and integrate data generated from within
the wider research community [24]. Rapid advances in
next-generation sequencing (NGS) technologies and
with significant reductions in cost have made high-
throughput RNA sequencing of salmonids more access-
ible. RNA-Seq methods allow genome-wide investigation
of the transcriptome, providing an in-depth overview of
transcript sequence and expression profiles [25–28].
Improved de novo assembly methods enable robust
roup, Esox lucius. Phylogenetic positions and estimated WGD timing
tions of species for which assemblies have been generated in the
harr and red = European whitefish
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generation of a reference transcriptome and offer an
important alternative to genome reference mapping
[28–30]. Thus data generated as part of small-scale pro-
jects, such as the four species transcriptome resources
presented in the current study, provide a valuable contri-
bution to the development of community resources.
Given that there is currently no reference genome

available for the vast majority of salmonids, transcrip-
tomes are key to facilitating research on genomic vari-
ation and expression. Efforts by independent salmonid
research groups have generated de novo transcriptome
assemblies for Kokanee salmon (Oncorhynchus nerka:
11,085 transcripts, [31]), lake whitefish (Coregonus
clupeaformis: 77,797 transcripts [32]), coho salmon
(Oncorhynchus kisutch: 43,228 transcripts [33]), and
Arctic charr (Salvelinus alpinus: 34,690 transcripts [34]).
Furthermore, the recent release of the PhyloFish data-
base (http://phylofish.sigenae.org/index.html) represents
another major contribution, with the generation of
transcriptomic resources for 15 fish species, of which six
are salmonids: grayling (Thymallus thymallus), lake
whitefish (Coregonus clupeaformis), European whitefish
(Coregonus lavaretus), brown trout (Salmo trutta),
rainbow trout (Oncorhynchus mykiss) and brook trout
(Salvelinus fontinalis), with 66,996 to 78,415 transcripts
per species [35]. The high number of transcripts often
assembled for salmonids may be due to the additional
whole genome duplication event that occurred in salmo-
nids but it is also possible that redundant or fragmented
transcripts inflate some assemblies [33, 34]. Assembly
filtering methods are key to generating high-quality tran-
scriptomic references because this will in turn optimise
subsequent analyses, such as differential gene expression,
allele-specific expression, SNP calling, and sequence
evolution [36].
In the current study, we generate comprehensive refer-

ence transcriptomes for four salmonid species: Atlantic
salmon (Sm. salar), brown trout (Sm. trutta), Arctic
charr (Sv. alpinus) and European whitefish (C. lavaretus)
(Fig. 1). We assembled our transcriptomes using well
established de novo methods to avoid any bias in the ini-
tial construction that might have been introduced by a
genome-guided approach, given the varying degrees of
phylogenetic divergence of our focal species to the two
salmonid species for which reference genomes are cur-
rently available, rainbow trout [10] and Atlantic salmon
[12]. We also conduct a thorough comparison of the de
novo assemblies generated for these four species, provid-
ing valuable insight into the level of sequence similarity
and divergence between salmonids of varying phylogen-
etic proximity. Furthermore, by comparing across four
closely related taxa we were able to robustly distinguish
the presence of orthologous and paralogous sequences
in our transcriptomes. Finally, we apply several methods
to assess assembly completeness, including a compara-
tive analysis of the current assemblies against the pub-
lished reference genome for Atlantic salmon, and other
reference transcriptomes available. The new salmonid
transcriptomes we present and characterise here make
an important contribution to the currently available gen-
omic resources for salmonids, facilitating future analyses
and downstream applications of genome annotation,
gene expression, and sequence evolution.

Methods
Specimens
Parental fish for this study were from different locations,
depending on the species. Atlantic salmon were col-
lected from an anadromous river running population on
the river Blackwater (northern Scotland), brown trout
were third-generation hatchery trout from Houietoun
Hatchery (Stirling, Scotland), Arctic charr were wild
caught from a generalist freshwater population in Loch
Clair (North-west Scotland), and European whitefish
were wild caught from the generalist freshwater popula-
tion at Loch Lomond (central Scotland). Fish collection
was undertaken under licence from Marine Scotland
and with local permissions, and a licence specifically to
collect Coregonus lavaretus was granted by Scottish
Natural Heritage. Nine full-sib families of Atlantic sal-
mon, 14 full-sib families of brown trout, nine full-sib
families of Arctic charr and six full-sib families of
European whitefish were generated. Salmonids exhibit
highly variable life histories both within and across spe-
cies (e.g. freshwater resident versus anadromous migra-
tory individuals). All salmonids are born in freshwater
and spend their juvenile phase there, irrespective of any
subsequent difference in life histories. Here we sampled
all individuals within five months of hatching and there-
fore all specimens included in the present study were
free-feeding and still within their freshwater phase [3–7].
Fry of all four species were reared under common hatch-
ery conditions at the Scottish Centre for Ecology and the
Natural Environment, Loch Lomond. Tanks used a flow
through system using untreated water from Loch
Lomond and subject to ambient temperature of the loch,
which ranged from 4 to 16 °C over the duration of the
study. After 800 degree-days (dd) post-hatch (~ 5
months old) 32 juvenile fish (eight per species) were ran-
domly selected and euthanized by Benzocaine overdose
as per a UK Home Office Schedule 1 approved killing
method. This work was conducted under Home Office
licence number PPL 60/41/91 granted under the UK
Animal (Scientific Procedures) Act 1986. All specimens
were weighed (0.19 ± 0.06 g) and stored in RNALater
(Life Technologies, Carlsbad, CA). To allow permeation
of the RNALater preservative into all tissues, several in-
cisions were made along the dorsal side of each

http://phylofish.sigenae.org/index.html)
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specimen before being submerged in the RNALater. All
samples were then stored at 4 °C for 24 h and then
frozen at −20 °C until RNA isolation was carried out.

