
Research Article
HRCM: An Efficient Hybrid Referential Compression Method for
Genomic Big Data

HaichangYao ,1,2YimuJi ,1,3,4KuiLi,1 ShangdongLiu,1 JingHe ,5 andRuchuanWang1

1School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2School of Computer and Software, Nanjing Institute of Industry Technology, Nanjing 210023, China
3Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210023, China
4Institute of High Performance Computing and Big Data, Nanjing University of Posts and Telecommunications,
Nanjing 210023, China
5School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Australia

Correspondence should be addressed to Yimu Ji; jiym@njupt.edu.cn

Received 16 June 2019; Revised 14 September 2019; Accepted 22 October 2019; Published 16 November 2019

Academic Editor: Ernesto Picardi

Copyright © 2019 Haichang Yao et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the maturity of genome sequencing technology, huge amounts of sequence reads as well as assembled genomes are
generating. With the explosive growth of genomic data, the storage and transmission of genomic data are facing enormous
challenges. FASTA, as one of the main storage formats for genome sequences, is widely used in the Gene Bank because it eases
sequence analysis and gene research and is easy to be read. Many compression methods for FASTA genome sequences have been
proposed, but they still have room for improvement. For example, the compression ratio and speed are not so high and robust
enough, and memory consumption is not ideal, etc. *erefore, it is of great significance to improve the efficiency, robustness, and
practicability of genomic data compression to reduce the storage and transmission cost of genomic data further and promote the
research and development of genomic technology. In this manuscript, a hybrid referential compression method (HRCM) for
FASTA genome sequences is proposed. HRCM is a lossless compression method able to compress single sequence as well as large
collections of sequences. It is implemented through three stages: sequence information extraction, sequence information
matching, and sequence information encoding. A large number of experiments fully evaluated the performance of HRCM.
Experimental verification shows that HRCM is superior to the best-known methods in genome batch compression. Moreover,
HRCM memory consumption is relatively low and can be deployed on standard PCs.

1. Introduction

Since the launch of the International Human Genome
Project in 1990, the emergence of high-throughput se-
quencing technologies, such as single-molecule sequencing
technology [1] and next-generation sequencing (NGS)
technology [2], has led to the reduction in the cost of genome
sequencing and the improvement in the speed of sequencing
[3]. Many countries and organizations have launched ge-
nomic engineering projects [4–6]. As a variety of sequencing
projects unfold, the amount of genomic data generated is
exploding, and the growth rate will be faster in the future. By
2025, the genomic data alone will be increased at a rate of 1

zettabase/year (1 Z� 1021) [7]. Genomic data is growing
faster than storage and transmission bandwidth, putting a lot
of pressure on storage and data transmission [8–10]. How to
store genomic data efficiently and reduce the pressure of
storage and data migration is of great significance in ge-
nomic research and application [11].

At present, the genomic data formats mainly include
FASTQ, SAM/BAM, VCF, and FASTA, wherein FASTA is a
text-based format for representing nucleotide or amino acid
sequences [12]. In this format, each base is encoded by a
single character and sequence names and annotations are
allowed to be added before the sequence. Genome sequences
stored in the FASTA format are convenient for researchers

mailto:jiym@njupt.edu.cn
https://orcid.org/0000-0002-5751-960X
https://orcid.org/0000-0001-7019-3942
https://orcid.org/0000-0001-6488-1052
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


to perform gene studies and sequence analysis. Many
analysis methods for FASTA genomic data have been
proposed, such as sequence alignment [13], sequence
comparison [14], sequence factorization [15], and collection
of k-mer statistics [16, 17]. So FASTA format is widely used
in genomic data storage. At present, there are a large number
of FASTA format genomic data; for example, 1000 Genomes
Project [5] contains 6.7 TB FASTA genomic data, 1001
Project [4] contains 100GB FASTA genomic data [18], and
more FASTA genomic data will be generated in the future.
*erefore, the compression of FASTA format genomic data
is very important in genome compression research. In this
manuscript, an efficient hybrid referential compression
method (HRCM) for FASTA genomic data is proposed.
HRCM is a lossless compression method.*ere exist areas in
bioinformatics where lossy compression is required, e.g., for
compressing FASTQ quality scores. However, for a FASTA
genome file, any loss of information can bring unpredictable
consequences to genome analysts. HRCM firstly extracts the
information of reference sequence and to-be-compressed
sequence. *en, based on the reference sequence ACGT
information, the k-mer [19] index is constructed. Based on
the index, the longest match searching of the to-be-com-
pressed sequence is made. When more than one sequences
are to be compressed, the matched result of the first-level
matching will be compressed for the second time. At the
same time, the other information of the reference sequence
and the to-be-compressed sequence such as lowercase
character information matches is searched. Finally, the
matched result is encoded and stored.

Compared with the state-of-the-art referential genome
compressors, HRCM is more innovative in the following. (i)
When more than one sequences are to be compressed,
HRCM employs the second-level matching based on the
matched results of the first-level matching. Although
FRESCO [20] and GDC2 [18] also support the second-level
matching, firstly FRESCO is lossy compression, and it is only
compatible for {A, C, G, T, N} symbols, and secondly
FRESCO needs to select additional sequences as reference
sequences for the second-level matching. Moreover, these
additional sequences cannot be second-level compressed.
HRCM does not need specific additional reference se-
quences for the second-level matching, which is achieved in
the to-be-compressed sequences. GDC2 processes all types
of characters at the stage of indexes building and matching,
which makes GDC2 very complicated and inefficient. In our
experiments, GDC2 could not complete the second-level
compression of seven human genomes in 24 hours. (ii) In
addition to ACGT sequence stream, HRCM especially
compresses the lowercase character information through
lowercase character information extraction and matching.
Cases of characters represent the repetitive sequence in some
sequencing teams and should not be lost in compression.
HRCM simultaneously extracts the lowercase character
information of the reference sequence and to-be-com-
pressed sequences and conducts matching and assessment of
their similarity. *e information is encoded and stored
according to the matched and assessed result. *is method
maximizes the similarity between the reference sequence

and the to-be-compressed sequence. To the best of our
knowledge, this lowercase character information processing
method is explicitly described and employed for the first
time in referential genome compression. (iii) *e hash table
creation of HRCM is memory saved. *e hash table creation
based on k-mer calculates the hash values step by step and
avoids converting the whole reference and to-be-com-
pressed sequences into integer sequences, which saves
memory consumption. *e experiments show the excellent
compression and decompression performance of HRCM.

2. Related Works

At present, genome sequence files are mostly stored and
transmitted by compression, but it is still most common to
adopt the general-purpose compression algorithms that are
used for the compression of other files, such as PPMD al-
gorithm [21], DEFLATE algorithm [22], and Burrows-
Wheeler-Transform (BWT) algorithm [23]. *e PPMD al-
gorithm uses the input data stream to predict subsequent
symbols to reduce the entropy of the output data. Invented
by Phil Katz in 1993, DEFLATE is the cornerstone of most
modern compression methods. It combines only two al-
gorithms: preprocessing with LZ77 or LZSS and then
encoding with Huffman [24] to get a good compression
result quickly. BWTinvented in 1994 maximizes the number
of consecutive occurrences of the same character by pro-
cessing a piece of input data reversibly. BWTalgorithm itself
does not perform any compression; it just simply transforms
data which can be more effectively encoded by Run-Length
Encoder [25] and other compression algorithms. All of these
algorithms are supported by mature tools, such as 7-zip
(http://www.7-zip.org) and gzip (http://www.gnu.org/
software/gzip/), but none of them is able to achieve a
high compression ratio because they do not take the ad-
vantage of the characteristics of genome sequences. Special
purpose genome compression algorithms proposed in recent
years have improved this problem. Special purpose genome
compression algorithms, roughly speaking, can be divided
into two categories: reference-free compression algorithms
and referential compression algorithms.

