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Abstract

Aims: To present the novel application of combining continuously measured glucose with continuous accelerometer

measured physical activity and sedentary behaviour data and discusses the principles used and challenges faced in

combining and analysing these two sets of data in the context of diabetes management.

Methods: The background and rationale for exploring glucose, physical activity and sedentary behaviour in people with

Type 2 diabetes is presented, the paper outlines the technologies used, the individual data extraction and finally the

combined data analysis. A case study approach is used to illustrate the application of the combined data processing and

analysis.

Results: The data analytic principles used could be transferred to different conditions where continuous data sets are

being combined to help individuals or health professionals better manage and care for people with long term conditions.

Conclusions: Future work should focus on generating validated techniques to visualise combined data sets and explore

ways to present data back to the individual in an effective way to support health care management and rehabilitation.
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Introduction

Mobile technology is increasingly being developed and
made available in both the commercial and research
setting, allowing continuous measurement of behaviour
and health outcomes. There is opportunity to improve
the management of many chronic conditions if these
data could be collected, managed and analysed in
meaningful ways. Limited focus, however, has been
given towards understanding these data and developing
methodologies to combine relevant datasets in ways
that can improve long-term condition management.

This paper presents the application of combining
continuously measured glucose data and acceler-
ometer-measured physical activity and sedentary
behaviour data and discusses the challenges faced and
possible solutions in combining and analysing these two
sets of data in meaningful ways. We start by presenting

the background and rationale for exploring glucose,
physical activity and sedentary behaviour, then outline
the technologies used for this data collection, the indi-
vidual data extraction and finally the combined data
analysis approaches used. A case study approach was
used to illustrate the application of the developed
methodology.
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With mobile technology increasingly being used to
support healthcare management and rehabilitation, the
challenges and solutions discussed could easily be trans-
ferred to conditions where continuous datasets are
being combined to help individuals or health profes-
sionals better manage and care for people with long-
term conditions.

Background and rationale

Type 2 diabetes is a metabolic condition characterised
by inadequate insulin sensitivity and/or impaired insu-
lin secretion, and poor management can lead to serious
and costly health complications.1 The number of people
worldwide with Type 2 diabetes is projected to reach
628.6million by 2045.1 Lifestyle changes, such as incor-
porating a healthy balanced diet, increasing levels of
physical activity2–4 and reducing prolonged sedentary
behaviour5 can contribute successfully to the manage-
ment of Type 2 diabetes.

Ekelund et al.6 report high levels of physical activity
per day (�60–75min) reduces the risk of all-cause mor-
tality in those sitting for more than 8 h per day.
Suggesting that the negative impact of sitting for long
periods of time can be nullified by high levels of mod-
erate physical activity. As technology is progressing,
people are increasingly finding themselves in settings
where time being spent sedentary is the dominant
behaviour. Matthews et al.7 reported that adults
spend approximately 70% of their waking day in sed-
entary behaviours. A recent study conducted by
Dempsey et al.8 found when prolonged sitting down
is broken up with regular, short (3minute) breaks of
light intensity physical activity, glucose profiles in
those with Type 2 diabetes are improved, and this
improvement was shown to persist for at least a 24-h
period.9

In summary, Type 2 diabetes is a chronic disease
with increasing prevalence. Glucose management is
important within Type 2 diabetes care to reduce risk
of additional health complications and improve overall
patient quality of life. Increasing physical activity and
reducing prolonged sedentary behaviour both have
favourable effects on glucose management and are rec-
ommended components of Type 2 diabetes care.10

Mobile technologies are now available that independ-
ently provide continuous measurement of glucose,
physical activity and sedentary behaviour. Developing
methodologies to combine these datasets presents the
opportunity for in-depth exploration of the relationship
between glucose, physical activity and sedentary behav-
iour and enables tailoring of physical activity and sed-
entary behaviour interventions for optimal glucose
control and disease management in people with Type
2 diabetes.