RNA extraction
Total RNA was isolated from liquid nitrogen homoge-
nised samples (multiple replicates per individual, using
the entire sample) using PureLink RNA Mini Kits (Life
Technologies, Carlsbad, CA), following an adapted
protocol from Gunter et al. [37]. Samples were quanti-
fied with a Qubit 2.0 fluorometer (Life Technologies,
Carlsbad, CA) and quality was assessed with a 2200
Tapestation (Agilent, Santa Clara, CA). All RNA was
high quality; A260/280 ratios were between 1.9 and 2.1
and RIN (RNA Integrity Number) values were above 8.5.

RNA-seq library construction and sequencing
RNA-seq library preparation and sequencing was carried
out by Glasgow Polyomics research facility at the
University of Glasgow. Briefly, libraries were synthesised
for each of the 32 samples using the TruSeq Stranded
mRNA Sample Preparation kit (Illumina, San Diego,
CA), according to the manufacturer’s instructions.
Paired-end sequencing (75 bp from each end) was then
performed on the NextSeq 500 system (Illumina, San
Diego, CA) at a sequencing depth of 20–25 million reads
per library. The raw reads in bcl format were converted to
fastq files with Illumina provided bcl2fastq v2.15.0 soft-
ware, and quality was examined using FastQC v0.11.2 [38].

Initial de novo assembly
A schematic representation of the de novo transcriptome
reconstruction and analysis pipeline is given in Fig. 2. The
sequencing reads in fastq format were subjected to pre-
processing where adapter sequences were removed with
Scythe v0.9944 BETA [39] and low quality reads were
trimmed with Sickle v1.210 [40] (Phred quality score > 30).
Given that of the four species studied, a reference genome
is currently only available for Atlantic salmon, we assem-
bled the transcriptomes de novo to avoid any bias that
might have been introduced by a genome-guided
approach. Previous studies show that de novo generally
out-performs genome-guided transcriptome assembly
methods for diverged species and for organisms with more
complex genomes [41–43]. Given the varying level of
phylogenetic divergence of our focal species from Atlantic
salmon (Fig. 1, [11]) and the high complexity of the gen-
ome (as a result of the Ss4R duplication event [9]), we
deemed de novo assembly to be more appropriate here.
Consequently, the pre-processed reads for each of the four
species were subjected to the de-novo assembling proced-
ure using Trinity r20140717 [44], with the default parame-
ters. The assembly was performed on Glasgow Polyomics
64-core server with 512Gb RAM.
Assembly optimisation
Prior to filtering our four de novo assemblies to remove re-
dundant and poorly constructed transcripts, we performed
an initial quality assessment of the transcript sets. We de-
termined completeness by examining the number of input
RNA-seq reads that were represented in our de novo as-
sembled transcriptomes, as per the pipeline suggested in
the Trinity package (http://github.com/trinityrnaseq/trini-
tyrnaseq/wiki) [45]. Read representation was determined
by mapping the cleaned reads back to their corresponding
assemblies, for each of the four species individually, with
Bowtie2 v2.2.6 (–local, –no-unal) [46].

Removal of redundant transcripts
To obtain sets of non-redundant transcripts we applied
the following filtering steps: first, we used TransDecoder
v3.0.0 [47] to identify all likely coding regions within our
assembled transcripts (for each species individually), and
then filtered by selecting the single best open reading
frame (ORF) per transcript, as per the TransDecoder pipe-
line (–single_best_orf). Any transcripts with ORFs less
than 200 bp in length were removed before performing
further analyses. Second, redundancy was further reduced
in the remaining transcript sets by clustering highly simi-
lar sequences with CD-Hit v4.6.6 [48], using an amino
acid sequence identity threshold of 1.00.

Full-length transcript analysis
To determine how successfully assembled transcripts were
reconstructed to full- or near full-length in each of the
four assemblies, we calculated coverage against the NCBI
Atlantic salmon proteins database (GCF_000233375.1).
Atlantic salmon proteins were used as the reference data-
set because it is the salmonid species with the most gen-
omic resources available. The non-redundant sets of
transcripts were subjected to BLASTP searches (−max_-
target_seqs 1, −evalue 1e-3) [49] against the Atlantic sal-
mon proteins; we applied a relaxed e-value to avoid
discarding good hits for very short sequences. We proc-
essed the BLAST hits using the ‘analyze_blastPlus_to-
pHit_coverage.pl’ script from the Trinity package
(http://trinityrnaseq.sourceforge.net/) [45] to identify
the number of transcripts that aligned to the salmon pro-
teins across varying length thresholds. The results from
the Trinity full-length analysis were used to filter the as-
semblies, excluding all transcripts with less than 30% ref-
erence coverage. We used a relatively low coverage
threshold to minimise the loss of ‘true’ transcripts from
the charr and whitefish datasets, given their increased
phylogenetic distance from Atlantic salmon (Fig. 1).

Assessment of assembly completeness
To provide a comprehensive and quantitative overview
of the level of completeness achieved for our assemblies,

http://github.com/trinityrnaseq/trinityrnaseq/wiki
http://github.com/trinityrnaseq/trinityrnaseq/wiki
http://trinityrnaseq.sourceforge.net/)


Fig. 2 Schematic of the de novo transcriptome reconstruction and analysis pipeline used to generate the protein-coding transcriptome
assemblies for Atlantic salmon, brown trout, Arctic charr and European whitefish
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we applied four approaches to assess overlap with tran-
scriptomic or genomic resources across taxa [50].
First, we quantified completeness by comparing our

four assembled transcript sets against a set of highly
conserved single-copy orthologs. This was accomplished
using the BUSCO (Benchmarking Universal Single-Copy
Orthologs) v2 pipeline [51] compared to the predefined
set of 4584 Actinopterygian single-copy orthologs from
the OrthoDB v9.1 database [52]. We calculated the
number of complete (length is within two standard devi-
ations of the mean length of the given BUSCO), dupli-
cated (complete BUSCOs represented by more than one
transcript), fragmented (partially recovered BUSCOs)
and missing (not recovered) in each of the four de novo
assemblies. To further assess the completeness and util-
ity of the resources presented here, we examined how
successfully BUSCOs were recovered in our assemblies
compared to the NCBI protein dataset for Atlantic
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salmon (GCF_000233375.1) (48,602 transcripts; based
on retaining only the longest isoform per gene), as well
as against the PhyloFish brown trout and European
whitefish assemblies (75,388 and 74,701 transcripts
respectively) [35].
Second, we used the program OrthoFinder v1.1.2 [53]