Reference-free compression algorithms can be divided
into three categories further: naive bit encoding algorithms,
dictionary-based compression algorithms, and statistical-
based compression algorithms. Naive bit encoding algo-
rithms are to express the genome characters with the fixed
bit encoding, so that more than one genome character can be
stored in one byte [26]. *ey achieve a limited compression
ratio but fast compression speed. Dictionary-based com-
pression algorithms are to find repetitive segments in ge-
nome sequences, catalog repetitive segments into
dictionaries, and then replace them with dictionary indexes.
Lempel-Ziv-based compression algorithm [27], such as
LZ77 or LZ78, is a typical example of dictionary-based
compression algorithms. It makes use of the repeated se-
quence in the genome sequence and effectively increases the
compression ratio. Statistical-based compression algorithms
generate a probabilistic statistical model according to the
input data stream, predict the probability of the next

2 BioMed Research International

http://www.7-zip.org
http://www.gnu.org/%20software/gzip/
http://www.gnu.org/%20software/gzip/


character, and use different encoding strategies according to
the probability. If the probabilistic statistical model always
predicts the next character with a high probability, a good
compression ratio can be achieved. *e most typical of these
algorithms is the XM algorithm [28]. In XM algorithm, the
probability distribution of the next character in the genome
sequence is estimated by a series of probabilistic estimation
models called “expert,” which include Markov expert,
context Markov expert, copy expert, and reverse expert.
*ese “expert” predictions synthesize the probability dis-
tribution of the next character, followed by the combination
with the arithmetic encoder [29]. XM can achieve a high
compression ratio, but its compression speed is not ideal. It
takes several hours to compress one chromosome of a
human genome [30]. In 2012, Mohammed et al. published
DELIMINATE method [24], which divides the to-be-
compressed sequence file to header data and sequence data
and then handles them separately. And lastly, all files
generated in the previous processes are further compressed
by 7-zip. DELIMINATE achieves better compression ratio
than general-purpose compression methods although it uses
almost the same compression time. In 2011, 2013, 2016, and
2019, respectively, Pinho et al. published DNAEnc3 [31],
MFCompress [32], GeCo [33], and GeCo2 [34] based on
Markov models. DNAEnc3 partitions sequence to non-
overlapping blocks of fixed size, which are then encoded by
the best one of the Markov models of different orders.
MFCompress tool divides the to-be-compressed sequence
file into different streams in the preprocessing stage and then
adopts multiple competing finite-context models and
arithmetic coding to encode different streams according to
their different characteristics. GeCo presents an extended
finite-context model and shows promising compression
results. GeCo2, the improved version of the GeCo tool,
enhances the mixture of models, improves the cache-hash
approach, and develops the ability to run a context model
with inverted repeats only. *e performance of these four
algorithms is improved in turn. *e reference-free com-
pression algorithms can have a compression ratio of 2 to 8
using the internal similarity of the genome sequence, gen-
erally higher than that of the general-purpose compression
algorithms [35]. But their compression ratio is still limited
since they do not take advantage of the similarity between
genomes. In pursuit of higher compression ratio, referential
genome compression algorithms caught a lot of attention by
researchers in recent years.

In 2010, Kuruppu et al. proposed the RLZ [36] algorithm,
which converts the to-be-compressed sequence into tuple
representation based on the reference sequence. RLZ pro-
vides an efficient compression results and supports random
access to arbitrary fields of compressed files. RLZ-opt [37],
an optimized version of RLZ, improves the compression
ratio and decompression speed by improving the genome
sequence analysis method. GDC [38] can be seen as an
improvement on RLZ-opt. It provides a fast and reliable
reference selection algorithm and can choose to compress
files based on multiple reference genomes. As a further
improvement on GDC, GDC2 [18] compresses large col-
lections of genomes through two phases. For the first phase,

the hash table is created according to the reference sequence,
and then matching segments are found from the to-be-
compressed sequence for compression. For the second
phase, the compressed sequence is compressed again using
its previous compressed sequences as reference. GDC2
implements the second-level matching as well as multi-
threaded compression for the first time. In 2012, Pinho et al.
published GReEn [39], which draws on the copy model of
XM compression method, calculates the probability distri-
bution of base pairs, then creates a hash table, and then
encodes according to the probability distribution and the
hash table. If the number of failures exceeds the threshold,
the k-mer starting point will be redefined to build a new
model. iDoComp [40] proposed in 2014 builds indexes for
reference sequence based on suffix array. Different from
other methods, iDoComp stores the indexes separately in the
hard-drive. In the matching stage, iDoComp requires
storing matches in memory and then combines the con-
secutive matches, which are very memory consuming. Both
ERGC [41] and NRGC [42] were proposed by Subrata Saha
and Sanguthevar Rajasekaran in 2015 and 2016, respectively.
*ey adopt the segmentation matching strategy. *e ref-
erence sequence and the to-be-compressed sequence are
divided into segments with equal length and then matched
in each segment, respectively. If not successfully matched,
the PPMD algorithm will be adopted directly for com-
pression. iDoComp, ERGC, and NRGC all have the poor
robustness and high requirement for the similarity between
the reference sequence and the to-be-compressed sequence.
If the characteristics of the reference sequence and the to-be-
compressed sequence conform to their matching strategy,
the compression result will be good; otherwise, the com-
pression result will be poor, and even compression cannot be
completed, which can be seen in our experiments. In 2017,
Liu et al. proposed HiRGC [43] which employs a global
matching strategy named advanced greedy matching. In the
preprocessing stage, HiRGC extracts acgt sequence stream
and then maps the target acgt sequence stream to the ref-
erence sequence stream. Compared with the previous ref-
erential compression methods, HiRGC achieves better
robustness. But the disadvantage is that the global search
may generate inferior matching results and the memory
control of HiRGC is not ideal. SCCG [44] carefully combines
the segmentation matching used in ERGC/NRGC and the
advanced greedy matching used in HiRGC and improves the
description efficiency of matched strings. *erefore, the
compression ratio is higher than HiRGC, at the cost of using
more compression time and more compression/de-
compression memory usage.

3. Materials and Methods

Compression process of HRCM consists of three stages. (i)
Sequence Information Extraction. Stage one extracts the
information of the reference sequence and the to-be-com-
pressed sequence according to the same dimension. Because
HRCM is a lossless compression method, all information of
the to-be-compressed sequence must be extracted. (ii) Se-
quence Information Matching. *e to-be-compressed

BioMed Research International 3



information extracted from stage one is matched with the
corresponding information of the reference sequence. If
more than one sequences are to be compressed, HRCM
employs the second-level matching automatically among the
to-be-compressed sequences. (iii) Sequence Information
Encoding. Matched and mismatched information and other
to-be-compressed information are encoded. *e main
process of HRCM is shown in Figure 1. *e detailed process
of each stage is described in the following sections of this
part. Section 3.4 briefly introduces the decompression of
HRCM.

