# nature chemical biology



**Supplementary information** 

https://doi.org/10.1038/s41589-024-01801-3

# Engineering covalent small molecule-RNA complexes in living cells

In the format provided by the authors and unedited

### Contents

| Supplementary Note 1                     | 2  |
|------------------------------------------|----|
| General                                  | 2  |
| Synthesis of Brc₃DPQ₁                    | 2  |
| Synthesis of Brc₃HBC                     | 3  |
| Synthesis of MsOc <sub>3</sub> HBC       | 3  |
| Synthesis of MsOc <sub>3</sub> HBC-vinyl | 3  |
| Synthesis of Brc₃DBF                     | 4  |
| Synthesis of Br-C4-EG-biotin             | 5  |
| Supplementary Tables                     |    |
| Supplementary Table 1                    | 6  |
| Supplementary Table 2                    | 7  |
| Supplementary Figures                    |    |
| Supplementary Figure 1                   | 9  |
| Supplementary Figure 2                   | 10 |
| Supplementary Figure 3                   | 11 |
| Supplementary Figure 4                   | 12 |
| Supplementary Figure 5                   | 13 |
| Supplementary Figure 6                   | 14 |
| Supplementary Figure 7                   | 15 |
| Supplementary Figure 8                   | 16 |
| Supplementary Figure 9                   | 17 |
| Supplementary Figure 10                  | 18 |
| Supplementary Figure 11                  | 19 |
| Supplementary Figure 12                  | 20 |
| Supplementary Figure 13                  | 21 |
| Supplementary Figure 14                  | 22 |

#### **Supplementary Note**

#### General

Chemical reagents and solvents were purchased from commercial suppliers (Sigma-Aldrich, Biosynth, abcr) and used without further purification. Dry solvents were used for all non-aqueous reactions, which were carried out under argon atmosphere. Analytical thin-layer chromatography (TLC) was performed on Marchery-Nagel Polygram SIL G/UV254 plates. Silica gel 60 (70–230 mesh) was used for flash column chromatography.  $^1$ H, and  $^{13}$ C NMR spectra were recorded on *Bruker DRX 300 MHz*, *Bruker Avance 4 Neo 400 MHz*, and *Bruker Avance 4 Neo 700 MHz* instruments. Chemical shifts ( $\delta$ ) are reported relative to tetramethylsilane (TMS) and referenced to the residual proton or carbon signal of the deuterated solvent: DMSO- $d_6$  (2.50 ppm), Methanol- $d_4$  (3.31) for  $^1$ H NMR; DMSO- $d_6$  (39.52 ppm), Methanol- $d_4$  (49.00) for  $^{13}$ C NMR spectra.  $^1$ H and  $^{13}$ C assignments are based on COSY, HSQC, and HMBC experiments. ESI-MS experiments were performed on a Thermo Fisher QExactive Classic. Samples were analyzed in the positive-ion mode."

#### Synthesis of Brc<sub>3</sub>DPQ<sub>1</sub> (as dihydrobromide salt)

7-(*N*-((2'-Hydroxyethyl)aminomethyl)-7-deaza-2,6-diaminopurine (trifluoroacetate salt) (100 mg, 285 μmol; prepared according to ref. [1]) was dissolved aqueous hydrobromic acid (65 %, 1.5 mL) and heated at 80 °C for 48 h. The volatiles were removed under reduced pressure to give  $Brc^3DPQ_1$  (dihydrobromide salt). Yield: 130 mg of  $Brc_3DPQ_1$  as a light-brown solid (98%). TLC: *n*-butanol / acetic acid / water 2:1:1,  $R_f$ : 0.60. <u>HR-ESI-MS</u> (m/z): [M+H]<sup>+</sup> found: 285.0457; [M+H]<sup>+</sup> calculated: 285.0458.  $\frac{1}{1}$ H-NMR (400 MHz, DMSO- $d_6$ , 25 °C): δ 11.97 (d,  $J_{HH}$  = 2.2 Hz, 1H, HN(9)), 8.95 (bs, 2H,  $H_2$ N<sup>+</sup>), 8.19 (s, 2H,  $H_2$ N(6)), 7.30 (bs, 2H,  $H_2$ N(2)), (d,  $J_{HH}$  = 2.3 Hz, 1H, HC(8)), 4.41 (m, 2H,  $H_2$ CC(7')), 3.73 (t, 2H,  $J_{HH}$  = 7.0 Hz,  $H_2$ C(2')), 3.43 (m, 2H,  $H_2$ C(1')) ppm.  $\frac{13}{1}$ C-NMR (100 MHz, DMSO- $d_6$ ): δ 153.0 & 151.2 C(2) & C(4) & C(6), 124.2 C(7), 106.2 C(8), 93.5 C(5), 47.0 C(1'), 41.5  $H_2$ CC(7), 26.4 C(2') ppm. For NMR spectra see Supplementary Figures 1-3.

#### Synthesis of Brc₃HBC

[4-((3-Hydroxypropyl)(methyl)amino)-benzylidene]-4-cyanophenylacetonitrile (105 mg, 331 µmol; prepared according to ref. [2]) was dissolved in dichloromethane (2.0 mL) and cooled to 0 °C under argon atmosphere. Then, triphenylphosphine (PPh<sub>3</sub>, 130 mg, 496 µmol) and carbon tetrabromide (CBr<sub>4</sub>, 165 mg, 496 µmol) were added and stirred at room temperature. After two hours reaction time, the entire mixture was loaded on a silica gel column and eluted with 100% dichloromethane. <u>Yield:</u> 104 mg of Brc<sub>3</sub>HBC as an orange solid (83%). HR-ESI-MS (m/z): [M+H]<sup>+</sup> calcd.: 380.08, found: 380.08. <sup>1</sup>H-NMR:

(400 MHz, DMSO- $d_6$ , 25 °C): 2.08 (2H, p, J = 6.88 Hz, BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 3.04 (3H, s, CH<sub>3</sub>), 3.57 (4H, m, BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 6.85 (2H, d, J = 9.15 Hz, CH (11&13)), 7.84 – 7.93 (6H, m, CH (2&6, 3&5, 10&14)), 8.01 (1H, s, CH (8)).  $\frac{13}{2}$ C-NMR: (400 MHz, DMSO- $d_6$ , 25 °C): δ = 29.66 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 32.17 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 38.10 (CH<sub>3</sub>), 49.86 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 100.16 C(7), 109.71 C(1), 111.52 C(11&13), 118.69 & 118.78 (2xCN), 120.38 C(9), 125.47 C(3&5), 131.99 C(10&14), 132.89 C(2&6), 139.56 C(4), 145.38 C(8), 151.11 C(12). For NMR spectra see Supplementary Figures 4,5.

#### Synthesis of MsOc<sub>3</sub>HBC

[4-((3-Hydroxypropyl)(methyl)amino)-benzylidene]-4-cyanophenylacetonitrile (51.0 mg, 161 μmol; prepared according to ref. [2]), triethylamine (NEt₃, 48.8 mg, 67.2 μL, 482 μmol) and methanesulfonylchloride (MsCl, 27.6 mg, 18.7 μL, 241 μmol) were dissolved in dichloromethane (4.0 mL) and stirred overnight at room temperature. After reaction control and 100% consumption of the starting material, the entire mixture was poured on a silica gel column and the product was eluted using 0 - 1% methanol in dichloromethane. <u>Yield:</u> 56.0 mg of MsOc₃HBC as an orange solid (88%). <u>HR-ESI-MS</u> (m/z): [M+H]<sup>+</sup> calcd.: 396.14, found: 396.14.  $^{1}$ H-NMR: (400 MHz, CDCl₃, 25 °C): 2.09 (2H, p, J = 6.40, (MsOCH₂CH₂CH₂NR₂), 3.03 (3H, s, S-CH₃), 3.09 (3H, s, N-CH₃), 3.60 (2H, t, J = 6.96, MsOCH₂CH₂CH₂CH₂NR₂), 4.30 (2H, t, J = 5.84, MsOCH₂CH₂CH₂NR₂), 6.75 (2H, d, J = 8.94 Hz, CH (11&13)), 7.48 (1H, s, CH (8)). 7.70 (4H, q, J = 8.94 Hz, CH (2&6, 3&5), 7.88 (2H, d, J = 8.97 Hz, CH (10&14)).  $^{13}$ C-NMR: (100 MHz, CDCl₃, 25 °C):  $\delta$  = 27.06 (MsOCH₂CH₂CH₂NR₂), 37.62 (S-CH₃), 38.80 (N-CH₃), 48.56 (MsOCH₂CH₂CH₂NR₂), 67.32 (MsOCH₂CH₂CH₂NR₂), 102.72 **C**(7), 111.22 **C**(1), 111.74 **C**(11&13), 118.75 (2x**C**N), 121.31 **C**(9), 125.86 **C**(3&5), 132.31 **C**(10&14), 132.79 **C**(2&6), 140.10 **C**(4), 144.71 **C**(8), 151.15 **C**(12). For NMR spectra see Supplementary Figures 6,7.