to identify orthologous groups of proteins amongst our
four assemblies using BLAST all-v-all (self and recipro-
cal BLASTs simultaneously) algorithm and to further
quantify assembly completeness. OrthoFinder represents
a novel method of orthogroup detection, by performing
reciprocal best-hit BLASTs that are normalised for tran-
script length, removing transcript length bias in the
ortholog detection. OrthoFinder analysis was conducted
for all pair-wise comparisons, for all four species assem-
blies, as well as against the Atlantic salmon RefSeq pro-
teins (GCA_000233375.4) in order to identify putative
orthologs within the current datasets and to provide a
reference source of identified orthologs and their distri-
bution relative to the existing high-quality protein set
for Atlantic salmon. We used the outputs from Ortho-
Finder to determine the number of overlapping (shared
across species) transcripts across our four assemblies.
Utilising the sister taxa in the present study provides a val-
idation of the completeness of our de novo transcriptomes.
In addition to assessing completeness of the final assem-
blies, we also applied OrthoFinder to assess and control
completeness of our assemblies at each stage of the filter-
ing pipeline, by comparing orthogroup size distribution
within our salmon de novo assemblies relative to the
Atlantic salmon RefSeq protein set (GCA_000233375.4).
Third, we quantified the extent of overlap between our

four assemblies and the recently published Atlantic sal-
mon reference genome [12]. Transcripts from our four
assemblies were aligned to the Atlantic salmon reference
genome ICSASG_v2 (GenBank: GCA_000233375.4 [54])
with GMAP (2016–11-07) [55], additionally using the
‘–cross-species’ parameter for heterospecific mapping.
Fourth, we compared completeness and similarity of

the current assemblies for Arctic charr, brown trout
and European whitefish to previously published tran-
scriptomes for these three species. We compared our
Arctic charr assembly to the Magnanou et al. [34]
assembly of 34,690 transcripts (http://ngspipelines.tou
louse.inra.fr:9021/, accession: E-MTAB-3522), and our
brown trout and European whitefish assemblies to the
corresponding species from the PhyloFish database
[35] (75,338 and 74,701 transcripts respectively; http://
phylofish.sigenae.org/index.html). First, we assessed
how well full-length transcripts were represented in
our assemblies compared to the previous transcrip-
tomes. Full-length transcript reconstruction in the pre-
vious assemblies for each of the three species was
evaluated following the same protocol described above
for the four assemblies we present here. Separate
BLASTP searches were made against the Atlantic sal-
mon protein database for each species, and coverage
was analysed using the ‘analyze_blastPlus_topHit_cov-
erage.pl’ script. Second, we identified the transcript set
overlap of the current compared to previously pub-
lished conspecifics assemblies. To focus on protein
coding sequences, we used TransDecoder to identify
putative protein coding regions in the published as-
semblies [34, 35]. We then created BLAST databases
from the predicted protein sequences for each species
individually using NCBI-blast 2.2.30+ and performed
BLASTP searches (−max_target_seqs 1, −evalue 1e-5)
of our assemblies against those databases. Transcripts
were considered ‘shared’ between the current and pre-
vious assemblies where our transcripts had alignment
scores greater than 90% identity and 80% coverage.
Annotation and gene ontology analysis
To provide comprehensive annotation of the final tran-
script sets, we compared our de novo assemblies against
two annotation resources; the NBCI Atlantic salmon pro-
tein database and the SwissProt/UniProtKB [56] database.
As described above, all four assemblies were BLASTP
searched against the NCBI protein sequences for Atlantic
salmon. Additional annotation was provided by aligning
transcripts against the SwissProt database curated proteins
using BLASTP (−max_target_seqs 1, −evalue 1e-3).
SwissProt database alignments, and their corresponding
UniProtKB accessions, were used to assign gene ontology
(GO) functional annotation. All GO analyses were per-
formed using the PANTHER (protein annotation through
evolutionary relationship) classification tool [57].
We also performed a separate GO analysis on the sub-

sets of transcripts that were identified by OrthoFinder as
being ‘assembly-specific’ (i.e. only found in one species).
Again GO annotation of the ‘assembly-specific’ transcripts
was conducted with PANTHER, per the pipelines de-
scribed above. GO analyses were used to assess whether
the representation of functional categories differed be-
tween the subsets of ‘assembly-specific’ transcripts.
Identification of paralogous sequences
We used two approaches to identify paralogous se-
quences in our salmonid assemblies. First, using the
BUSCO tool, we determined the proportion of tran-
scripts within each assembly that were likely paralogs,
i.e. duplicated single-copy orthologs. Second, we used
OrthoFinder algorithms that normalise all-v-all BLASTS
for transcript length. This allows greater accuracy and
recall of orthogroups compared to previous methods
and therefore more precise detection of both ortholo-
gous and paralogous sequences [53].

http://ngspipelines.toulouse.inra.fr:9021/
http://ngspipelines.toulouse.inra.fr:9021/
http://phylofish.sigenae.org/index.html
http://phylofish.sigenae.org/index.html
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Results and discussion
de novo transcriptome data and assembly
In this study, we present new, high-quality, protein-coding
transcriptomes for four salmonid species: Atlantic salmon,
brown trout, Arctic charr and European whitefish. RNA-
seq libraries, generated from whole organism samples,
yielded between 18 and 32 million paired-end reads per
individual for eight individuals per species. Quality filter-
ing (quality score > 30) removed approximately 11% of the
raw reads. This resulted in high quality RNA-seq datasets,
which contained between 180 and 210 M paired-end reads
for each of the four species (Table 1).