3.1. Sequence Information Extraction. Sequence information
extraction includes the reference sequence information
extraction and the to-be-compressed sequence information
extraction; their difference is whether the other information
except for ACGT sequence is extracted, that is, identifier
stream, N characters, special characters, and line width
information. Because the other information in the sequence
is stored with little cost, their matching process is not
implemented in this version. *erefore, the reference se-
quence does not need to extract other information except for
ACGT sequence but the target sequence does. *e steps can
be summarized as follows:

(i) Extract the first line of the sequence as the identifier
stream

(ii) Record the character number of one line as the line
width of the sequence file

(iii) Change lowercase characters to uppercase and re-
cord the lowercase position and length as lowercase
information

(iv) Scan the sequence file line-by-line, record the N
character position and length as N character in-
formation, and record special characters and their
positions as special character information

(v) Delete the identifier stream, line break characters, N
characters, and special characters; only reserve
ACGT sequence, which is called the basic base se-
quence B

*eir processing algorithms are described in Supple-
mentary Material Algorithms 1 and 2.

Because, at the encoding stage, the bigger the length and
position values are, the more bits are required to represent,
the size of the values directly affects the size of the final
compressed file. *erefore, we use delta encoding to encode
all the begin and position values. Here is an example as
shown in Example 1 to illustrate the first stage of HRCM.

Example 1. Assume that there are two FASTA format
chromosome files X and Y as follows:

>X_chr1.fa
AGCTGGGCCCTTaaggNNNnnnXXX
TTTCCCGGGAAAaaaTTTccctttg
>Y_chr1.fa

AGCTGGGCCCTTaaggtttnnnXXX
TTTCCCGGGNNNaaaTTTccctttg

Assuming that chromosome X is the reference sequence
and Y is the to-be-compressed sequence, after the first stage
processing, the output of X and Y is as follows:

Output of chromosome X:

reference B sequence:
AGCTGGGCCCTTAAGGTTTCCCGG-
GAAAAAATTTCCCTTTG
reference lowercase information: {[12, 4], [3, 3], [15,
3], [3, 7]}

Output of chromosome Y:

identifier: Y_chr1.fa
to-be-compressed B sequence:
AGCTGGGCCCTTAAGGTTTTTTCCCGG-
GAAATTTCCCTTTG
to-be-compressed lowercase information: {[12, 10],
[15, 3], [3, 7]}
N character information: {[19, 3], [12, 3]}
other character information: {[22, X], [0, X], [0, X]}
line width: 25

3.2. Sequence InformationMatching. At this stage, sequence
information matching consists of two parts: one is B se-
quence matching, and the other is lowercase character in-
formation matching. B sequence matching is based on the
reference B sequence to findmatching segments in the to-be-
compressed B sequence. If more than one sequences are to
be compressed, HRCM employs the second-level matching
automatically among the to-be-compressed sequences. *e
matching strategy of HRCM is selecting the longest match
based on separate chaining.

3.2.1. First-Level Matching. In the first step, we create the
hash table for reference B sequence. *is manuscript creates
the hash table based on k-mer, that is, k-mer hashing. It is
just like a sliding window with slides of length k over the
reference sequence and a window containing a k-mer. We
digitally encode the A, C, G, T to 0, 1, 2, 3, respectively. In
this way, the k-mer is converted into an integer sequence.
*en we calculate the hash value of the k-mer. *e calcu-
lation method assures that different k-mer hash values
represent different k-mers. HRCM uses array H and array L
to store the positions of all k-mers. All initial values of H are
− 1. If the hash value of the i-th k-mer is expressed as valuei,
at the stage of hash table creating, i will be stored in the
valuei-th element of the arrayH, and the original value of the
valuei-th element in the array H will be stored into the array
L. *e equation can be expressed as L[i] � H[valuei],
H[valuei] � i. *us, when an identical k-mer appears in the
reference sequence, it will be stored in the array H if it is the
last one, and otherwise, it will be stored in the array L. After
calculating a k-mer hashing, the sliding window slides
forward one base character until the window cannot slide

4 BioMed Research International



anymore.*us, the hash table builds all k-mer indexes of the
reference B sequence.

*e second step of this stage is the longest matching
process. First, the value of each k-mer is calculated by the
same formula for the to-be-compressed B sequence, and
then the array H is checked to see if the value exists or not.
If it does not exist, it means that the k-mer does not exist in
the reference sequence, and the base is recorded as a
mismatched character; otherwise, it indicates that the
k-mer exists, and then searches will traverse all identical
k-mers based on the chain constituted by the array H and
the array L. *e longest matching segment will be found,
the length of the segment is taken as the length value, and
the position of the segment in the reference B sequence is
used as the position value. *e matched segment is rep-
resented as a (position, length) tuple and the to-be-com-
pressed segment is replaced. *e algorithm is described as
shown in Algorithm 1.

3.2.2. Second-Level Matching. Whenmore than one genome
files are to be compressed, HRCM automatically employs
batch compression mode. In batch compression mode, the
match results of the first-level matching continue to be
matched by the second-level matching. *e second-level
matching is also based on hash matching, but unlike the
first-level matching, the elements for matching are not just

the four base characters {A, C, G, T} but matched entities
(position, length, mismatched). Moreover, there is not just
one but multiple reference sequences in the second-level
matching, so the search for the longest matching is required
to be performed in all reference sequences. Of course, to
ensure that the memory usage of compression does not
explode with the number of the to-be-compressed se-
quences, the second-level matching percentage p, which
means p% of the to-be-compressed sequences as the second-
level matching reference sequences, can be set.*erefore, the
second-level matching is much more complicated.

Firstly, we need to create the hash index for the matched
entities output in the first-level matching. In order to ensure
as much as possible that different hash values represent
different matched entities, we involve the position, length,
and each mismatched nucleotide in the calculation and use
large prime number as the multiplier.

For the handling of conflicts, we still employ separate
chaining, the same method as the first-level matching.
During the search, the to-be-compressed matched entities
calculate the hash value in the same way as hash index
creating, and the hash tables of each sequence are traversed
one by one to find out if the entities with the identical hash
value exist. However, unlike the first-level matching, iden-
tical hash value does not mean identical entity, because, in
the second-level matching, the mapping between matched
entity and hash value is not one-to-one mapping. *erefore,

Stage 1: Extraction

Stage 2: Matching

Stage 3: Encoding

Change lowercase characters to uppercase and record lowercase position and length

Extract ACGT sequence and other 
information

Extract ACGT sequence and remove other 
characters

Processed T(s)Processed R

Build hash table based on 
ACGT sequence Search for matches

ACGT sequence of T(s)

Lowercase character 
information matching

More 
than one 
target ?

Build hash table based 
on matched results of 

the first-level 
matching

The second-level 
matchingY

Encode matched results and other information

N

Reference genome file

Compressed genome file

To-be-compressed genome file (s)

Figure 1: *e main process of HRCM.