#### Synthesis of MsOc<sub>3</sub>HBC-vinyl

[4-((3-Hydroxypropyl)(methyl)amino)-benzylidene]-4-vinyl-phenylacetonitrile (274 mg, prepared according to ref. [2]), triethylamine (NEt<sub>3</sub>, 261 mg, 360 µL, 2.60 mmol) and methanesulfonylchloride (MsCl, 148 mg, 99.9 µL, 1.30 mmol) were dissolved in in 20 mL dichloromethane and stirred for 16 hours overnight. Then, the entire mixture was poured onto a silica gel column and the product was eluted by using 0-1% methanol in dichloromethane. Yield: 316 mg of MsOc<sub>3</sub>HBC-vinyl as an orange solid (93%). HR-ESI-MS (m/z): [M+H]<sup>+</sup> calcd.: 397.16, found: 397.16. <sup>1</sup>H-NMR:  $(400 \text{ MHz}, \text{CDCl}_3, 25 \,^{\circ}\text{C})$ :  $\delta = 2.08 \, (2\text{H}, \text{p}, J = 6.42 \, \text{Hz}, \text{MsOCH}_2\text{C}\text{H}_2\text{CH}_2\text{N}), 3.02 \, (3\text{H}, \text{s}, \text{S-C}\text{H}_3),$ 3.06 (3H, s, N-C $H_3$ ), 3.58 (2H, t, J = 6.94 Hz, MsOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 4.30 (2H, t, J = 5.92 Hz, MsOC $H_2$ CH<sub>2</sub>CH<sub>2</sub>N), 5.29 & 5.79 (2H, dxd, J = 30.68 Hz, CH=C $H_2$  (vinyl)), 6.73 (3H, m, CH (11&13) &  $CH = CH_2 \text{ (vinyl)}, 7.41 \text{ (1H, s, } CH \text{ (8), } 7.44 \text{ (2H, d, } J = 8.35 \text{ Hz, } CH \text{ (3&5))}, 7.59 \text{ (2H, d, } J = 8.45 \text{ Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J = 8.45 Hz, } CH \text{ (2H, d, J =$ (2&6)), 7.85 (2H, d, J = 8.88 Hz, C**H** (10&14)).  $\frac{13}{13}$  (100 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta = 27.05$ (MsOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N),37.59 (S-**C**H₃), 38.76 (N-**C**H<sub>3</sub>), 48.54 (MsOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 67.45 (MsOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 104.92 C(7), 111.74 C(11&13), 114.64 (CH=CH<sub>2</sub> (vinyl)), 119.38 (CN), 122.14

C(9), 125.68 C(2&6), 126.84 C(3&5), 131.59 C(10&14), 134.88 C(4), 136.18 ( $CH=CH_2$  (vinyl)), 137.52 C(1), 141.93 C(8), 150.42 C(12). For NMR spectra see Supplementary Figures 8,9.

#### Synthesis of Brc<sub>3</sub>DBF

Step 1: 2-(*N-tert*-Butyloxycarbonyl)aminoethyloxy)dibenzo[*b,d*]furan (BocDFB): To a solution of 2-hydroxydibenzo[*b,d*]furan (600 mg, 3.26 mmol) and triphenylphosphine (1.28 g, 4.96 mmol, 1.5 eq) in tetrahydrofuran (25 mL) was added *tert*-butyl(2-hydroxyethyl)carbamate (756 μL, 4.89 mmol, 1.5 eq). Diethyl azodicarboxylate (960 μL, 2.44 mmol, 1.5 eq 40% solution in toluene) was introduced over the course of 10 minutes. After 3 h at room temperature, two drops of methanol were added and the reaction mixture was evaporated to dryness. The crude mixture was purified by column chromatography on silica gel (5-10% ethyl acetate in cyclohexane). <u>Yield:</u> 1.07 g of BocDFB as a white crystalline solid (91%). <u>TLC</u>: 25% ethyl acetate in cyclohexane,  $R_f$ : 0.42. <u>ESI-MS</u> (m/z): [M+Na]<sup>+</sup> found: 350.1358; [M+H]<sup>+</sup> calculated: 350.1363. <u>1H-NMR</u> (400 MHz, DMSO- $d_6$ , 25 °C): δ 8.12 (m, 1H, HC(9)), 7.74 (d,  $J_{HH}$  = 2.5 Hz, 1H, HC(1)), 7.68-7.56 (m, 2H, HC(4), HC(6)) 7.50 (m, 1H, HC(7)), 7.38 (m, 1H, HC(8)), 7.13-7.01 (m, 2H, HC(1)), 4.06 (t,  $J_{HH}$  = 5.9 Hz, 2H,  $H_2C(1)$ ), 3.35 (q,  $J_{HH}$  = 5.8 Hz, 2H,  $H_2C(2)$ ), 1.39 (s, 9H,  $H_3C(Boc)$ ).  $\frac{13}{12}C-NMR}$  (400 MHz, CDCl<sub>3</sub>): δ 157.0 C(6a), 156.1 C(carbonyl, Boc), 154.9 C(2), 151.2 C(4a), 127.3 C(7), 124.9 & 124.5 C(1a) & C(9a), C(8)122.6, 120.7 C(9), 115.7 C(3), 112.3 C(4), 111.9 C(6), 104.9 C(1), 79.7 C(carbonyl, Boc), 68.2 C(1), 40.4 C(2), 28.5  $C(CH_3, Boc)$  ppm.

Step 2-(*N*-(*tert*-Butyloxycarbonyl)-*N*-(3"-bromopropyl))-2'-aminoethoxy)dibenzo[*b*,*d*]furan (BocBrc3DFB): To a solution of BocDFB (115 mg, 351 µmol) in N,N-dimethylformamide (0.5 mL) was added sodium hydride (17 mg, 0.42 mmol, 1.2 eq, 60% dispersion in mineral oil). After stirring vigorously for 15 minutes 15-crown-5 (83 µL, 0.42 mmol, 1.2 eq) was introduced and the reaction continued for 15 minutes. 1,3-dibromopropane (107 µL, 1.05 mmol, 3 eq) was added. After 16 h, the reaction was quenched upon the addition of saturated aqueous ammonium chloride. The turbid mixture was extracted with ethyl acetate three times, the combined organic extracts were washed with brine, dried over magnesium sulfate and evaporated. The compound was purified by flash column chromatography on silica gel provided. Yield: 24 mg, as a colorless solid (15%). TLC: 25% ethyl acetate in cyclohexane, Rf : 0.64. ESI-MS (m/z): [M+Na]<sup>+</sup> found: 470.0913; [M+Na]<sup>+</sup> calculated: 470.0937. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  7.91 (d,  $J_{HH}$  = 7.6 Hz, 1H, HC(9)), 7.54 (d,  $J_{HH}$  = 8.2 Hz, 1H, HC(6)), 7.50-7.39 (m, 3H, HC(1), HC(4), HC(7)), 7.32 (m, 1H, HC(8)), 7.04 (dd,  $J_{HH}$  = 2.6, 9.0 Hz, 1H, HC(3)), 4.31-4.10 (m, 2H,  $H_2C(1')$ , 3.73-3.60 (m, 2H,  $H_2C(2')$ ), 3.51 (t,  $J_{HH} = 6.9$  Hz, 2H,  $H_2C(1'')$ ), 3.44 (t,  $J_{HH} = 6.2$  Hz, 2H, H<sub>2</sub>C(3")), 2.26-2.12 (m, 2H, H<sub>2</sub>C(2")), 1.48 (s, 9H, H<sub>3</sub>C(Boc)) ppm. <sup>13</sup>C-NMR (400 MHz, CDCl<sub>3</sub>, 25 °C): δ 157.1 **C**(6a), 155.7 **C**(carbonyl, Boc), 155.0 **C**(2), 151.1 **C**(4a), 127.3 **C**(7), 124.9 & 124.5 **C**(1a) & C(9a), 122.6 C(8), 120.7 C(9), 115.6 C(3), 112.3 C(4), 111.9 C(6), 104.8 C(1), 80.2 C(4), 115.6 C(3), 112.3 C(4), 111.9 C(6), 104.8 C(1), 80.2 C(4)67.7 **C**(1'), 47.8 & 47.5 **C**(2') & **C**(1"), 32.1 **C**(2"), 30.9 **C**(3"), 28.6 **C**(CH<sub>3</sub>, Boc) ppm.