Quality assessment and filtering of assemblies
The initial de novo assemblies generated from Trinity
ranged between 200,760 and 242,899 transcripts greater
than 297 bp in length for the four species (Table 2). As a
preliminary assessment of assembly quality, prior to
filtering, we mapped the RNA-seq input reads for each
species back to their transcriptome. In excess of 80%
read mapping is considered to be indicative of a good
quality assembly [45]. Respectively, for the Atlantic sal-
mon, brown trout, Arctic charr and European whitefish
assemblies we found that 89, 87, 90 and 91% of the reads
successfully aligned.

Removal of redundant transcripts
Redundant transcripts were identified using TransDeco-
der’s ORF predictions. After all predicted protein coding
sequences were extracted they were filtered to select the
‘single-best’ ORF for each transcript, which reduced the
number of assembled transcripts by about four-fold for
each species, resulting in sets of 60,856 transcripts for
Atlantic salmon, 60,943 for brown trout, 55,674 for
Arctic charr and 57,734 for European whitefish. We
clustered the remaining sequences with CD-Hit (100%
amino acid identity), which collapsed around 12% of the
transcripts. The resulting non-redundant assemblies
consisted of 53,547 transcripts for Atlantic salmon,
53,804 for brown trout, 50,166 for Arctic charr and
50,994 for European whitefish. These results are consist-
ent with the number of transcripts reported for previ-
ously published transcriptome assemblies for salmonids
Table 1 Summary of sequencing data used to generate the
de novo transcriptome assemblies for each species based on
paired-end (2 × 75 bp) Illumina sequencing

Feature Atlantic
salmon

Brown
trout

Arctic
charr

European
whitefish

Total number of paired-end
reads (~Million)

192 190 180 210

Average number of paired
reads per sample (~Million)

23 24 23 26
generated by independent research groups; lake white-
fish (77,797 transcripts) [32], coho salmon (43,228 tran-
scripts) [33], and Arctic charr (34,690 transcripts) [34]
transcriptomes. However, in those other published as-
semblies, no annotation was found for around half of
the transcripts. Therefore, we performed additional fil-
tering and analyses on the de novo assemblies to pro-
duce comprehensive reference gene sets for each of the
four species.
Reconstruction of full-length transcripts
A common problem in assembly of RNA-seq data is the
high proportion of transcripts that are highly fragmen-
ted, due primarily to difficulties in determining accurate
transcript boundaries [58, 59]. To produce assemblies
that were representative of comprehensive gene sets in
the current dataset, we examined the number of tran-
scripts that were reconstructed to full length (100%
alignment) or near full-length (> 70% alignment) by
alignment to NCBI protein sequences for Atlantic sal-
mon. For all four assemblies, 33–37% (between 11,099
and 13,546) of transcripts demonstrated complete
(100%) alignment over 100% of their length. Further-
more, ~60% of the query transcripts aligned significantly
(−evalue 1e-3) to the Atlantic salmon reference se-
quences over more than 70% of their length (Fig. 3). We
detected no evidence of mapping bias, as might have
been expected considering the varying level phylogenetic
divergence (same species, same genus, different genera,
different subfamilies) of our focal species from Atlantic
salmon. Rather, we found that the number of reads
mapped to the salmon reference was highly comparable
across all four species (Fig. 3). This full-length transcript
analysis was used to filter out and exclude fragmented
transcripts (< 30% coverage).
After this filtering, the final assemblies contained

36,505 protein-coding transcripts for Atlantic salmon,
35,736 for brown trout, 33,126 for Arctic charr and
33,697 for European whitefish, which can be accessed
through the NCBI transcriptome shotgun assembly
database (TSA, https://www.ncbi.nlm.nih.gov/genbank/
tsa/) (Additional file 1: Table S1). Summary statistics
for each species assembly are shown in Table 2. N50
statistics were consistently high across all four assem-
blies (between 2325 and 2464). These results are com-
parable to, and in most cases outperform, those
obtained for previously published de novo transcrip-
tomes for salmonids [31–35]. Furthermore, the number
of protein-coding sequences obtained in the final as-
semblies is consistent with the 37,206 annotated
protein-coding genes that were estimated based on the
recently published reference genome for Atlantic sal-
mon [12].

https://www.ncbi.nlm.nih.gov/genbank/tsa/
https://www.ncbi.nlm.nih.gov/genbank/tsa/


Table 2 Assembly statistics for the Atlantic salmon, brown trout, Arctic charr and European whitefish de novo transcriptome assemblies

Feature Atlantic salmon Brown trout Arctic charr European whitefish

Number of base pairs in cleaned reads 64,909,254,125 67,282,460,986 65,841,176,651 73,342,359,278

Number of paired-end reads 191,977,874 190,239,319 180,232,708 209,578,198

Number of base pairs in initial assembly 182,476,550 179,378,175 156,753,048 162,053,186

Number of transcripts in initial assembly 235,515 242,899 200,760 209,920

Number of base pairs in final assembly 73,403,213 69,587,826 64,848,138 63,007,687

Number of transcripts in final assembly 36,505 35,736 33,126 33,697

Average transcript length (bp) 2011 1947 1957 1902

Minimum transcript length (bp) 297 297 297 298

Maximum transcript length (bp) 17,114 15,967 15,742 15,887

N50 2464 2393 2411 2325

N90 1115 1080 1087 1062
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Assembly completeness and validation
While sized based metrics can be used to assess assem-
bly continuity, they cannot be used to determine
assembly completeness. We employed three robust,
reference-based methods to evaluate and compare the
completeness of the gene set of our four transcriptomes.