BioMed Research International 5



when an identical hash value is found, it is necessary to
verify if the matched entity is identical. If it is, the search
is continued for consecutive matched entities until a
different matched entity is found, and then the sequence
id, position, and length of the matched segment are
recorded. After all the reference sequences have been
traversed, the longest matching segment is taken as the
final matched segment for replacement and stored as a
triple (sequence_id, position, length). For a matched en-
tity, if no identical consecutive matched entity is found
after all the reference sequences have been traversed, it is
directly stored as the mismatched segment. *e matching
algorithm of the second-level matching is shown in
Algorithm 2.

*e processing results of Algorithms 1 and 2 are illus-
trated by one example shown in Example 2.

Example 2. Suppose that we are given 6 sequences, with the
first sequence as the reference sequence and the last 5 se-
quences as the to-be-compressed sequences. After the se-
quence information extraction stage, the 6 output B
sequences are shown in Table 1. Each B sequence contains 20
base characters. In the first-level matching, all the to-be-
compressed sequences from T1 to T5 are matched with the
reference sequence R1, and the matching result is shown in
Table 2. All the to-be-compressed sequences are expressed as
triples. In the second-level matching, T2 is matched with T1
as the reference sequence, T3 is matched with T1 and T2 as
the reference sequence, T4 is matched with T1, T2, and T3 as
the reference sequence, and T5 is matched with T1, T2, T3,
and T4 as the reference sequence. *e matching result is
shown in Table 3, and all the to-be-compressed sequences

are mapped to new triples. A comparison of Tables 3 and 1
reveals that the sequence size is greatly reduced.

3.2.3. Lowercase Character Information Matching. All the
lowercase character tuples of the to-be-compressed se-
quences are searched with the reference sequence lowercase
character tuples, respectively. If the to-be-compressed
lowercase tuple exists in reference lowercase tuple array, it is
represented as the location of the same tuple in reference
lowercase tuple array, or it is directly stored in a differential
lowercase array. For the matching results are continuous in
most cases, the run-length-encoding algorithm is improved
for the matching results in HRCM, that is, improved from
the calculation of the number of continuous same elements
to the calculation of the number of elements with continuous
tolerance of 1. *e storage cost of lowercase character tuples
may be greatly reduced by Algorithm 3 and the improved
run-length-encoding algorithm.

3.3. Sequence Information Encoding. At this stage, the in-
formation output at the first and second stages is encoded
and stored. *e identifier streams and line widths of all the
to-be-compressed genome files are encoded through run-
length-encoding [25]. Special characters are encoded by
static entropy encoding. For most of the position value
derived from the previous two stages, we employ predictive
incremental encoding. Position increases monotonically in
most cases, and the main difference between sequences is
single nucleotide polymorphisms (SNPs).*e position in the
next matched entity is predicted by the position and length in

Input: reference B sequence: r seq; k-mer length: k; to-be-compressed B sequence: t seq; length of t seq: nt;
Initialize lmax � k; posmax � 0;

(1) Create hash table for reference B sequence;
(2) for i � 0 to nt − k do
(3) Calculate the hash value valuet

i of the k-mer which starts from i in t seq;
(4) pos � H[valuet

i]

(5) if pos � − 1 then
(6) t seq[i] is a mismatched character, recorded to the mismatched information;
(7) else
(8) while pos≠ − 1 do
(9) set l � k, p � pos;
(10) while t seq[i + l] � r seq[p + l] do
(11) l � l + 1;
(12) end while
(13) if lmax < l then
(14) lmax � l, posmax � p;
(15) end if
(16) update pos � L[pos];
(17) end while
(18) end if
(19) record the mismatched string to the mismatched information
(20) record the matched string to the matched information
(21) end for

Output: matched entities (position, length, mismatched)

ALGORITHM 1: *e first-level matching.

6 BioMed Research International



the previous matched entity, and the storage space can be
reduced by storing the difference between the real position
and the predicted position. Finally, all the above-encoded
information is encoded and stored using the PPMD encoder.
Currently, there are a lot of tools supporting the PPMD
encoder. We use 7-zip (https://www.7-zip.org/) for PPMD
encoding and output a 7z-suffixed compressed file.

3.4. Decompression. *e decompression of the compressed
file is the reversion of compression. Firstly, the compressed
file is decompressed by 7-zip, then identifier streams and line
widths are decompressed by the run-length-encoding al-
gorithm, and special characters are decompressed by the
static entropy encoding. At the same time, the reference B
sequence and lowercase character information are extracted

from the reference sequence according to the same method
during compression. *e complete B sequences and low-
ercase character information of the to-be-compressed files
are recovered by combining the recovered matched and
mismatched information. Finally, the original genome files
are restored. Decompression takes O(D) time and memory
for data sets of size D nucleotides and is much less than
compression. *erefore, decompression is much faster and
more resource-saved than compression.

4. Experimental Verification and Analysis

4.1. Experimental Environments and Data Sets. In this sec-
tion, two modes of HRCMmethod are evaluated. One is the
single sequence compression mode (denoted by HRCM-S).
In this mode, sequences are compressed one by one. *e

Input: to-be-compressed matched entity sequence vector: ME[·][·]; to-be-compressed matched entity sequence length: N[·]; the
number of to-be-compressed sequences: mt; the number of reference sequences of the second-level matching: mr

Initialize posmax � 0; lenmax � 0; H[·][·] � − 1
(1) for i � 1 to mr do
(2) Create hash table for reference matched entity sequences;
(3) end for
(4) for i � 1 to mt do
(5) for j � 1 to N[i] do
(6) Calculate the hash value value

j

i which starts from the matched entity ME[i][j];
(7) for k� 1 to mr do
(8) pos � H[k][value

j

i ];
(9) while pos≠ − 1 do
(10) set len � 0
(11) while ME[i][j + len] � ME[k][pos + len] do
(12) len � len + 1;
(13) end while
(14) if lenmax < len then
(15) lenmax � len, posmax � pos;
(16) end if
(17) update pos � L[k][pos]

(18) end while
(19) end for
(20) if lenmax <2 then
(21) record entity ME[i][j] to mismatched information
(22) else
(23) record matched segment as (seq_id, posmax, lenmax) to matched information
(24) update j� j+ lenmax
(25) end if
(26) end for
(27) end for

Output: mismatched information and matched information;

ALGORITHM 2: *e second-level matching.

Table 1: Output B sequences after sequence information extraction.

Base sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
R1 A G A T G G G C C C T T T A G G T A T T
T1 A G C T G G T C C C T G A A G G A A T C
T2 A G C T G G T C C C T G G A G G A A T C
T3 A G T T G G T C C C T G G A G G A T T T
T4 A G T T G G T C C C T G A A G G A T T T
T5 A T A T G G T C C C T G A A G G A T T T

BioMed Research International 7

https://www.7-zip.org/


other is batch compression mode (denoted by HRCM-B). In
this mode, all sequences are input together to be compressed
by HRCM. All experiments were carried out on machines
with 2× 2.8GHz Intel Xeon E5-2680 (20 cores) and 32GB
RAM.