**Step 3:** 2-(*N*-(3"-Bromopropyl)2'-aminoethyloxy)dibenzo[*b*,*d*]furan hydrotrifluoroacetate (Brc<sub>3</sub>DFB): To a solution of BocBrc<sub>3</sub>DFB (24 mg, 0.35 mmol) in chloroform (400 μL) was added trifluoroacetic acid (40 μL). After 2 h at room temperature the volatiles were removed *in vacuo* and the residual oil was coevaporated three times with chloroform. <u>Yield:</u> 24 mg of Brc<sub>3</sub>DFB as a white crystalline solid (95%). <u>ESI-MS</u> (m/z): [M+H]<sup>+</sup> found: 348.0576; [M+H]<sup>+</sup> calculated: 348.0594. <u>1H-NMR</u> (400 MHz, DMSO- $d_6$ , 25 °C): δ 8.86 (bs, 2H,  $H_2$ N<sup>+</sup>), 8.14 (d,  $J_{HH}$  = 7.4 Hz, 1H, HC(9)), 7.79 (d,  $J_{HH}$  = 2.6 Hz, 1H, HC(1)), 7.70-7.64 (m, 2H, HC(4) & HC(6)), 7.53 (m, 1H, HC(7)), 7.40 (m, 1H, HC(8)), 7.18 (dd,  $J_{HH}$  = 2.6 & 8.9 Hz, 1H, HC(3)), 4.35 (t,  $J_{HH}$  = 5.0 Hz, 2H,  $H_2$ C(1")), 3.64 (t,  $J_{HH}$  = 6.4 Hz, 2H,  $H_2$ C(3")), 3.50-3.43 (m, 2H,  $H_2$ C(2")), 3.22-3.12 (m, 2H,  $H_2$ C(1")), 2.26-2.17 (m, 2H,  $H_2$ C(2")) ppm.  $\frac{13}{2}$ C-NMR (400 MHz, CDCl<sub>3</sub>, 25 °C): δ 157.99 (CF<sub>3</sub>COO<sup>-</sup>, q,  $J_{HH}$  = 34.1 Hz), 156.2 **C**(6a), 154.1 C(2), 150.4 **C**(4a), 127.7 **C**(7), 124.2 &

123.7 **C**(1a), & **C**(9a), 122.9 **C**(8), 121.2 **C**(9), 116.1 **C**(3), 112.4 **C**(4), 111.8 **C**(6), 105.5 **C**(1), 64.4 **C**(1'), 46.2 & 46.0 **C**(2') & **C**(1"), 31.1 **C**(3"), 28.6 **C**(2") ppm. For NMR spectra see Supplementary Figures 10-12.

#### Synthesis of Br-C4-EG-Biotin

To a suspension of biotin (90 mg, 369 µmol) in 1.8 mL dry DMF was added 2-(4-bromobutoxy)ethan-1ol [3] (93 mg, 470 µmol) dissolved in 0.5 mL dry DMF. Then, N,N'-dicyclohexylcarbodiimide (84 mg, 405 umol) and N.N-dimethylaminopyridine (DMAP, 2.5 mg) were added and stirred at room temperature overnight. Afterwards, the slightly cloudy solution was heated to 60 °C for 30 minutes, until a clear yellowish solution remained. All volatiles were removed under vacuo and the crude compound was purified using silica gel chromatography with 0 to 10% methanol in dichloromethane as gradient. Yield: 62 mg of Br-C4-EG-Biotin as a colorless solid (40%). <u>TLC:</u> (10% methanol in dichloromethane): R<sub>f</sub> = 0.94 spots were visualized with dimethylaminocinnamaldehyde staining (pink spots). HR-ESI-MS (m/z): [M+H]<sup>+</sup> calcd.: 423.09 & 425.09, found: 423.09 & 425.09. <sup>1</sup>H-NMR (400 MHz, DMSO-d<sub>6</sub>, 25 °C): δ 5.82 (s, 1H, HN(1"")), 5.28 (s, 1H, HN(3"")), 4.52-4.47 (m, 1H, HC(6""a)), 4.33-4.28 (m, 1H, HC(3""a), 4.23-4.18 (m, 2H,  $H_2C(1')$ ), 3.61 (t,  $J_{HH}$  = 4.7 Hz, 2H,  $H_2C(2')$ ), 3.50 (t,  $J_{HH}$  = 6.3 Hz, 2H,  $H_2C(4'')$ ), 3.44 (t,  $J_{HH}$ = 6.8, 2H,  $H_2C(4")$ ), 3.18-3.11 (m, 1H, HC(4")), 2.90 (dd,  $J_{HH}$  = 5.0, 12.8 Hz, 1H,  $H_aC(6")$ ), 2.73 (d,  $J_{HH}$ = 12.8 Hz, 1H,  $H_bC(6''')$ ), 2.37 (t,  $J_{HH}$  = 7.6, 2H,  $H_2C(2')$ ), 1.99-1.90 (m, 2H,  $H_2C(3'')$ ), 1.78-1.62 (m, 6H, H<sub>2</sub>C(3) & H<sub>2</sub>C(4) & H<sub>2</sub>C(2")), 1.51-1.39 (m, 2H, H<sub>2</sub>C(5)) ppm. <sup>13</sup>C-NMR (100 MHz, DMSO-d<sub>6</sub>, 25 °C): δ 173.8 **C**(1), 163.6 **C**(2"), 70.4 **C**(1"), 68.8 **C**(2'), 63.5 **C**(1'), 62.1 **C**(3"'a), 60.2 **C**(6"'a), 55.6 **C**(4"'), 40.7 C(6"), 33.9 & 33.8 C(4") & C(2), 29.7 C(3"), 28.4 & 28.4 & 28.3 C(3) & C(5), C(2") ppm. For NMR spectra see Supplementary Figures 13,14.

#### References and Notes

- [1] Neuner, E., Frener, M., Lusser, A. & Micura, R. Superior cellular activities of azido- over amino-functionalized ligands for engineered preQ1 riboswitches in *E.coli. RNA Biol.* **15**, 1376–1383 (2018).
- [2] Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. *Nat. Biotechnol.* **37**, 1287–1293 (2019).
- [3] 2-(4-Bromobutoxy)ethan-1-ol was obtained by 4,4'-dimethoxytritylation of ethylene glycol, followed by alkylation using 1,4-dibromobutane, and subsequent detritylation.

#### **Supplementary Tables**

Rihozyme

**Supplementary Table 1**. Comparison of preQ<sub>1</sub> and Pepper systems for covalent RNA labeling to literature data of other ribozymes.