BUSCO analysis
First, protein gene set completeness was assessed using
the BUSCO pipeline, which revealed that the majority of
the Actinopterygian core genes had been successfully re-
covered in all four assemblies. Specifically, of the 4584
single-copy orthologs searched, we recovered 76% to
Fig. 3 Cumulative number of genes with alignment to the NCBI protein da
Atlantic salmon (yellow), brown trout (green), Arctic charr (blue) and Europ
79% completely and 10 to 11% partially (Table 3). Only
between 10 and 13% of the 4584 single-copy orthologs
were classified as missing from our assemblies, indicat-
ing good coverage and high quality of the assembly of
the protein-coding transcriptomes for these species. We
found that BUSCO recovery in the current assemblies
was three times greater than that identified for the Phy-
loFish assembly of the corresponding species. For both
the brown trout and European whitefish assemblies pre-
sented here, we recovered 78 and 76% of the BUSCOs
completely, whereas only 26% of BUSCOs were com-
pletely recovered in either of the previous trout and
whitefish assemblies (Table 3). As expected, given the
tabase for Atlantic salmon (GCF_000233375.1) at a given coverage:
ean whitefish (red)



Table 3 Summary of the complete, duplicated, fragmented and missing orthologs inferred from Benchmarking Universal
Single-Copy Orthologs (BUSCO) search against the 4584 single-copy orthologs for Actinopterygii

BUSCO
statistic

Atlantic
salmon

Brown
trout

Arctic
charr

European
whitefish

PhyloFish
Brown trout

PhyloFish
European whitefish

NCBI Atlantic salmon
RefSeq Proteins

Complete BUSCOs 3461 (79%) 3596 (78%) 3589 (78%) 3512 (76%) 1181 (26%) 1189 (26%) 4476 (97%)

Complete - single-copy BUSCOs 1900 (42%) 1897 (41%) 1988 (44%) 1938 (42%) 974 (21%) 995 (22%) 1398 (30%)

Complete – duplicated BUSCOs 1741 (37%) 1699 (37%) 1601 (34%) 1574 (34%) 207 (5%) 194 (4%) 3078 (67%)

Fragmented BUSCOs 439 (10%) 424 (10%) 431 (10%) 452 (11%) 155 (3%) 136 (3%) 80 (1.7%)

Missing BUSCOs 504 (10%) 564 (12%) 564 (12%) 620 (13%) 3248 (71%) 3259 (71%) 28 (0.6%)
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high-quality of the dataset, recovery for both ‘complete’
and ‘complete-duplicated’ BUSCOs was considerably
higher for Atlantic salmon reference genome proteins,
compared to either the current or previous assemblies,
with 97% of BUSCOs completely recovered, of which
67% were duplicated (Table 3).
However, we found that BUSCO recovery reported for

the assemblies generated here was comparable to recent
transcriptome studies using de novo methods, where re-
covery ranged between 68 and 95% [44, 60, 61]. BUSCO
recovery tends to be highest when full organism and/or
multiple developmental stages (e.g. 95% in ref. [44], 79 to
95% in ref. [60]) were used to generate the assemblies, as
in the current study (Table 3), compared to those assem-
bled from a select number of tissues (e.g. 68% in ref. [61]).
Future combination of the current assemblies with RNA-
seq data generated from different developmental stages
could offer a promising means of producing transcrip-
tomes with even greater levels of completion for these
species. As far as we are aware, our study is the first to
generate assemblies for these four species from entire
specimens of juvenile fish and will therefore complement
the published resources for these species, which have been
generated from tissues of more mature fish [33–35].

OrthoFinder analysis
We used the program OrthoFinder as a second ap-
proach to evaluate assembly completeness based on se-
quence similarity. Orthogroup detection demonstrated
considerable overlap in transcripts sequences across all
four assemblies. Over 40% (14,882) of the transcripts
that were identified as putative orthologs were shared
across all four species. We also found that approximately
50% of the inferred orthogroups were represented by at
least three species, and that over 84% of the orthologous
transcripts identified in our four assemblies were shared
by at least one of the other species’ assemblies (Fig. 4).
As a result, a relatively low proportion of transcripts
were identified as being unique to a given assembly, i.e.
‘assembly-specific’. We found that 3521 (10%) in
Atlantic salmon, 3742 (10%) in brown trout, 4484 (14%)
in Arctic charr and 4612 (14%) in European whitefish of
all transcripts were found only in those species (Fig. 4).
Additionally, we found that ~92% of the total transcripts
in each of four assemblies were orthologous with at least
one transcript from the Atlantic salmon RefSeq protein
dataset (Additional file 2: Table S2). The marked level of
sequence overlap observed between the four current
transcriptomes, as well as between the published set of
Atlantic salmon RefSeq proteins, further validates the
completeness and quality of the assemblies presented
here. This statement is further supported by the add-
itional OrthoFinder analyses we performed comparing
the orthogroup distribution size of the current salmon
assembly (at all four filtering steps: unfiltered, after
TransDecoder single-best ORF prediction, after CD-Hit
clustering at 100% identity and after Trinity full-length
transcript analysis (e.g. final version)) against the NCBI
Atlantic salmon RefSeq proteins. Given the high quality
of the recently published protein set for Atlantic salmon,
we were able to empirically test whether we had success-
fully re-constructed a comprehensive set of orthologous
transcripts in our assemblies. The results demonstrated
good consistency, both between the present and existing
protein sets for Atlantic salmon, as well as between sub-
sequent filtering steps of the current salmon assembly
(Additional file 3: Figure S2; Additional file 4: Table S3).
Despite the relatively strict filtering we applied to the
current assemblies, we found that only between 0.04 to
11% of the total orthogroups were lost during filtering.
As such, these results further vindicate the quality of the
assemblies we present here.
In addition to providing inference of assembly com-

pleteness, these results represent the first transcriptome-
wide comparison of four ecologically and economically
important salmonid species. Interestingly, we found no
marked difference in the number of overlapping se-
quences between focal species with regards to their
phylogenetic distance/proximity to each other (Figs. 1
and 4). The high number of putative orthologs observed
in the current study is consistent with previous research
investigating the molecular basis of phenotypic diversity
in species rich cichlid fish complexes [62–64]. For ex-
ample, transcriptomic diversity between ecologically di-
vergent cichlid species, Amphilophus astorquii and
Amphilophus zaliosus, using RNA-seq, found that over



Fig. 4 Venn diagram showing the number of overlapping orthologous protein groups between the four salmonid transcriptome assemblies.
Orthologous proteins were identified with OrthoFinder

Table 4 Alignment statistics of the new de novo transcriptomes
mapping to the Atlantic salmon reference genome ICSASG_v2

Assembly Number of transcripts
in assembly

Total number of
transcripts mapped

% Mapped
transcripts

Atlantic
salmon

36,505 36,305 99.5

Brown trout 35,736 35,186 98.5

Arctic charr 33,126 32,745 98.9

European
whitefish

33,697 33,262 98.7
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50% of the 24,174 and 21,382 ESTs (respectively) were
orthologous between the species [64]. These findings
suggested limited or no genetic diversity at protein-
coding regions among phenotypically diverse cichlid spe-
cies. Here we present protein-coding regions across mul-
tiple species of salmonids and therefore can support new
research into the molecular basis of phenotypic diversity
in this group of highly diverse fishes.