*e data sets used in our experiments were all retrieved
from open access genomic data and widely used in genome
compression tests. To evaluate the compression performance
of single sequence compression, we picked UCSC se-
quencing data (hg17, hg18, hg19, hg38), KOREF_20090131
(denoted by K131), KOREF_20090224 (denoted by K224)
[45], the first Chinese genome sequence YH [46], and the
genome of J. Craig Venter (HuRef) [47] for Homo sapiens
(denoted by H. sapiens) genomic data. Besides, as for other
species genomic data, we selected two versions of Arabi-
dopsis thaliana (TAIR9, TAIR10), three versions of Cae-
norhabditis elegans (ce6, ce10, ce11), three versions of Oryza
sativa (TIGR5.0, TIGR6.0, TIGR7.0), and two versions of
Saccharomyces cerevisiae (sacCer2, sacCer3). To evaluate the
compression performance of large collections of genomes,
we supplemented two UCSC genomes (hg13, hg16) and
1000 Genome Project [5] for H. sapiens genomic data. Each
H. sapiens genome contains chromosomes 1-22 and XY sex-
chromosomes and is about 3GB in size. *e total number of
H. sapiens genomes is 1102 and the total size is about 3.11TB.
In order to verify the compression capability of the HRCM
method for only one-version sequences without related
reference sequences, we supplemented the DNA sequence
corpus published by Pratas et al. [48]. More details of our
data sets are shown in the supplementary material data sets
section.

4.2. Experimental Results and Analysis. In our experiments,
we recorded the data of original file size, compressed file size,
compression/decompression time, and compression/de-
compression memory usage and then compared them with

those of the six excellent compression methods (iDoComp,
GDC2, ERGC, NRGC, HiRGC, and SCCG) published in the
last five years.*e original file sizes and compressed file sizes
only contain the file sizes of the to-be-compressed genomes
and do not contain the file sizes of the reference genomes in
this manuscript, similar to other related papers.

4.2.1. Compression Results and Analysis of Homo sapiens
Data Sets. We firstly selected H. sapiens for experimenta-
tion. Similar to the testing scheme used in HiRGC and
SCCG, in our experiments, the same eight genomes of H.
sapiens were selected and each genome was used in turn as
the reference genome to compress other genomes, so as to
exclude the contingency caused by the selection of reference
and fully evaluate the robustness and practicability of the
method. iDoComp and NRGC failed to compress some
genome sequences, and we simply compressed the original
file with the PPMD compression algorithm as the de-
scription in the original papers.

*e compressed file sizes of HRCM and the six com-
pared methods together with the corresponding improve-
ment of HRCM-B over other methods are summarized in
Table 4. *e original file size and compressed file size in the
table are the sum of original file sizes and the sum of the
compressed file sizes of the 7 to-be-compressed genomes.
Relative compression gain quantifies the improvement of
HRCM-B compared against other methods, and the cal-
culation method is as follows:

gain � 1 −
compressed file size byHRCM − B
compressed file size by othermethod

􏼠 􏼡 × 100%.

(1)

As shown in Table 4, HRCM-S compressed about
20 GB of genomic data to 90.89MB to 152.5MB. *e
compression ratio is inferior to SCCG but superior to other
methods using hg17, hg18, hg19, and hg38 as the reference
sequence. In other groups, the compression ratio of
HRCM-S is inferior to HiRGC and SCCG but superior to
other methods. However, the batch compression mode
HRCM-B compressed these genomic data to 75.38MB to
97.41MB and achieved the best result in all groups. *e
average gain of HRCM-B over HRCM-S is 26.68%. In
comparison with other methods, the average gain over
GDC2, ERGC, NRGC, HiRGC, and SCCG is 94.57%,
95.65%, 93.99%, 25.08%, and 13.61%, respectively. *is
means that, storing the same genomic data, other com-
pression methods take up much more disk space than the
HRCM method. When the genomic data is huge, the batch
compression by HRCM will save more storage and mi-
gration expense. *e reason why HRCM-B obtains the
superiority is because HRCM-B utilizes the similarity of
the to-be-compressed sequences through the second-level
matching. All detailed compressed sizes are shown in
Supplementary Material Tables 2 and 3.

Figure 2 shows the total compression time and de-
compression time of HRCM and other compared methods
on the eight groups of human genomes. Each compression/
decompression time in this manuscript was obtained by

Table 2: Output after the first-level matching.

Base
sequence 1 2 3 4 5

T1 (1, 2, C) (4, 3, T) (8, 4,
GA) (14, 3, A) (18, 2,

C)

T2 (1, 2, C) (4, 3, T) (8, 4,
GG) (14, 3, A) (18, 2,

C)

T3 (1, 2, T) (4, 3, T) (8, 4,
GG)

(14, 3,
AT) (19, 2)

T4 (1, 2, T) (4, 3, T) (8, 4,
GA)

(14, 3,
AT) (19, 2)

T5 (1, 1, T) (3, 4, T) (8, 4,
GA)

(14, 3,
AT) (19, 2)

Table 3: Output after the second-level matching.

Base sequence 1 2 3 4
T2 (1, 1, 2) (8, 4, GG) (1, 4, 2)
T3 (1, 2, T) (2, 2, 2) (14, 3, AT) (19, 2)
T4 (3, 1, 2) (8, 4, GA) (3, 4, 2)
T5 (1, 1, T) (3, 4, T) (4, 3, 3)

8 BioMed Research International



averaging over three execution times of the same experiment
on the same machine. *e compression time of GDC2 is not
shown in the figure, because it is much more than other
methods. In the eight groups of compression experiments,
the least compression time of GDC2 was about 10 hours,
13.4 times of HRCM-B. HiRGC achieved 6 best results in the
8 groups of experiments, taken an average of 32 minutes to
compress one group of genomes. HRCM-B achieved 2 best
results, taken an average of 41 minutes for one group.
HRCM-S performed worse than HRCM-B but better than
SCCG. In Figure 2(b), we can see that HRCM-B performed

the best in all methods, and the decompression was stable
and around 5 minutes in all groups.

Next, we continued to use much bigger data sets to
evaluate the performance of compressing a large amount of
genomic data of HRCM. Besides the above eight human
genomes, we supplemented two UCSC genomes (hg13,
hg16) and 1000 Genome Project [5] data sets. *e total
number of H. sapiens genomes increased to 1102. We used
the hg13 genome as the reference genome to compress the
other 1101 genomes. We evaluated the performance of four
second-level matching percentages of HRCM-B and

Input: reference lowercase sequence: r lowercae[·]; reference lowercase sequence length: lr; to-be-compressed lowercase
sequence: t lowercae[·]; to-be-compressed lowercase sequence length: lt;
Initialize matched lowercase information: matched lowercase[·] � 0; start position of matching: start position � 1; index� 0

(1) for i � 0 to lt − 1 do
(2) for j � start position to lr do
(3) if t lowercase[i] � r lowercase[j] then
(4) matched lowercase[i] � j

(5) update start position � j + 1
(6) end if
(7) end for
(8) if matched lowercase[i] � 0 then
(9) for j � start position − 1 to 1 do
(10) if t lowercase[i] � r lowercase[j] then
(11) matched lowercase[i] � j;
(12) update start position � j + 1;
(13) end if
(14) end for
(15) end if
(16) if matched lowercase[i] � 0 then
(17) mismatched lowercase[index] � t lowercase[i];
(18) update index � in dex + 1;
(19) end if
(20) end for

Output: mismatched lowercase information; matched lowercase information;

ALGORITHM 3: Lowercase character information matching.

Table 4: Overall comparison of compressed size and the relative gain for different methods under different reference genomes.