Characterization data (colection) Michaelic Monton

| ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Characterization data (selection)                                                                                       |                                                                                                                                    | ction                                                                          | Michaelis-Menten                                                |                                                                                      |                                 |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Size                                                                                                                    | рН                                                                                                                                 | Mg2+                                                                           | k(obs)                                                          | k(cat)                                                                               | Km                              | k(cat)/Km                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt                                                                                                                      |                                                                                                                                    | [mM]                                                                           | [min-1]                                                         | [min-1]                                                                              | [μM]                            | [M-1 min-1]                    |
| This work - Self-alkylating Tt preQ1-I riboswitch aptamer (Bromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                         |                                                                                                                                    | in a typica                                                                    | l experiment                                                    |                                                                                      |                                 |                                |
| preQ1 aptamer wt C15 + Brc3DPQ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                                                                                                                      | 6.0                                                                                                                                | 2.0                                                                            | 0.00382                                                         | 0.00337                                                                              | 0.162                           | 20782                          |
| preQ1 aptamer C15U + Brc3DPQ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33                                                                                                                      | 6.0                                                                                                                                | 2.0                                                                            | 0.00270                                                         | 0.00335                                                                              | 0.320                           | 10469                          |
| preQ1 aptamer wt C15 + Brc3preQ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                      | 6.0                                                                                                                                | 2.0                                                                            | 0.00225                                                         | 0.00253                                                                              | 0.173                           | 14644                          |
| preQ1 aptamer C15U + Brc3preQ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         | 6.0                                                                                                                                | 2.0                                                                            | 0.00076                                                         | n.d.                                                                                 | n.d.                            | n.d.                           |
| This work - Self-alkylating co FLAP (Mesylate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                                                                                                                                    |                                                                                |                                                                 |                                                                                      |                                 |                                |
| Pepper aptamer + MsOc3HBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                                                                                                      | 6.0                                                                                                                                | 2.0                                                                            | 0.00621                                                         | _                                                                                    | _                               | 1773810                        |
| In vitro selected self-biotinyating ribozyme (Methylepoxide) — David Liu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı & cowoı                                                                                                               | rkers                                                                                                                              |                                                                                |                                                                 |                                                                                      |                                 |                                |
| McDonald, R. I. et al. Electrophilic activity-based RNA probes reveal a self                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                         |                                                                                                                                    | r RNA labe                                                                     | ا<br>ling. <i>Nat. Che</i>                                      | m. Biol . 10, 10                                                                     | 49–1054 (2                      | 2014))                         |
| "Liu" ribozyme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42                                                                                                                      | 7.4                                                                                                                                | 10.0                                                                           |                                                                 | 0.00160                                                                              | 12000                           | 0.1                            |
| In vitro selected self-biotinyating ribozyme "Liu" (Epoxide) – J. Piccirilli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0. sower                                                                                                                | koro                                                                                                                               |                                                                                |                                                                 |                                                                                      |                                 |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                                                    |                                                                                | t Cham Bial                                                     | 10 276 204 /                                                                         | 2022)                           |                                |
| Krochmal, D. et al. Structural basis for substrate binding and catalysis by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>1 1</del>                                                                                                          |                                                                                                                                    |                                                                                |                                                                 |                                                                                      |                                 | 2.0                            |
| "Liu" ribozyme + Methylepoxide-Biotin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                                                                      | 7.4                                                                                                                                | 10.0                                                                           | 0.00260                                                         | 0.00410                                                                              | 2100                            | 2.0                            |
| "Liu" ribozyme + Epoxide-Biotin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58<br>58                                                                                                                | 7.4<br>7.4                                                                                                                         | 10.0<br>5.0                                                                    | 0.00640<br>0.00675                                              |                                                                                      | _                               | 3.0<br>3.2                     |
| This work "Liu" ribozyme + Epoxide-Biotin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58                                                                                                                      | 7.4                                                                                                                                | 5.0                                                                            | 0.00675                                                         |                                                                                      | -                               | 3.2                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                                                    |                                                                                |                                                                 |                                                                                      |                                 |                                |
| This work – "Liu" ribozyme (Bromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                                                                                                                    |                                                                                |                                                                 |                                                                                      |                                 |                                |
| This work – "Liu" ribozyme (Bromide) "Liu" ribozyme + Bromoalkyl-Biotin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                      | 7.4                                                                                                                                | 5.0                                                                            | 0.12395                                                         | _                                                                                    | -                               | 59.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                                                                                                                    | 5.0                                                                            | 0.12395                                                         | _                                                                                    | -[                              | 59.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) – A. Jäschk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e & cowo                                                                                                                | rkers                                                                                                                              |                                                                                |                                                                 | -<br>957–964 (2012)                                                                  | <u>-</u> [                      | 59.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e & cowo                                                                                                                | rkers                                                                                                                              |                                                                                |                                                                 | –<br>957–964 (2012)<br>0.02900                                                       | 1450                            | 59.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e & cowo<br>nibitor of<br>232                                                                                           | rkers<br>serine p<br>5.0                                                                                                           | roteases. (                                                                    | hem. Sci. 4, 9                                                  |                                                                                      |                                 |                                |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e & cowo<br>nibitor of<br>232                                                                                           | rkers<br>serine p<br>5.0<br>rkers                                                                                                  | roteases. <i>C</i><br>5.0                                                      | hem. Sci. 4, S<br>n.d.                                          | 0.02900                                                                              |                                 |                                |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e & cowo<br>nibitor of<br>232<br>a & cowor<br>mes. ACS                                                                  | rkers<br>serine p<br>5.0<br>rkers<br>Chem. B                                                                                       | roteases. <i>C</i><br>5.0<br>iol . 9, 1680                                     | hem. Sci. 4, 5<br>n.d.<br>)–1684 (2014                          | 0.02900                                                                              | 1450                            | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e & cowo<br>nibitor of<br>232                                                                                           | rkers<br>serine p<br>5.0<br>rkers                                                                                                  | roteases. <i>C</i><br>5.0                                                      | hem. Sci. 4, S<br>n.d.                                          | 0.02900                                                                              |                                 |                                |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e & cowo<br>nibitor of<br>232<br>a & cowor<br>mes. ACS<br>157<br>135                                                    | rkers<br>serine p<br>5.0<br>rkers<br><i>Chem. B</i><br>7.4<br>7.4                                                                  | 5.0 5.0 5.0 5.0                                                                | n.d.<br>0-1684 (2014)                                           | 0.02900<br>).<br>0.00035                                                             | 1450<br>158                     | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta                                                                                                                                                                                                                                                                                                                                                                                                              | e & cowo<br>nibitor of<br>232<br>a & cowor<br>mes. ACS<br>157<br>135                                                    | rkers<br>serine p<br>5.0<br>rkers<br>Chem. B<br>7.4<br>7.4                                                                         | roteases. <i>C</i> 5.0 5.0 6iol . 9, 1680 5.0 5.0                              | n.d. 2014<br>0.00760<br>0.00730                                 | 0.02900<br>).<br>0.00035                                                             | 1450<br>158                     | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme.                                                                                                                                                                                                                                                                                                                                | e & cowo nibitor of 232 a & cowor mes. ACS 157 135 b k & cowo Nature                                                    | rkers<br>serine p<br>5.0<br>rkers<br><i>Chem. B</i><br>7.4<br>7.4<br>rkers                                                         | roteases. <i>C</i> 5.0 5.0 6.01 . 9, 1680 5.0 5.0                              | n.d. 2014<br>0.00760<br>0.00730                                 | 0.02900<br>).<br>0.00035                                                             | 1450<br>158<br>367              | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Ribozyme BL8-6 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)                                                                                                                                                                                                                                                                | e & cowo nibitor of 232  a & cowor mes. ACS 157 135  k & cowo Nature 3                                                  | rkers<br>serine p<br>5.0<br>rkers<br><i>Chem. B</i><br>7.4<br>7.4<br>rkers<br>374, 777                                             | roteases. <i>C</i> 5.0 5.0 6iol . 9, 1680 5.0 5.0 782 (1995                    | n.d. 0–1684 (2014) 0.00760 0.00730 ).                           | 0.02900<br>).<br>0.00035<br>0.00063                                                  | 1450<br>158                     | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme.                                                                                                                                                                                                                                                                                                                                | e & cowo nibitor of 232 a & cowor mes. ACS 157 135 b k & cowo Nature                                                    | rkers<br>serine p<br>5.0<br>rkers<br><i>Chem. B</i><br>7.4<br>7.4<br>rkers                                                         | roteases. <i>C</i> 5.0 5.0 6.01 . 9, 1680 5.0 5.0                              | n.d. 2014<br>0.00760<br>0.00730                                 | 0.02900<br>).<br>0.00035                                                             | 1450<br>158<br>367              | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Ribozyme BL8-6 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)                                                                                                                                                                                                                                                                | e & cowo nibitor of 232  a & cowor mes. ACS 157 135  k & cowo Nature 3 155 155                                          | rkers<br>serine p<br>5.0<br>rkers<br><i>Chem. B</i><br>7.4<br>7.4<br>rkers<br>374, 777-<br>7.4                                     | roteases. <i>C</i> 5.0 5.0 6iol . 9, 1680 5.0 5.0 782 (1995                    | n.d. 0–1684 (2014) 0.00760 0.00730 ).                           | 0.02900<br>).<br>0.00035<br>0.00063                                                  | 1450<br>158<br>367              | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Ribozyme BL8-6 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE) Ribozyme BL2.8-7 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)                                                                                                                                                                                              | e & cowo nibitor of 232  a & cowor mes. ACS 157 135  k & cowo Nature 3 155 155                                          | rkers serine p 5.0 rkers Chem. B 7.4 7.4 rkers 374, 777 7.4 7.4 workers                                                            | roteases. C<br>5.0<br>5.0<br>5.0<br>5.0<br>-782 (1995<br>5.0<br>5.0            | 0–1684 (2014<br>0.00760<br>0.00730<br>).<br>0.00100<br>0.05000  | 0.02900<br>).<br>0.00035<br>0.00063                                                  | 1450<br>158<br>367              | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozyme Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Ribozyme BL8-6 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE) Ribozyme BL2.8-7 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)                                                                                                                                                                                            | e & cowo nibitor of 232  a & cowor mes. ACS 157 135  k & cowo Nature 3 155 155                                          | rkers serine p 5.0 rkers Chem. B 7.4 7.4 rkers 374, 777 7.4 7.4 workers                                                            | roteases. C<br>5.0<br>5.0<br>5.0<br>5.0<br>-782 (1995<br>5.0<br>5.0            | 0–1684 (2014<br>0.00760<br>0.00730<br>).<br>0.00100<br>0.05000  | 0.02900<br>).<br>0.00035<br>0.00063                                                  | 1450<br>158<br>367              | 20.0                           |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozyme Ribozyme 1 + 5-(Iodacetamido)fluorescein Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Ribozyme BL8-6 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE) Ribozyme BL2.8-7 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)  In vitro selected methylating ribozyme (O6-Methylguanine) — C. Höbard Scheitl, C. P. M. et al., Structure and mechanism of the methyltransferase                                          | e & cowo nibitor of 232  a & cowor mes. ACS 157 135  k & cowo Nature 3 155 155  iner & cov ribozyme                     | rkers serine p 5.0 rkers Chem. B 7.4 7.4 rkers 374, 777 7.4 7.4 workers e MTR1.                                                    | roteases. C<br>5.0<br>5.0<br>5.0<br>5.0<br>-782 (1995<br>5.0<br>5.0            | 0-1684 (2014<br>0.00760<br>0.00730<br>).<br>0.00100<br>0.05000  | 0.02900<br>).<br>0.00035<br>0.00063<br>—<br>0.62400                                  | 1450<br>158<br>367<br>1000<br>- | 20.0<br>2.2<br>1.7             |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozy Ribozyme 1 + 5-(Iodacetamido)fluorescein  Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Ribozyme BL8-6 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)  Ribozyme BL2.8-7 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)  In vitro selected methylating ribozyme (O6-Methylguanine) — C. Höbard Scheitl, C. P. M. et al., Structure and mechanism of the methyltransferase Ribozyme MTR1 + m6G  Ribozyme MTR1 + m6G | e & cowo nibitor of 232  a & cowor mes. ACS 157 135  k & cowo Nature 3 155 155 155  cner & cov ribozyme 40 40           | rkers<br>serine p<br>5.0<br>rkers<br>Chem. B<br>7.4<br>7.4<br>rkers<br>374, 777-<br>7.4<br>7.4<br>workers<br>e MTR1.<br>7.5<br>6.0 | roteases. <i>C</i> 5.0 5.0 5.0 5.0 5.0 782 (1995 5.0 5.0 <i>Nat. Chem</i> 10.0 | 0-1684 (2014) 0.00760 0.00730  0.00100 0.05000  0.Biol. 18, 547 | 0.02900<br>).<br>0.00035<br>0.00063<br>—<br>0.62400<br>7–555 (2022).<br>0.00310      | 1450<br>158<br>367<br>1000<br>- | 20.0<br>2.2<br>1.7<br>1.0<br>- |
| "Liu" ribozyme + Bromoalkyl-Biotin  In vitro selected self-alkylating ribozyme (Chloroacetamide) — A. Jäschk Ameta, S. & Jäschke, A. An RNA catalyst that reacts with a mechanistic inl Ribozyme + Biotin-PEG4-D-Phe-Pro-Arg-chloromethyl ketone  In vitro selected self-alkylating ribozyme (Iodoacetamide) — J. Heemstra Sharma, A. K. et al. Fluorescent RNA Labeling Using Self-Alkylating Ribozyme Ribozyme 1 + 5-(Iodacetamido)fluorescein  Ribozyme 5FR1 + 5-(Iodacetamido)fluorescein  In vitro selected self-biotinyating ribozyme (Iodoacetamide) — J. Szosta Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Ribozyme BL8-6 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)  Ribozyme BL2.8-7 + N-biotinoyl-N-iodoacetyl-ethylenediamine (BIE)  In vitro selected methylating ribozyme (O6-Methylguanine) — C. Höbard Scheitl, C. P. M. et al., Structure and mechanism of the methyltransferase Ribozyme MTR1 + m6G                    | e & cowonibitor of 232  a & cowormes. ACS 157 135  k & cowo Nature 3 155 155 155  cner & covoribozyme 40 40  bbartner & | rkers serine p 5.0  rkers Chem. B 7.4 7.4  rkers 374, 777 7.4 7.4  workers e MTR1. 7.5 6.0                                         | 701 (1995                                                                      | 0-1684 (2014) 0.00760 0.00730 0.00100 0.05000 0.05000 0.06373   | 0.02900<br>0.00035<br>0.00063<br>-<br>0.62400<br>7–555 (2022).<br>0.00310<br>0.21000 | 1450<br>158<br>367<br>1000<br>- | 20.0<br>2.2<br>1.7<br>1.0<br>- |