Selected technology

activPAL

Numerous wearable technologies are available to moni-
tor physical activity and sedentary behaviour. The
overall focus of our research was to investigate how
patterns of sedentary behaviour affect glucose out-
comes in people with Type 2 diabetes. With focus
towards sedentary behaviour, the activPALTM (PAL
Technologies Ltd, Glasgow, UK) was selected. In a
study conducted by Kozey-Keadle et al.,11 the
activPAL correlated with direct observation of seden-
tary time 94% of the time. The activPAL is a small
electronic device (measuring 53� 35� 7mm; weighing
15 g) worn on the front of the thigh, midway between
the knee and the hip.12 The activPAL is the first vali-
dated instrument to be developed to quantify postural
allocation, allowing sedentary behaviour to be accur-
ately identified.12 The activPAL contains an accelerom-
eter and an inclinometer, allowing the participant’s
physical activity and sedentary behaviour patterns to
be measured in a freeliving context for up to 14 days
at a time. Step count, cadence and postural transitions
and energy expenditure estimates are also provided.12

Figure 1 illustrates the hour-by-hour summary of activ-
ity over a 24-h period. Each line symbolises an hour
and the different colour shows the proportion of the
hour spent sitting/lying (yellow), standing (green) and
stepping (red). The summary output also provides
information regarding 24-h step count and the
number of transitions from sitting to standing.

The output from the activPAL contains periods
categorised as sitting/lying that are not considered sed-
entary behaviour, such as sleep and non-wear.13

Therefore, a 24-h wear protocol is used and a daily
wear diary noting sleep time, wake time and any time
where the device was removed and reattached is com-
pleted. This allows researchers to remove sleep prior to
data analysis.

FreeStyle Libre

Flash Glucose Monitoring is one of the newest methods
of glucose monitoring, providing multiple continuous
glucose readings compared with conventional ad hoc
capillary blood glucose data whilst being more afford-
able than continuous glucose monitors. The FreeStyle
Libre is a flash glucose monitoring system that continu-
ously measures a person’s glucose through their inter-
stitial fluid.14 The FreeStyle Libre consists of a small
sensor and a reader.

The sensor is applied to the arm where a thin flexible
filament (5mm) is inserted just below the skin. The
sensor measures glucose every minute but summarises
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this over 15minutes continuously for up to 14 days
with date and time also recorded. The sensor has the
ability to store up to 8 h of data; therefore, the reader
must be scanned over the sensor in order to capture and
store continuous data. The data can be uploaded from
the reader to desktop software and can be presented as
summary data in user-friendly graphs and tables or the
raw data can be exported to a text file (Figure 2).

The FreeStyle Libre is a relatively new device and is
predominantly targeted at the consumer market. There
are some factors that must be considered when inter-
preting the data from this device. The FreeStyle Libre is
measuring glucose through the interstitial fluid and not
through the blood, so there is a physiological lag
between the measurements and this lag can be different
for each individual, making it difficult to account for.
To address this, participants could provide blood glu-
cose measures at regular intervals throughout the day;
however, it was decided that the participant burden
would be too much. There have been some issues
reported where the sensor fails to record at all, is not
reading the glucose correctly or is producing unusually
low readings. It should also be noted that CGM only
measures glucose levels, and it does not provide any
estimation of insulin sensitivity or beta-cell function
which might also provide important information to
fully understand glycaemic responses. It was decided
when researching the available devices that the
FreeStyle Libre was most suitable to this project, but
the methods discussed could be used for any CGM
dataset.

Individual device data extraction

Prior to combining datasets, it was important to first
screen the datasets and check for any anomalies or out-
liers and remove any unsuitable data. The challenge
then presented was to extract manageable and mean-
ingful information from a large dataset without losing
the context and detail held within the continuous
objective dataset. Data extracted also need to be rele-
vant to current healthcare practice and research evi-
dence to allow comparison of findings with data
presented in clinical practice guidelines and relevant
research studies.