Comparison against existing salmonid references
The final approach to assess assembly completeness was
to assess alignment to relevant, independent references
[50]. To do this, transcript sets for each of our four species
were aligned to publically available resources for salmo-
nids: the high-quality reference genome for Atlantic sal-
mon and the recently published transcriptomes for Arctic
charr [34], brown trout [35] and European whitefish [35].

Atlantic salmon reference genome All four assemblies
mapped to the salmon genome with high success of 98.5
to 99.5% (Table 4). There was no apparent relationship
between mapping success and phylogenetic distance for
brown trout (same genus as Atlantic salmon), Arctic
charr (same subfamily but different genus from Atlantic
salmon), or European whitefish (different subfamily from
Atlantic salmon) (Table 4). However, our Atlantic sal-
mon transcriptome predictably mapped with the highest
success (99.5%) to the conspecific reference genome.
This is consistent with the recent Atlantic salmon refer-
ence genome publication, which found that 98% of the
NCBI mRNA sequences for Atlantic salmon aligned to
the genome [12]. The comparable results demonstrated
here indicated that we were able to successfully recover
a set of high-confidence protein-coding genes in all four
species’ transcriptomes.

Previous transcriptome comparisons First we assessed
how successfully transcripts from the new and previous
assemblies had been reconstructed to full (100% cover-
age) or near full (> 70% coverage) length compared to
the NCBI protein database for Atlantic salmon. Of the
seven assemblies, we found that the number of tran-
scripts reconstructed to full-length was highest in the
PhyloFish brown trout [35] assembly (19,404 tran-
scripts), followed by the four current assemblies (11,099
to 13,546 transcripts), then the PhyloFish European
whitefish [35] assembly (5073 transcripts), with the low-
est number of full-length transcripts recovered in the
Magnanou et al. Arctic charr [34] assembly (4411 tran-
scripts) (Table 5, Additional file 5: Figure S1). However,
with regard to the proportion of transcripts from the
complete transcript sets for each assembly, we found that
all four of our de novo assemblies had the greatest propor-
tion of full and near full-length transcripts. Specifically, we
achieved full-length (100%) reconstruction for 33 to 37%



Table 5 Comparison of full-length transcript reconstruction between the four current assemblies and three previously published
transcriptomes for Arctic charr [34], brown trout [35] and European whitefish [35]. The table shows the number (percent) of
transcripts from each assembly that aligned to the NCBI protein database for Atlantic salmon (GCF_000233375.1)

% Coverage against NCBI
Atl. Salmon RefSeq Proteins

Atlantic
salmon

Brown
trout

Arctic
charr

European
whitefish

Magnanou et al.
Arctic charr

PhyloFish
Brown trout

PhyloFish European
whitefish

100 13,546 (37%) 12,688 (36%) 12,127 (37%) 11,099 (33%) 4411 (12%) 19,624 (26%) 5073 (7%)

90–99 3072 (8%) 3232 (9%) 3220 (10%) 3659 (11%) 962 (3%) 4574 (6%) 1307 (2%)

80–89 2279 (6%) 2336 (7%) 2102 (6%) 2326 (7%) 777 (2%) 2306 (3%) 582 (1%)

70–79 2472 (7%) 2439 (7%) 2207 (7%) 2306 (7%) 933 (3%) 2185 (3%) 496 (1%)

60–69 3026 (8%) 2862 (8%) 2587 (8%) 2664 (8%) 1142 (3%) 2450 (3%) 508 (1%)

50–59 3458 (9%) 3461 (10%) 2966 (9%) 3172 (9%) 1514 (4%) 2883 (4%) 586 (1%)

40–49 3936 (10%) 3944 (11%) 3565 (11%) 3874 (11%) 2097 (6%) 3644 (5%) 738 (1%)

30–39 4716 (10%) 4774 (13%) 4352 (13%) 4597 (14%) 2587 (7%) 4348 (6%) 900 (1%)

20–29 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3211 (9%) 4868 (6%) 1017 (1%)

10–19 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3229 (9%) 4752 (6%) 908 (1%)

0–9 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1709 (5%) 2932 (4%) 567 (1%)

No hit 0 (0%) 0 (0%) 0 (0%) 0 (0%) 12,118 (35%) 20,782 (28%) 62,019 (83%)
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of transcripts and near to full-length recovery (> 70%) for
58 to 60% for the four assemblies generated here (Table 5).
In contrast, we found that all three previous assemblies
demonstrated a lower proportion recovery of full-length
transcripts, with 12%, 26% and 7% recovery for the Arctic
charr [34], brown trout [35] and European whitefish [35]
assemblies, respectively. Brown trout had the highest ab-
solute number of full transcripts (Table 5). Our analysis
suggests that there are a higher proportion of fragmented
transcripts in both the previous charr and trout assem-
blies, as well as higher levels of false duplicates and/or
mis-assembled transcripts in all three previous assemblies.
This further supports the quality of the new assemblies
presented here and the relevance of their contribution to
the currently available resources for salmonids.
Secondly, we used BLAST tools to compare sequence