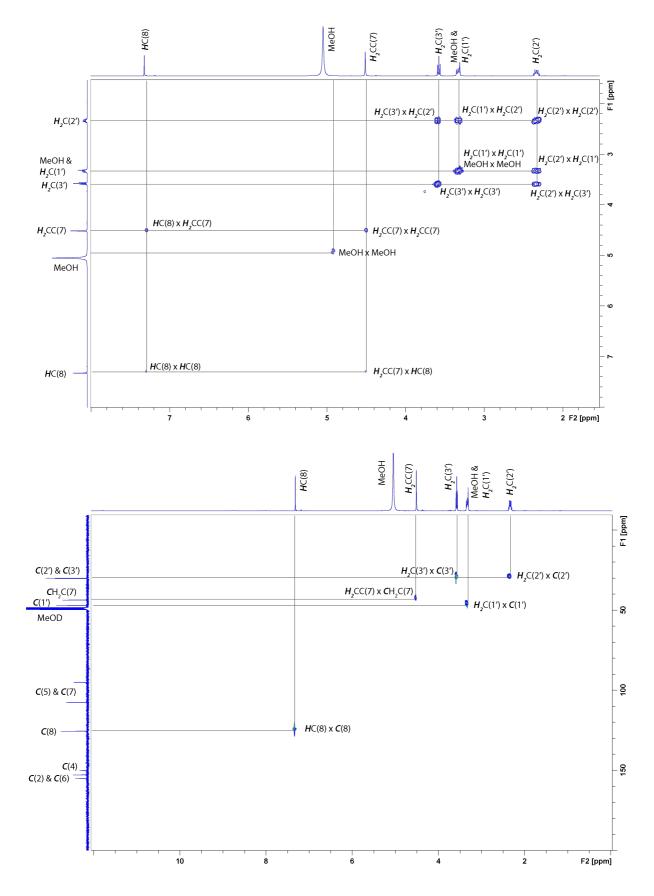
<sup>\*)</sup> kcat/Km: When kcat and Km are expressed together as kcat/Km, it represents the catalytic efficiency of the enzyme. Essentially, it indicates how efficiently an enzyme converts substrate into product at low substrate concentrations, taking into account both the enzyme's affinity for the substrate (Km) and its turnover rate (kcat).