Reference Original file size (MB)
Compressed file size (MB) by

iDoComp GDC2 ERGC NRGC HiRGC SCCG HRCM-S HRCM-B

hg17 20,966.28 517.43 1570.94 2220.85 1952.05 103.62 89.09 99.66 80.1384.51% 94.90% 96.39% 95.90% 22.67% 10.06% 19.60%

hg18 20,962.74 506.75 1564.89 1498.22 1237.86 97.27 82.05 96.55 77.8984.63% 95.02% 94.80% 93.71% 19.92% 5.07% 19.32%

hg19 20,947.88 581.90 1610.37 1826.78 1179.24 95.57 81.56 90.89 77.4386.69% 95.19% 95.76% 93.43% 18.98% 5.07% 14.81%

hg38 20,955.10 526.98 1659.51 1708.70 1247.31 96.78 81.93 96.73 75.3885.70% 95.46% 95.59% 93.96% 22.11% 7.99% 22.07%

K131 20,972.50 1338.91 1570.45 1874.15 1172.16 124.20 108.53 132.50 91.8093.14% 94.15% 95.10% 92.17% 26.08% 15.42% 30.71%

K224 20,972.51 1284.20 1540.93 1897.95 1172.65 124.97 109.44 133.70 93.5692.71% 93.93% 95.07% 92.02% 25.13% 14.50% 30.02%

YH 20,972.51 399.29 1643.71 1840.61 1171.03 128.47 113.26 134.50 93.3876.61% 94.32% 94.93% 92.03% 27.31% 17.56% 30.58%

HuRef 20,965.32 824.15 1501.46 2911.90 2295.88 146.15 129.33 152.50 97.4188.18% 93.51% 96.65% 95.76% 33.35% 24.68% 36.13%
Bold indicates the best value of the case.

BioMed Research International 9



compared them with the two optimal algorithms HiRGC
and SCCG. *e detailed compression results are shown in
Supplementary Material Tables 4 and 5. In this experiment,
the compression ratio of HRCM-B increased without
exception as the percentage increased. When the per-
centage was 5%, HRCM-B consumed 77.34 hours and
compressed 3.11TB data to 1756MB. When the percentage
was 20%, the compressed file size was 1379MB, and the
compression time was 84.8 hours. *e compression ratios
were 1855 and 2362, respectively. HiRGC compressed the
data to 23759MB at the cost of 105 hours. *e compressed
size by HRCM-B (p � 20) was only 6% while the com-
pression time was only 75% compared to HiRGC. SCCG
failed to compress chromosome 13 and chromosome 14.
On other chromosomes, SCCG compressed them to
25043MB in 270 hours. So on large data sets, HRCM-B
increases the advantage as the number of the to-be-
compressed genomes increases. Moreover, compression of
large collections of genomes is more and more common in
storage and migration scenarios. But so far, the available
lossless batch compression for FASTA genome files is still
lacking. *e detailed compression memory of HRCM-B is
shown in Supplementary Material Table 6. *e memory
consumption of HRCM-B gradually increases with the
increase of percentage, but it is still controllable.

4.2.2. Compression Results and Analysis of Other Species Data
Sets. In other species data sets experiments, we employed a
similar experimental scheme as human genome data sets.
Each genome was used in turn as the reference genome to
compress other genomes of the same species. *e com-
pressed sizes by HRCM and all compared compression
methods are shown in Table 5. *e compression and

decompression time are shown in Supplementary Material
Tables 7 and 8. All the algorithms have close performance in
compression ratio. iDoComp, HRCM, GDC2, and NRGC
achieved 4, 3, 2, and 1 best cases, respectively. In com-
pression speed, HRCM-B performed the best. In de-
compression speed, HRCM-B achieved 7 best cases, which
were comparable to HiRGC.

4.2.3. Compression Results and Analysis of Only One-Version
Sequences. If a species is only sequenced for one version of
genome sequence, which may be the vast majority of the
genomic data in the near future, we are interested in
whether HRCM can properly compress them and what the
compression results are. To our best knowledge, until now
there is no research of using referential compression
method to compress only one-version genome sequences.
We, therefore, selected one version of nonhuman species
of our data sets, i.e., ce6, TAIR9, TIGR5.0, and sacCer2. In
addition, we selected the DNA sequence corpus proposed
recently by Pratas and Pinho [48]. *e DNA sequence
corpus contains 17 DNA sequences with different sizes
and reflects the main domains and kingdoms. HRCM
selected BuEb sequence which is a DNA sequence corpus
as the reference sequence to compress others and com-
pared the results with widely used general-purpose
compression methods gzip, bzip2, lzma, and ppmd and
the state-of-the-art special purpose genome compression
methods MFCompress [32] and GeCo2 [34]. MFCom-
press tool was tested in default mode and the best mode
(denoted by MFC-2 and MFC-3, respectively, according
to the original paper). *e detailed compression perfor-
mance including compressed size and resources re-
quirement (RAM and compression/decompression time)

250

200

150

100

50

0

C
om

pr
es

sio
n 

tim
e (

m
in

)

iDoComp
ERGC
NRGC
HiRGC

SCCG
HRCM-S
HRCM-B

hg17 hg18 hg38 K131 K224 YHhg19 HuRef
Reference

(a)

60

55

50

45

40

35

30

25

20

15

10

5

D
ec

om
pr

es
sio

n 
tim

e (
m

in
)

iDoComp
ERGC
NRGC
HiRGC

SCCG
HRCM-S
HRCM-B
GDC2

hg17 hg18 hg38 K131 K224 YHhg19 HuRef
Reference

(b)

Figure 2: Compression and decompression time of different methods on the eight groups of human genomes. (a) Compression time. (b)
Decompression time.

10 BioMed Research International



is shown in Supplementary Material Tables 9 to 13. *e
experiments verify that HRCM achieves lossless com-
pression on only one-version genomes. *e compression
ratio is better than widely used general-purpose com-
pression tools in all cases, compared to the specific ref-
erence-free compression tools. In the 16 cases of the DNA
sequence corpus compression, the most recent compres-
sion tool GeCo2 performed the best and achieved all the
best cases. HRCM performed slightly inferior and achieved
10 second best cases. MFC-2 and MFC-3 achieved 2 and 4
second best results, respectively. In the 4 real genome data
sets, MFCompress performed better than HRCM. GeCo2 is
only compatible for {A, C, G, T} symbols and cannot
achieve lossless compression.

4.2.4. Memory Usage Analysis. *e most consumptive
memory of HRCM is the memory consumed in creating the
hash table. In HRCM, the hash table length is L � 22k. Each
hash entry is allocated 4 bytes memory space, so the memory
consumed to the hash table is a M � 4L � 22(k+1) byte.
*erefore, the value of k plays a key role in memory con-
sumption, but meanwhile, the value of k also impacts the
compression time. *erefore, the selection of k is pursuing

the balance of compression time and compression memory.
To determine the value of k, we tuned k within the range
[11, 15], because if k exceeds 15, HRCM occasionally fails
with memory allocation on the 32GB RAM machine. We
did the eight benchmark human genomes experiment under
different values of k and recorded the total compression time
and peak memory usage. *e results are shown in Sup-
plementary Material Figure 1. As the value of k increases, the
peak memory usage increases dramatically. However, the
compression time does not decrease dramatically as the
value of k increases. When k� 15, the total compression time
is almost the same as k� 14. But when k� 14, the memory
consumption is relatively low. HRCM can be run on the
cheapest commodity PC. *erefore, we think that k� 14 is
the best choice.