Activity data

Once the activPAL data were downloaded, the sum-
mary output files for each participant were checked to
make sure the data were valid (for example, no large
periods of missing data) and that there was a minimum
of three days of data, once the first and last days of
recording were removed. A day was counted if there
were 10 h or more recorded wear time. Datasets
where there were less than three days of data or the
device had not recorded were removed from the data-
set. This is in line with findings of Rich et al.15 who
suggested that data collected on two or more days is
sufficient for providing reliable results. The activPAL
categorises all behaviour in a sitting or lying position
together, meaning that sleep time is categorised as sed-
entary behaviour.12 In order to use sedentary behaviour
as a meaningful variable, sleep time must be reliably
identified and removed from the dataset. Removing
sleep time enables exploration of sedentary behaviour
and physical activity patterns over the waking day
period and calculation of daily proportion of waking
time spent sitting, standing and stepping. Recent stu-
dies have examined the use of automated algorithms for
identifying and removing sleep/ non-wear time;15 how-
ever, in the case of Winkler et al.,13 the automated
method was validated against the usual method of the
monitor-corrected diary and as yet, is not common

Figure 1. Example of summary data output showing behavioural categorisation by hour in a 24-h period.

Figure 2. Example of FreeStyle Libre raw data output.
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practice. For the purpose of this study, sleep was
removed manually using the sleep diary completed by
the participant. This is a high burden method, particu-
larly with large datasets, and therefore an automated
method is currently being developed by researchers.

Sleep removal provides an overview of the waking
day, but gives no indication of the more specific daily
pattern of behaviour, for example, periods of the day
that were more active or sedentary than others rather
than an average day. To look at sedentary behaviour in
more depth, the proportion of time spent in each
behaviour per hour was examined, allowing specific
times of day to be isolated and compared. Research
has identified that both total sedentary time and con-
tinuous uninterrupted periods of sedentary behaviour
are detrimental to health.16 Therefore, further analysis
was conducted to isolate behaviour based on events to
explore continuous periods of sedentary behaviour.
This involved breaking the data into sedentary and
non-sedentary behaviours and examining sedentary
bouts of varying durations, for example, sedentary
bouts� 30min and� 60min in duration. Breaking up
the data into these smaller, more focused intervals
allowed us to pull meaningful segments of information
from a larger dataset. MATLAB was used to enable us
to automate this process and allow data extraction
from a large sample (i.e. up to 14 days of individual
data and a target sample size for the full study of� 50
participants).

Glucose data

As with the activPAL data, the glucose data from the
FreeStyle Libre were downloaded, and the summary
output files were checked for accuracy and consistency.
Once the first and last days of recording were removed,
participants with less than three days of data were
removed from the dataset. The data were also checked
to make sure there were no issues with the sensor; as
aforementioned, there have been some issues reported
where the sensor fails to record at all or is not reading
the glucose correctly or producing unusually low read-
ings. In these cases, the data were also removed from
the dataset. Sleep time was not removed from the glu-
cose dataset, allowing for the data to be examined over
a 24-h period in addition to hourly and shorter, more
specific bout durations.

For people with Type 2 diabetes, improved blood
glucose control substantially decreases the development
and progression of diabetic complications and
improves overall patient quality of life.17 HbA1c is the
most commonly used indicator for glucose control and
is a measure of average glucose over a three-month
period.18 Another measure of glucose control is daily
mean glucose, which is the average glucose level

calculated using six glucose readings over a 24-h
period. Research has documented a close relationship
between HbA1c and daily mean glucose.19

More recent research has identified daily glucose
variability as a possible contributor to developing dia-
betes complications. Glucose variability is the measure-
ment of variation in glucose levels in a day and should
not be confused with postprandial glucose excursions,
which is the measurement of glucose after a meal.
Increased variability was shown to be associated with
markers for cardiovascular damage in those with Type
2 diabetes,20 and it has been suggested that variability
in glucose levels could be more damaging to long-term
health than consistently higher average glucose levels.21

Wearable technology with continuous measurement
offers a unique ability to explore within and between
individual variability. Currently, there is no consensus
on the best measurement of glucose variability to use.
Examples of parameters used are: mean average glu-
cose, the average changes in glucose over time of meas-
urement; mean of daily differences, the glucose
variability between consecutive days; continuous over-
all net glycaemic action, measure of continuous glucose
variability using continuous monitoring and requires
288 glucose readings in a 24-h period;22 mean ampli-
tude of glycaemic excursions, the average differences
between consecutive blood glucose values that are
more than one standard deviation from the mean.