<sup>\*\*)</sup> estimated, using the reported Kd of 3.5 nM (Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. *Nat. Biotechnol* . 37, 1287–1293 (2019).

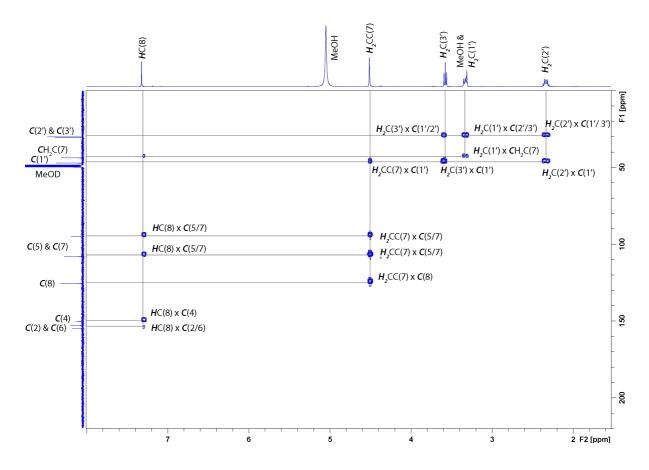
<sup>\*\*\*)</sup> estimated, using the reported Kd of 2.1 μM (Krochmal, D. et al. Structural basis for substrate binding and catalysis by a self-alkylating ribozyme. Nat. Chem. Biol . 18, 376–384 (2022).

## **Supplementary Table 2**. Synthetic and *in vitro* transcribed RNAs.

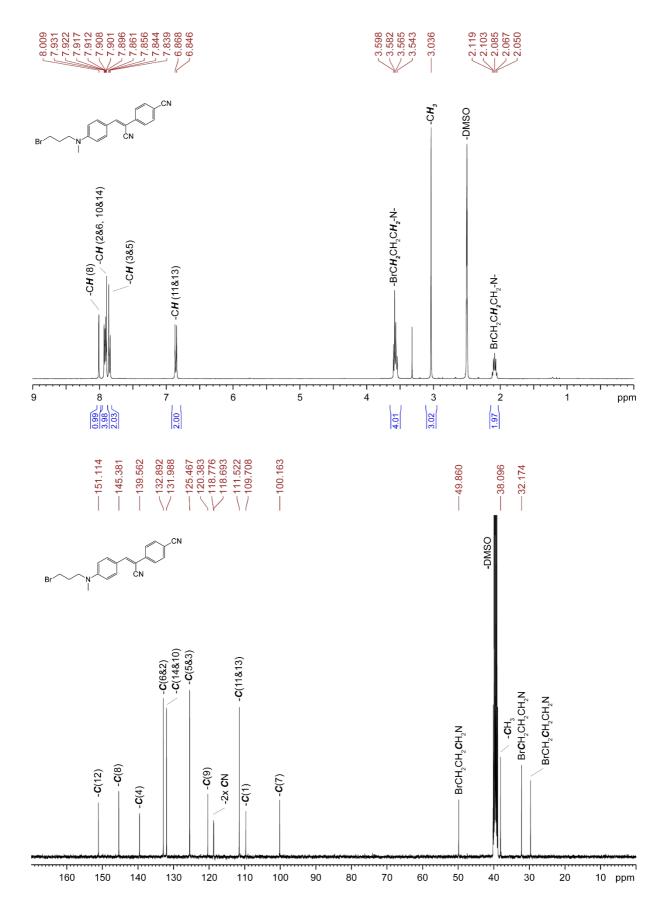
| RNA                       | Sequence (5' → 3')                                                                                                                                                                                                                                                                           | nt  | Molecular weight |          |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|----------|--|
|                           |                                                                                                                                                                                                                                                                                              | 110 | calc.            | found    |  |
|                           | Chemical synthesis                                                                                                                                                                                                                                                                           |     |                  |          |  |
| Tt wt                     | CUGGGUCGCAGUAACCCCAGUUAACAAAACAAG                                                                                                                                                                                                                                                            | 33  | 10582.50         | 10582.49 |  |
| Tt C15U                   | CUGGGUCGCAGUAAUCCCAGUUAACAAAACAAG                                                                                                                                                                                                                                                            | 33  | 10583.49         | 10583.59 |  |
| Tt c <sup>7</sup> G       | CUGGc <sup>7</sup> GUCGCAGUAACCCCAGUUAACAAAACAAG                                                                                                                                                                                                                                             | 33  | 10567.49         | 10567.78 |  |
| <i>Tt</i> G5A, C16U       | CUGGAUCGCAGUAACUCCAGUUAACAAAACAAG                                                                                                                                                                                                                                                            | 33  | 10581.50         | 10581.55 |  |
| B. subtilis               | AGAGGUUCUAGCUACACCCUCUAUAAAAAACUAA                                                                                                                                                                                                                                                           | 34  | 10818.62         | 10818.53 |  |
| B. subtilis C17U          | AGAGGUUCUAGCUACAUCCUCUAUAAAAAACUAA                                                                                                                                                                                                                                                           | 34  | 10819.63         | 10619.54 |  |
| C. antarcticus            | UGUGGUUCGCAACCAUCCCACAUAAAAAAACUAG                                                                                                                                                                                                                                                           | 34  | 10833.63         | 10833.43 |  |
| C. antarcticus C17U       | UGUGGUUCGCAACCAUUCCACAUAAAAAAACUAG                                                                                                                                                                                                                                                           | 34  | 10834.62         | 10834.59 |  |
| L. monocytogenes          | ACGUGGUUCAUUCAUACCAUCCCACGUAAAAAAC UAGGAG                                                                                                                                                                                                                                                    | 41  | 13099.99         | 13099.55 |  |
| S. pneumoniae             | CUUGGUGCUUAGCUUCUUUCACCAAGCAUAUUAC<br>ACGCGGAUAACCGCCAAAGGA                                                                                                                                                                                                                                  | 55  | 17537.58         | 17537.89 |  |
| S. dysenteriae            | AUUGGGUUCCCUCACCCCAAUGGUUAAUCAAAAAG<br>GU                                                                                                                                                                                                                                                    | 37  | 11784.14         | 11784.81 |  |
| L. rhamnosus              | ACGACGAUACUUAUUUCCUUUGAUCGUCGUUAUU<br>ACUGGCAAAGCCACAAAGGAG                                                                                                                                                                                                                                  | 55  | 17563.59         | 17563.30 |  |
| Pepper                    | GGCGCACUGGCGCUGCGCCUUCGGGCGCCAAUCGU<br>AGCGUGUCGGCGCC                                                                                                                                                                                                                                        | 49  | 15756.47         | 15756.59 |  |
| Pepper c <sup>7</sup> G   | GGCGCACUGGCGCUGCGCCUUCGGGCGCCAAUCGU<br>AGCGUc <sup>7</sup> GUCGGCGCC                                                                                                                                                                                                                         | 49  | 15755.48         | 15754.69 |  |
| 58 nt ( <i>Liu</i> )      | GGCCGCUCCAGAAGAGGGCCCCCUUGCCCGUUAUC<br>GGGGGCUAGGCUCGAUGUCGGCC                                                                                                                                                                                                                               | 58  | 18657.22         | 18656.68 |  |
|                           | In vitro transcription                                                                                                                                                                                                                                                                       |     |                  |          |  |
| 155 nt ( <i>Szostak</i> ) | GGAGGCACCACGGCUGGAUCCGGUUUAUUAUCAU<br>GAGCCCGACUCGGGCAGCACUGUACAUAAGCUCGG<br>AUGCCAUAGUUUAGACACUAUGGACGUAAAGCCCA<br>UGCUAGGCAAAGACAUUGACUGCAUGAGCGCCGCC<br>UUGGUCAUUAGGAUCG                                                                                                                  | 155 | -                | -        |  |
| 232 nt (Jäschke)          | GGAGCUCAGCCUUCACUGCUGGCCCCUCAUUCUCC GACAAUGUACGACCUUGCAUAUACCGCUAGCACGA ACGGUGUAGAUACCUGGAUCAUUACAACACCACGA UCUUCAAAUCGAAGAUGUUCGCAUGAUGUGCGCU AGCAAUAUAGUUUAGCGAGUAUAGCCGAACGCCG UGUUGAGUACCUAACGAUACCGGUGUGAGGUGCC UGUCUGGCACCACGGUCGGAUCCAC  Commercial source: primers and DNA fragments | 232 | -                | -        |  |
| Pepper_fwd                | GGCCGCCGGCGCACTGGCGCTTCGGGCGCC                                                                                                                                                                                                                                                               |     |                  |          |  |
| Pepper rev                | AATCGTAGCGTGTCGGCGCCGTGGCCGC  GGCCACGGCGCCGACACGCTACGATTGGCGCCCGAA GGCGCAGCGCCAGTGCGCCCGGC                                                                                                                                                                                                   |     |                  |          |  |