similarity between the current and previous assemblies
for Arctic charr (current vs. [34]), brown trout (current
vs. [35]) and European whitefish (current vs. [35]). Unex-
pectedly, we observed little overlap in the assembled
transcripts between the current and previous charr as-
semblies (Fig. 5a). A total of 8038 sequences were identi-
fied as overlapping between the charr transcriptomes,
which is representative of around 24% of the current as-
sembly and 23% of the Magnanou et al. [34] assembly.
For brown trout and European whitefish, the level of
sequence similarity between the current and previous
assemblies was considerably higher (Fig. 5b, c). In brown
trout, 30,945 transcripts overlapped, representative of
~86% of the total transcripts from the current assembly
and ~41% of the total PhyloFish transcripts. Similarly,
for European whitefish we found sequence overlap for
28,499 transcripts, representative of ~85% of the total
transcripts from the current assembly and ~38% of the
PhyloFish transcripts.
Here we made no direct assessment of the cause of

the differences between the charr assemblies and add-
itionally the high proportion of transcripts that were
unique to all three previous assemblies, however we
offer several possible explanations. First and foremost,
the data for the four current and PhyloFish assemblies
were generated by Illumina sequencing platforms,
whereas Magnanou et al. [34] used a 454-sequencing
platform, which has variable read lengths and higher
error rates. Second, different de novo assembly methods
were used to build the transcriptomes. In both the
present and PhyloFish [35] studies a de Bruijn graph al-
gorithm approach was employed (using Trinity and
Oases/Velvet assemblers respectively) while Magnanou
et al.’s [34] study assembled with MIRA, which employs
overlap graph methods [65]. Third, here we applied sev-
eral steps of strict filtering to our assemblies so as to re-
tain only protein-coding sequences, to help reduce noise
and improve efficiency of downstream applications,
whereas all three previous assemblies [34, 35] contain
both coding and non-coding transcripts. Fourth, RNA-
seq methods represent the transcriptome state at the
point in time at which tissues are collected for RNA ex-
traction. Gene activation and expression fluctuates
throughout an organism’s life cycle, therefore the vari-
ation between the current and previous assemblies could
be explained by the differences in the tissues used to
generate them. In the current study RNA was extracted
from whole organism samples of juvenile fish
(~5 months), whereas both Magnanou et al. [34] and
Pasquier et al. [35] used multiple tissues from mature



a

b

c

Fig. 5 Venn diagrams showing the number of overlapping sequences
between the current and previously published transcriptome
assemblies for a Arctic charr (current vs. ref. [34]), b brown trout
(current vs. ref. [35]) and c European whitefish (current vs. ref. [35])

Table 6 Number (and %) of transcripts with significant BLAST
alignments to the databases listed

Database Atlantic
salmon

Brown
trout

Arctic
charr

European
whitefish

NCBI Atlantic
salmon proteins

36,505
(100%)

35,736
(100%)

33,126
(100%)

33,697
(100%)

SwissProt 34,843
(95%)

34,027
(95%)

31,607
(95%)

32,193
(96%)
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adults, and additionally, Pasquier et al. [35] included em-
bryonic tissue in their assemblies. Therefore, the tran-
scripts from the current assemblies that did not overlap
with the previous assemblies (25,088 transcripts for
charr, 4791 for trout and 5198 for whitefish) can be used
to complement and build upon the existing transcrip-
tomic references for these species. Further, we per-
formed several analyses to ensure high quality and
completeness of our final transcript sets. Therefore, the
subsets of transcripts found only in the current assem-
blies, compared to the three previous assemblies, offer
an important and robust contribution to the currently
available resources for these species, as well as other
salmonids.
Annotation and GO analysis
To provide comprehensive annotation of these four new
transcriptomes, we conducted sequence homology
searches against two different annotation resources.
Using BLAST tools, we first compared transcripts
against the NCBI Atlantic salmon protein database, as
this represents the most established set of reference pro-
teins that are publically available for salmonids at
present. For this reason, successful alignment to the sal-
mon protein database was also used to determine which
transcripts were retained or discarded from our assem-
blies during optimisation (as detailed in Methods). Given
that successful alignment to the NCBI Atlantic salmon
protein database was used as part of our filtering pipe-
line, 100% of the final set of transcripts for all four as-
semblies are annotated to the salmon database (Table 6).
Transcripts were further characterised by performing
BLASTP searches against the UniProtKB/SwissProt cu-
rated proteins. Significant alignment (e-value 1e-3) for
95 to 96% of transcripts was found across our four
assemblies (Table 6). The consistently complete or near
complete annotation obtained across both protein data-
bases gives us high confidence in the accuracy of the
assembled transcripts.
The annotation statistics obtained for the four assem-

blies we present here are higher than those reported for
previously published salmonid transcriptomes. Respect-
ively, in the published lake whitefish [32], coho salmon
[33] and Arctic charr [34] transcriptomes, 54, 40 and
48% of the transcripts were unannotated. Higher annota-
tion success was obtained for the six salmonid species
included in the PhyloFish database, with unannotated
transcripts comprising just 9 to 15% of the assemblies
[35]. Specifically, with regards to annotation against the
well curated SwissProt database, we yielded significantly
greater annotation (95 to 96%) compared to those ob-
tained for the previous assemblies of our focal species; 3,
5.5 and 5.5% for Arctic charr [34], Brown trout [35] and
European whitefish [35], respectively. The observed dif-
ference in annotation success between the current and
previous assemblies is most likely due to the fact that,
unlike previous studies, here we specifically filtered the
assemblies to retain only protein-coding transcripts, with
the aim of generating robust molecular resources to
improve efficiency and accuracy of downstream genetic
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analyses. SwissProt/UniProtKB accessions are one of the
most widely recognised by GO analysis softwares, there-
fore the high level of annotation against the SwissProt
database makes our four assemblies very useful for fu-
ture comparative analyses and downstream applications.
Transcripts were functionally annotated based on their

assigned UniProtKB/SwissProt gene symbols. We identi-
fied a wide range of GO terms in each assembly, indicat-
ing that molecular functions, biological processes and
cellular components were well represented (Fig. 6 and
Additional file 6: Table S4). High uniformity in GO pro-
files was observed across the four transcriptomes. These
findings agree with previous research that reported high
consistency of GO terms across multiple species, as well
as across multiple phyla [62, 64, 66–68]. Consistency
across the assemblies further indicates accuracy of the
assemblies and the assigned annotations.
We performed a separate GO analysis on the ‘assem-