Figure 3 shows the peak memory usage of all methods
on the eight benchmark human genomes experiment.
HRCM-S requires the least memory. HRCM-B requires
more memory than HRCM-S but still less than other
methods. iDoComp requires the most memory. As can be
seen from the peak decompression memory usage, GDC2,
HiRGC, and HRCM require about 1 GB memory. iDo-
Comp, ERGC, NRGC, and SCCG still have high re-
quirement of memory in decompression.

iDoComp ERGC NRGC HiRGC SCCG HRCM
-S

HRCM
-B

GDC2

11.14

6 6.23

2.67

6.69

10.37

2.37 2.5

Peak compression memory usage (GB)

12

10

8

6

4

2

0

(a)

iDoComp ERGC NRGC HiRGC SCCG HRCM
-S

HRCM
-B

GDC2

6.24

5.07

6.69

0.8 0.93 0.89

8.93

1

Peak decompression memory usage (GB)

12

10

8

6

4

2

0

(b)

Figure 3: Peak memory usage of different methods. (a) Peak compression memory usage. (b) Peak decompression memory usage.

Table 5: Compressed sizes of other species data sets by different methods.

Reference To-be-compressed Original file size (KB)
Compressed file size (KB) by

iDoComp GDC2 ERGC NRGC HiRGC SCCG HRCM-S HRCM-B
ce6 ce10, ce11 199,816 251 1049 463 530 445 437 221 219
ce10 ce6, ce11 199,804 241 1003 459 641 534 434 217 217
ce11 ce6, ce10 199,804 463 1941 505 690 489 480 488 374
TAIR9 TAIR10 118,360 2 3 8 153 5 12 5 5
TAIR10 TAIR9 118,383 2 3 5 153 5 2 5 5
TIGR5.0 TIGR6.0, TIGR7.0 740,272 399 104 26758 1284 376 363 407 342
TIGR6.0 TIGR5.0, TIGR7.0 740,009 279 87 15841 11566 258 257 278 275
TIGR7.0 TIGR5.0, TIGR6.0 739,089 212 79 7091 66 227 220 242 168
sacCer2 sacCer3 12,109 2 4 6 754 6 3 6 6
sacCer3 sacCer2 12,109 2 4 6 517 9 3 6 6
Bold indicates the best value of the case.

BioMed Research International 11



5. Conclusions

In this manuscript, a new lossless compression method for
genomic data is proposed and its engineer software is
available.*emethod can perform reference-based as well as
reference-free compression with competitive results. When
the number of the to-be-compressed sequences is more than
one, HRCM improves the compression performance
through the second-level matching.*e experimental results
show that the method has a competitive compression ratio,
compression speed, robustness, and memory usage. And the
more the number of to-be-compressed sequences, the
greater the superiority of HRCM. However, there is still
much room for improvement. For the next stage, the first
thing is to continue to improve the HRCM’s compression
ratio. *e compression ratio may be improved by analyzing
the internal features of sequences and the features of
matching results further. *e second thing is to realize the
distributed processing of the compression algorithm. When
a large number of genomes are compressed simultaneously,
it is very time-consuming but suitable for distributed pro-
cessing. *e distributed processing of genome compression
will greatly improve the compression speed.

Data Availability

*e genome data used to support this study were all re-
trieved from open access and real genome sequencing data.
*ey are all freely available. *e details are shown in Sup-
plementary Material. *e source codes of this study are
available at https://github.com/haicy/HRCM.*ey are freely
available for noncommercial purposes.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported by the National Key R&D Program
of China (2017YFB1401302, 2017YFB0202200), the National
Natural Science Foundation of P. R. China (nos. 61572260,
61872196, and 61902194), Outstanding Youth of Jiangsu
Natural Science Foundation (BK20170100), Key R&D
Program of Jiangsu (BE2017166), Postgraduate Research and
Practice Innovation Program of Jiangsu Province
(KYCX19_0906, KYCX19_0921), the Natural Science
Foundation of the Jiangsu Higher Education Institutions of
China (19KJD520006), andModern Educational Technology
Research Program of Jiangsu Province in 2019 (2019-R-
67748).

Supplementary Materials

*e supplementary material mainly includes the data sets
and additional experiments and results that are used to
support the conclusions of the manuscript but avoid clus-
tering the main message. (Supplementary Materials)

References

[1] D. Pushkarev, N. F. Neff, and S. R. Quake, “Single-molecule
sequencing of an individual human genome,” Nature Bio-
technology, vol. 27, no. 9, pp. 847–850, 2009.

[2] D. S. Horner, G. Pavesi, T. Castrignano et al., “Bioinformatics
approaches for genomics and post genomics applications of
next-generation sequencing,” Briefings in Bioinformatics,
vol. 11, no. 2, pp. 181–197, 2010.

[3] E. E. Schadt, S. Turner, and A. Kasarskis, “A window into
third-generation sequencing,” Human Molecular Genetics,
vol. 19, no. 2, pp. 227–240, 2010.

[4] D. Weigel and R. Mott, “*e 1001 genomes project for
Arabidopsis thaliana,” Genome Biology, vol. 10, no. 5, pp. 1–5,
2009.

[5] T. G. P. Consortium, “An integrated map of genetic variation
from 1,092 human genomes,” Nature, vol. 491, no. 7422,
pp. 56–65, 2012.

[6] M. P. Ball, J. V. *akuria, A. W. Zaranek et al., “A public
resource facilitating clinical use of genomes,” Proceedings of
the National Academy of Sciences, vol. 109, no. 30,
pp. 11920–11927, 2012.

[7] Z. D. Stephens, S. Y. Lee, F. Faghri et al., “Big data: astro-
nomical or genomical?,” PLoS Biology, vol. 13, no. 7, Article
ID e1002195, 2015.

[8] S. D. Kahn, “On the future of genomic data,” Science, vol. 331,
no. 6018, pp. 728-729, 2011.

[9] H. E. Williams and J. Zobel, “Indexing and retrieval for ge-
nomic databases,” IEEE Transactions on Knowledge and Data
Engineering, vol. 14, no. 1, pp. 63–78, 2002.

[10] W. Fan, Z. Han, P. Li, J. Zhou, J. Fan, and R. Wang, “A live
migration algorithm for containers based on resource local-
ity,” Journal of Signal Processing Systems, vol. 91, no. 10,
pp. 1077–1089, 2019.

[11] I. Numanagić, J. K. Bonfield, F. Hach et al., “Comparison of
high-throughput sequencing data compression tools,” Nature
Methods, vol. 13, no. 12, 1005 pages, 2016.

[12] W. R. Pearson, “5 Rapid and sensitive sequence comparison
with FASTP and FASTA,” Methods in Enzymology, vol. 183,
no. 1, pp. 63–98, 1990.

[13] M. Wang and L. Kong, “pblat: a multithread blat algorithm
speeding up aligning sequences to genomes,” BMC Bio-
informatics, vol. 20, no. 1, 2019.

[14] R. E. Green and S. E. Brenner, “Bootstrapping and normal-
ization for enhanced evaluations of pairwise sequence com-
parison,” Proceedings of the IEEE, vol. 90, no. 12,
pp. 1834–1847, 2002.