| Extension primer | 5Alexa647N/GTATCGGACCGATTACCTC        |  |  |
|------------------|---------------------------------------|--|--|
| preQ1            |                                       |  |  |
| F30-preQ1-Pepper | CCGAGTGCGGCCGCTTGCCATGTGTATCGGTCCGTTC |  |  |
| (dsDNA)          | ACTGGGTCGCAGTAACCCCAGTTAACAAAACAAGGG  |  |  |
| (3.02 ) 3.1      | AGGTAATCGGTCCGATACTCTGATGATGGGTCCCAAA |  |  |
|                  | AGGCGCACTGGCGCTGCGCCTTCGGGCGCCAATCGT  |  |  |
|                  | AGCGTGTCGGCGCCAAAAAAGGGTCCCATCATTCATG |  |  |
|                  | GCAAGTGGCCGCGGTCGGC 3'                |  |  |

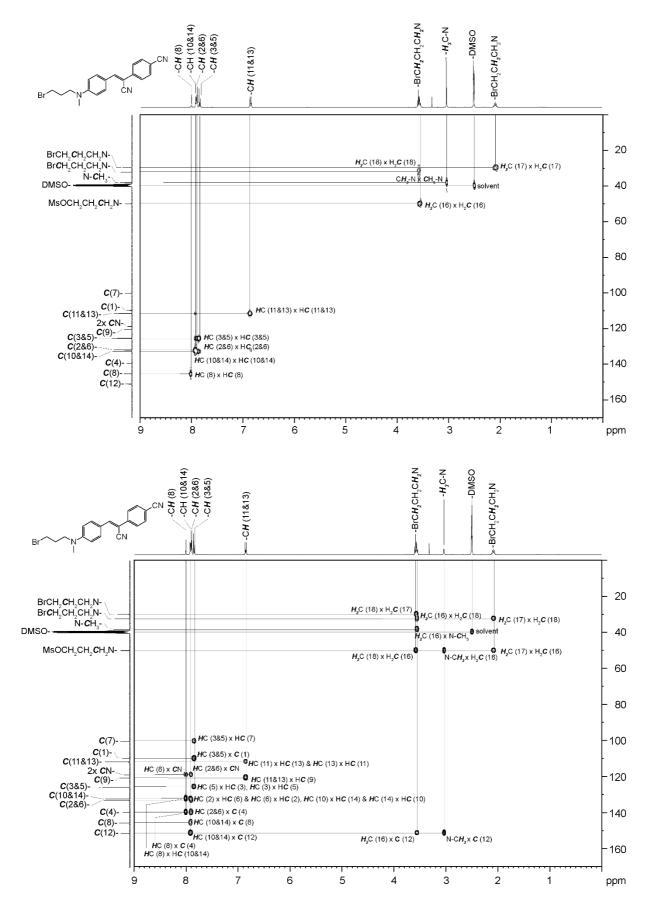
## **Supplementary Figures** -8.7073DMSO $H_2^{C(3')}$ $H_2^{C(2')}$ (6)NH $H_2^{C(1')}$ *H*<sub>2</sub>N(2) *H*C(8) H<sub>2</sub>N(6) 703 19 30 207 10 [ppm] -7.3204 МеОН MeOH & **H**<sub>2</sub>C(1') HC(8) 11.92 2.04 12 10 8 [ppm] - 125.5523 - 107.7743 - 95.0049 \_ ]- C(2) & C(6) C(4) C(5) & C(7) C(1') C(8)


**Supplementary Fig. 1** | NMR spectroscopic analysis of Brc<sub>3</sub>DPQ<sub>1</sub> ligand. **a)**  $^{1}$ H NMR spectrum (400 MHz, DMSO- $d_6$ ), top;  $^{1}$ H NMR (400 MHz, CD<sub>3</sub>OD) spectrum, middle;  $^{13}$ C NMR (400 MHz, CD<sub>3</sub>OD) spectrum (bottom).