bly-specific’ transcripts and observed no difference in
the number and assortment of the gene ontology terms
compared to the complete dataset (Fig. 6, Additional
file 7: Figure S3). Further, the distribution of GOs for ‘as-
sembly-specific’ transcript subsets was comparable to
those obtained for the previous coho salmon [33] and
Arctic charr [34] transcriptomes, and therefore further
justifies their inclusion within the final assemblies.
Direct comparisons between the GOs assigned to the

current transcriptomes and previously published tran-
scriptomic data for salmonids is somewhat limited, given
that the majority of transcriptomic research to date has
focussed on subsets of GOs, related to specific biological
and/or ecological questions [69–75]. Representation of
GOs was consistent between the current and previous
coho salmon [33] and Arctic charr [34] assemblies for
all three categories (molecular function, biological pro-
cesses and cellular component). The highest proportions
of mapped GO terms for the current salmonid transcrip-
tomes were related to binding (~37%) and catalytic ac-
tivity (~39%) under “Molecular Function”, cellular
(~29%) and metabolic (24%) processes under “Biological
Process”, and cell part (~46%) and organelle (~24%)
under “Cellular Component” (Fig. 6 and Additional file 6:
Table S4). The consistency between the distribution of
GOs in the new and previous transcriptomes suggests
that we were able to successfully capture representative
GO profiles for the four salmonids.

Identification of paralogous sequences
Ancestral genome duplication increases the complexity
of genetic studies in salmonids. Consequently, the need
to distinguish between paralogous sequences and allelic
variation presents a major challenge in generating
comprehensive molecular resources for these species
[10, 12, 33, 76]. Here we applied two methods to
distinguish between orthologous and paralogous se-
quences in our transcriptome assemblies and by com-
bining the results generate a robust approximation of
the number of paralogous sequences. First, using the
BUSCO tool, we found that 34 to 37% of the single-
copy orthologs detected in our assemblies were dupli-
cated (Table 3). Second, using OrthoFinder algorithms,
we were able to estimate the total number of paralo-
gous sequences present in our transcriptomic datasets
by calculating the number of self-BLAST hits identified
between transcripts within a single species (Table 7). Of
the total number of transcripts in each of the species’
assemblies, we identified 37% in Atlantic salmon, 36%
in brown trout, 34% in Arctic charr and 34% in
European whitefish as putative paralogous transcripts.
The high consistency in the proportion of paralogs de-
tected by both methods applied here, BUSCO and
OrthoFinder, increased our confidence that we were
able to successfully identify ‘true’ paralogous sequences
within our final assemblies. Further, to the best of our
knowledge, the results presented here represent the
most comprehensive identification of true paralogs
within de novo assembled trancriptomes for salmonids,
demonstrating a considerably higher capture rate than
reported previously for the coho salmon transcriptome,
where 29% of the assembled transcripts were identified
as duplicates [33]. However it is important to note that
although we have high confidence in our identified
paralogs, they are not representative of the complete
set of paralogs present across the genome.
Publication of the high-quality reference genome for

Atlantic salmon has provided invaluable insight into the
rediploidization process and the evolutionary fate of du-
plicated genes within the salmonid genome [12]. Lien
et al. [12] found that 55% of the duplicated genes created
during the salmonid-specific WGD event have been
retained as two functional copies in the genome. This
corresponds with a previous study investigating rediploi-
dization in the rainbow trout genome, in which it was
reported that 48% of duplicated genes had been retained
[10]. The increased complexity of the salmonid genomes
makes it difficult to distinguish between true paralogs
and duplicated sequences that result from sequencing
error and mis-assembly. The reduced proportion of
duplicate genes (34 to 37%) identified in the current
study is likely a result of the current limitations for de
novo assembly algorithms. Specifically, de novo assem-
blers, such as Trinity, are not able to distinguish between
similar paralogs, therefore reconstruction of the
complete set of paralogs for species with such highly du-
plicated genomes remains a major challenge. Discerning
between true and false ‘duplicate’ sequences is biologic-
ally and analytically complex, and there is currently no
standard pipeline for identifying paralogs within de novo



Fig. 6 Proportions of gene ontology annotations for transcripts of Atlantic salmon (yellow), brown trout (green), Arctic charr (blue) and European
whitefish (red): a molecular function, b biological process and c cellular component
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assembled transcriptomes. Therefore, our aim in the
present study was to balance the trade-off between the
removal of redundant duplicate sequences and retaining
as best as possible a representative set of ‘true’ paralogs.
The incomplete set of paralogs captured in de novo as-
semblies presented here (34 to 37%, compared to over



Table 7 Number and percent of putative paralogous transcripts
present in each species’ assembly, as identified by OrthoFinder
algorithms

Assembly Number of
transcripts
in assembly

Number of putative
paralogous
transcripts

% putative
paralogous
transcripts

Atlantic salmon 36,505 13,474 37

Brown trout 35,736 12,746 36

Arctic charr 33,126 11,381 34

European whitefish 33,697 11,518 34
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48% in genome inferred data) further highlights the need
to continually develop molecular resources for salmo-
nids, and additionally illustrates how our transcriptomes
can be used to complement the existing the resources
for these species.
Conclusions
This study presents the release of new protein-coding
transcriptomes for four ecologically and economically
important salmonids; Atlantic salmon, brown trout, Arc-
tic charr and European whitefish. As such, this research
represents an important contribution to the existing
genomic resources for salmonid taxa. Furthermore, we
provide a comprehensive overview and characterization
of the generated transcriptomes, as well as presenting a
comparison across these four species. The marked level
of continuity and completeness of the transcriptomes is
highly supported by several methods of quantitative and
qualitative assessment. The thorough optimisation per-
formed will facilitate more efficient and accurate future
analyses and downstream applications on gene expres-
sion and sequence evolution. Therefore, the current
transcriptomes provide robust resources for future gen-
omic investigation in these species, and additionally pro-
vide valuable tools, which can be used to inform
comparisons on other salmonid species of evolutionary,
ecological and economic interest.
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