[15] S. Wandelt and U. Leser, “Sequence factorization with
multiple references,” Plos One, vol. 10, no. 9, 2015.

[16] W. Fan, J. He, M. Guo, P. Li, Z. Han, and R. Wang, “Privacy
preserving classification on local differential privacy in data
centers,” Journal of Parallel and Distributed Computing,
vol. 135, pp. 70–82, 2019.

[17] U. F. Petrillo, M. Sorella, G. Cattaneo et al., “Analyzing big
datasets of genomic sequences: fast and scalable collection of
k-mer statistics,” BMC Bioinformatics, vol. 20, no. 4,
138 pages, 2019.

[18] S. Deorowicz, A. Danek, and M. Niemiec, “GDC 2: com-
pression of large collections of genomes,” Scientific Reports,
vol. 5, no. 1, 11565 pages, 2015.

[19] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman,
and A. M. Phillippy, “Canu: scalable and accurate long-read
assembly via adaptivek-mer weighting and repeat separation,”
Genome Research, vol. 27, no. 5, pp. 722–736, 2017.

12 BioMed Research International

https://github.com/haicy/HRCM
http://downloads.hindawi.com/journals/bmri/2019/3108950.f1.pdf


[20] S. Wandelt and U. Leser, “FRESCO: referential compression
of highly similar sequences,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 10, no. 5,
pp. 1275–1288, 2013.

[21] J. Cleary and I. Witten, “Data compression using adaptive
coding and partial string matching,” IEEE Transactions on
Communications, vol. 32, no. 4, pp. 396–402, 1982.

[22] P. Deutsch, “DEFLATE compressed data format specification
version 1.3,” RFC, vol. 11, no. 3, pp. 82–89, 1996.

[23] H. Li and R. Durbin, “Fast and accurate short read alignment
with burrows-wheeler transform,” Bioinformatics, vol. 25,
no. 14, pp. 1754–1760, 2009.

[24] M. H. Mohammed, A. Dutta, T. Bose, S. Chadaram, and
S. S. Mande, “DELIMINATE-a fast and efficient method for
loss-less compression of genomic sequences,” Bioinformatics,
vol. 28, no. 19, pp. 2527–2529, 2012.

[25] G. Held and T. Marshall, Data Compression: Techniques and
Applications, Hardware and Software Considerations, Wiley,
Hoboken, NJ, USA, 1983.

[26] L. Chen, S. Lu, and J. Ram, “Compressed pattern matching in
DNA sequences,” in Proceedings of the IEEE Computational
Systems Bioinformatics Conference, pp. 62–68, Stanford, CA,
USA, August 2004.

[27] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transactions on Information >eory,
vol. 23, no. 3, pp. 337–343, 1977.

[28] M. Duc Cao, T. I. Dix, L. Allison, and C. Mears, “A simple
statistical algorithm for biological sequence compression,” in
Proceedings of the 2007 Data Compression Conference
(DCC’07), pp. 43–52, Snowbird, UT, USA, March 2007.

[29] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding
for data compression,” Communications of the ACM, vol. 30,
no. 6, pp. 520–540, 1987.

[30] X. Xie, S. Zhou, and J. Guan, “CoGI: towards compressing
genomes as an image,” IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, vol. 12, no. 6, pp. 1275–
1285, 2015.

[31] A. J. Pinho, P. J. S. G. Ferreira, A. J. R. Neves et al., “On the
representability of complete genomes by multiple competing
finite-context (Markov) models,” PLoS One, vol. 6, no. 6,
Article ID e21588, 2011.

[32] A. J. Pinho and D. Pratas, “MFCompress: a compression tool
for FASTA and multi-FASTA data,” Bioinformatics, vol. 30,
no. 1, pp. 117-118, 2014.

[33] D. Pratas, A. J. Pinho, and P. J. S. G. Ferreira, “Efficient
compression of genomic sequences,” in Proceedings of the
2016 Data Compression Conference, pp. 231–240, Snowbird,
UT, USA, April 2016.

[34] D. Pratas, M. Hosseini, and A. J. Pinho, “GeCo2: an optimized
tool for lossless compression and analysis of DNA sequences,”
in Proceedings of the International Conference on Practical
Applications of Computational Biology & Bioinformatics,
pp. 137–145, Ávila, Spain, June 2019.

[35] S. Wandelt, M. Bux, and U. Leser, “Trends in genome
compression,” Current Bioinformatics, vol. 9, no. 3, pp. 315–
326, 2014.

[36] S. Kuruppu, S. J. Puglisi, and J. Zobel, “Relative lempel-Ziv
compression of genomes for large-scale storage and retrieval,”
in Proceedings of the International Conference on String
Processing and Information Retrieval, pp. 201–206, Los Cabos,
Mexico, October 2010.

[37] S. Kuruppu, S. J. Puglisi, and J. Zobel, “Optimized relative
Lempel-Ziv compression of genomes,” in Proceedings of the

>irty-Fourth Australasian Computer Science Conference,
pp. 91–98, Perth, Australia, January 2011.

[38] S. Deorowicz and S. Grabowski, “Robust relative compression
of genomes with random access,” Bioinformatics, vol. 27,
no. 21, pp. 2979–2986, 2011.

[39] A. J. Pinho, D. Pratas, and S. P. Garcia, “GReEn: a tool for
efficient compression of genome resequencing data,” Nucleic
Acids Research, vol. 40, no. 4, p. e27, 2012.

[40] I. Ochoa, M. Hernaez, and T. Weissman, “iDoComp: a
compression scheme for assembled genomes,” Bioinformatics,
vol. 31, no. 5, pp. 626–633, 2015.

[41] S. Saha and S. Rajasekaran, “ERGC: an efficient referential
genome compression algorithm,” Bioinformatics, vol. 31,
no. 21, pp. 3468–3475, 2015.

[42] S. Saha and S. Rajasekaran, “NRGC: a novel referential ge-
nome compression algorithm,” Bioinformatics, vol. 32, no. 22,
pp. 3405–3412, 2016.

[43] Y. Liu, H. Peng, L. Wong, and J. Li, “High-speed and high-
ratio referential genome compression,” Bioinformatics,
vol. 33, no. 21, pp. 3364–3372, 2017.

[44] W. Shi, J. Chen, M. Luo, and M. Chen, “High efficiency
referential genome compression algorithm,” Bioinformatics,
vol. 35, no. 12, pp. 2058–2065, 2019.

[45] S.-M. Ahn, T.-H. Kim, S. Lee et al., “*e first Korean genome
sequence and analysis: full genome sequencing for a socio-
ethnic group,”Genome Research, vol. 19, no. 9, pp. 1622–1629,
2009.

[46] J. Wang, W Wang, R Li et al., “*e diploid genome sequence
of an Asian individual,” Nature, vol. 456, no. 7218, pp. 60–65,
2008.

[47] S. Levy, G. Sutton, P. C. Ng et al., “*e diploid genome se-
quence of an individual human,” PLoS Biology, vol. 5, no. 10,
e254 pages, 2007.

[48] D. Pratas and A. J. Pinho, “A DNA sequence corpus for
compression benchmark,” Practical Applications of Compu-
tational Biology and Bioinformatics, 12th International Con-
ference, vol. 803, pp. 208–215, 2019.

BioMed Research International 13