More widely used measures of variability and disper-
sion, such as standard deviation, coefficient of variation
and range have all been used to measure glucose vari-
ability and are easily determined.22 Standard deviation
is easily calculated and is widely supported as a suitable
method of measuring variability in glucose profiles.23

It was decided that several measures of glucose vari-
ability would be included in the analysis to ensure the
effect of sedentary behaviour and physical activity on
glucose was fully examined. Although the data could
have been analysed using all the above measures of
variability, using too many methods would increase
the chance of finding a false positive in the results.
However, research identifies that both mean glucose
and glucose variability can impact overall health of
people with Type 2 diabetes. The following variables
were therefore extracted and included in the prelimin-
ary analysis: daily mean glucose, standard deviation,
range and coefficient of variance. Similar to the
activPAL data, MATLAB was used to allow the pro-
cess of data extraction to be automated.

During the study, participants will complete a food
and medication diary alongside the wear diary. This
information would allow the relationship between sed-
entary behaviour patterns surrounding meal times and
postprandial glucose. For the purpose of this paper
however, it was decided that the focus would remain
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on combining the activity and glucose datasets. The
food diary data may be used in future analysis of the
dataset.

Combining datasets

Once the data from each device was checked and
extracted, the activity, glucose and demographic data-
sets were imported into MATLAB, where a final output
file was produced for data analysis. We took a case
study approach to present the individual and combined
data analysis. Participant A was a 68-year-old retired
male, with a body mass index of 29.2 kg/m2, who has
been diagnosed with Type 2 diabetes for two years.
Participant A spent, on average, 70% of their waking
day sitting/lying, 18% standing still and just 12%
of their day stepping, mean daily glucose was
7.53mmol/l. Table 1 illustrates results from the analysis
of data from participant A where mean glucose, stand-
ard deviation, range and coefficient of variance were
examined in sedentary bouts of 30–60min and seden-
tary bouts �60min.

Subsequent analysis with the full study sample
(N¼ 50) will explore the relationship between overall
daily mean glucose and the daily proportion of time
spent sitting/lying during wake time. Additionally, the
relationship between specific sedentary bout durations
and mean glucose and glucose SD, range and coefficient
of variation will be examined.

From preliminary analysis, examining the overall
glucose response and sedentary bout duration is pro-
viding us with more meaningful results than isolating
specific sedentary events and the glucose response
within those events. Isolating sedentary bouts with a
non-sedentary period pre and post-bout was more dif-
ficult than anticipated due to the variable nature of
behaviour in a freeliving setting.

Conclusions

The aim of this paper was to present the challenges
associated with the novel application of combining con-
tinuously measured glucose and activity data for people
with Type 2 diabetes, and to outline the rationale and
principles followed in exploring the combined analysis.
Authors suggest using validated devices and visually
checking summary data prior to processing and

analysis, to check for any errors or unsuitable data.
Although not used in this study, the use of heat
maps, as described by Edwardson et al.,24 could
enhance the robustness of the visual checking of data.
It is important to identify specific and meaningful out-
come variables prior to processing and analysis of the
data and where possible, the use of automated methods
for processing and combining datasets would remove a
significant burden from the researcher.

We have discussed the process taken during individ-
ual data extraction and presented an individual case
study of combined data analysis. The principles used
could be transferred to different situations or health
conditions where continuous datasets are being com-
bined to help individuals or health professionals
better manage and care for people with long-term
conditions.

Collecting and combining such rich data provides
the opportunity for this analysis to be expanded to fur-
ther explore the temporal patterns and relationships
between physical activity, sedentary behaviour and glu-
cose outcomes. A possible focus for this analysis could
be significant daily events such as the timing and con-
tent of meals and the timing and dose of medication in
addition to giving focus to different periods of the day.

Future work needs to give focus towards generating
validated techniques to visualise combined datasets and
exploring ways to present data back to the individual in
an effective way to support healthcare management and
rehabilitation. An automated algorithm for the removal
of sleep and non-wear time from the activPAL data
would be beneficial in larger datasets. Furthermore,
the development of multisensory devices allowing meas-
urement of physical activity, sedentary behaviour and
glucose, in addition to other behaviours and health out-
comes, will enable further exploration of the interaction
of multiple behaviours and health outcomes.
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