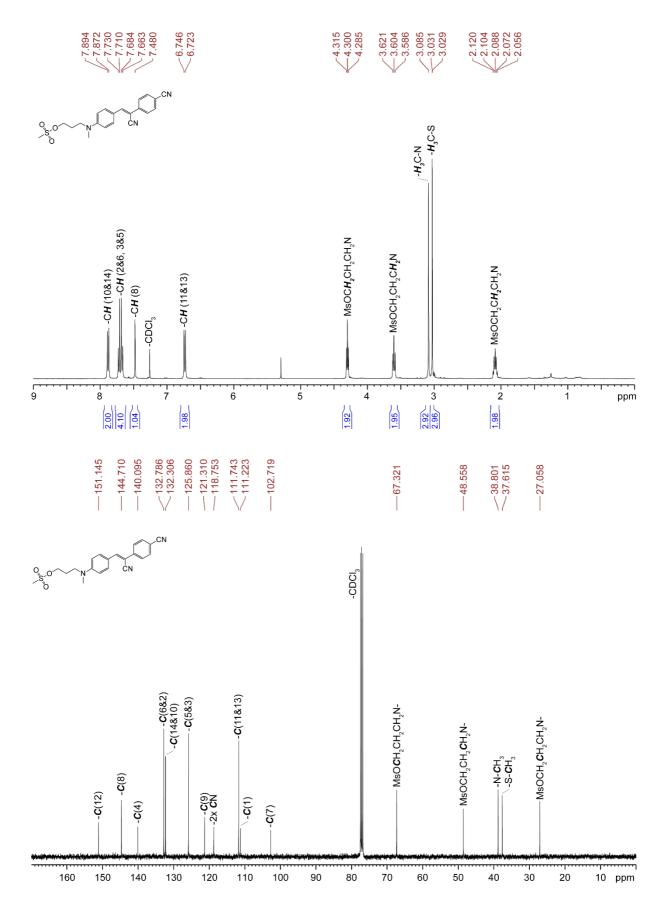
100


150

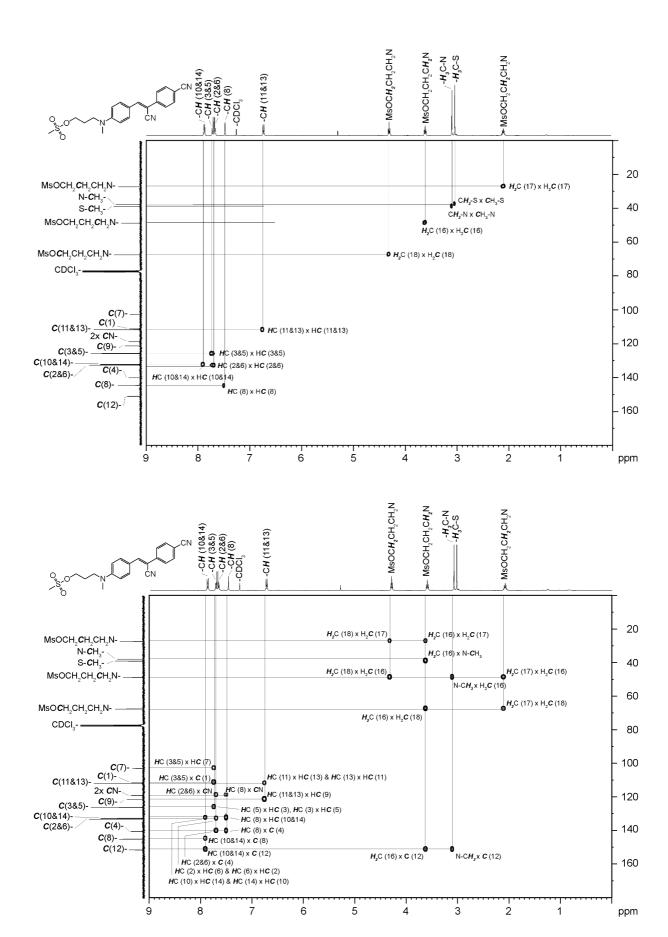



**Supplementary Fig. 2** | NMR spectroscopic analysis of Brc<sub>3</sub>DPQ<sub>1</sub> ligand. <sup>1</sup>H-<sup>1</sup>H COSY (400 MHz, CD<sub>3</sub>OD) spectrum, top; <sup>1</sup>H-<sup>13</sup>C HSQC NMR (400 MHz, CD<sub>3</sub>OD) spectrum, middle; <sup>1</sup>H-<sup>13</sup>C HMBC (400 MHz, CD<sub>3</sub>OD) NMR spectrum, bottom.

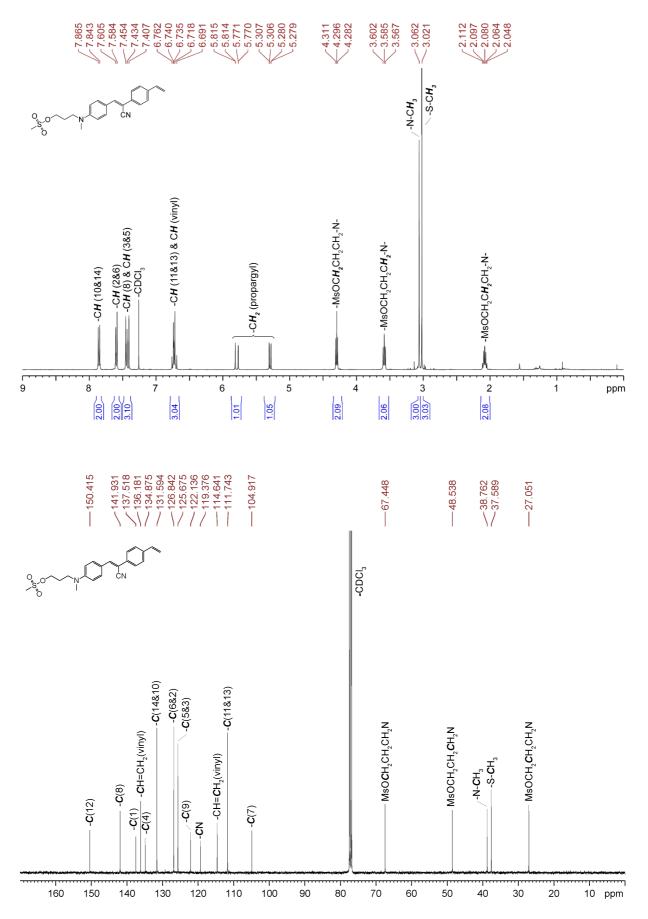



**Supplementary Fig. 3** | NMR spectroscopic analysis of Brc<sub>3</sub>DPQ<sub>1</sub> ligand. <sup>1</sup>H-<sup>13</sup>C HMBC (400 MHz, CD<sub>3</sub>OD) NMR spectrum.

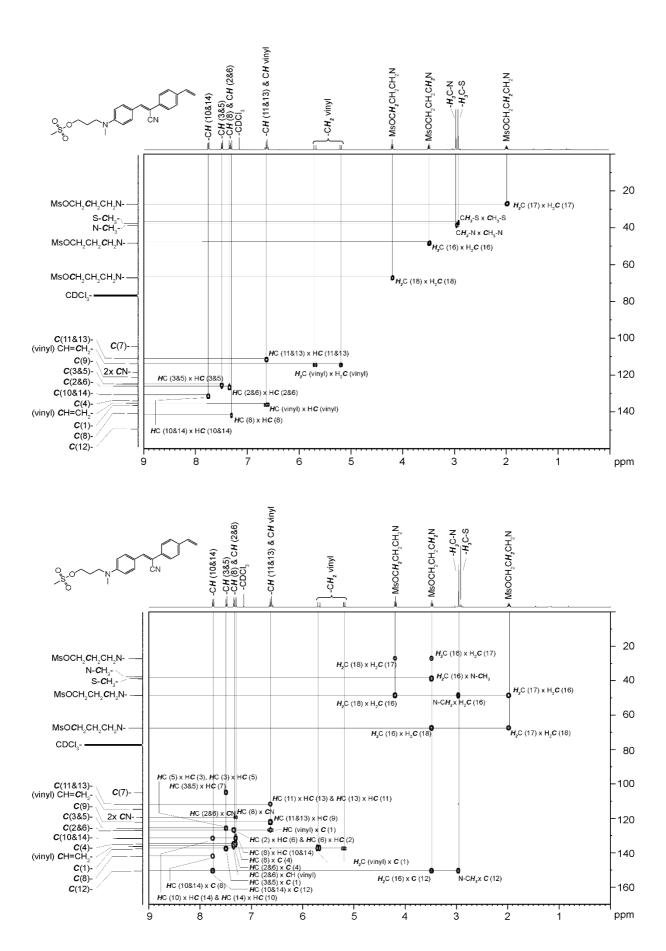



**Supplementary Fig. 4** | NMR spectroscopic analysis of the Brc<sub>3</sub>HBC ligand. <sup>1</sup>H NMR (400 MHz) spectrum, top; <sup>13</sup>C NMR spectrum (100 MHz), bottom.

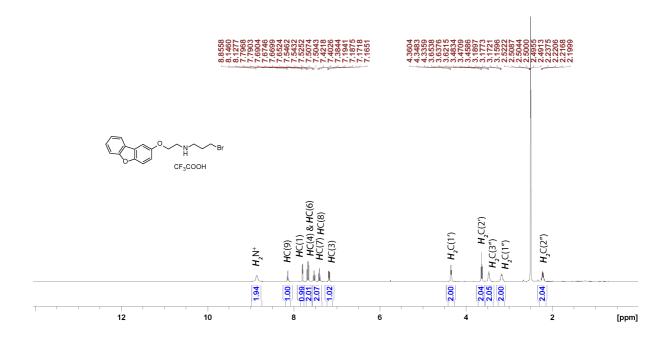


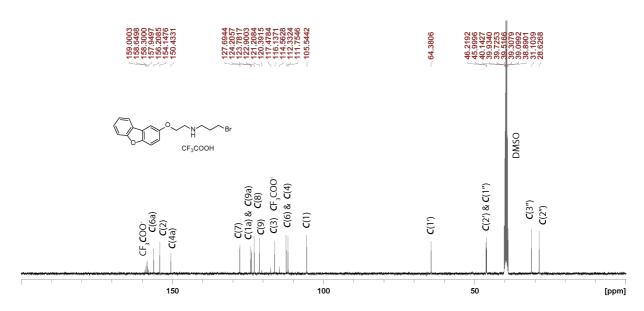

**Supplementary Fig. 5** | NMR spectroscopic analysis of the Brc<sub>3</sub>HBC ligand. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum, top; <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum, bottom.



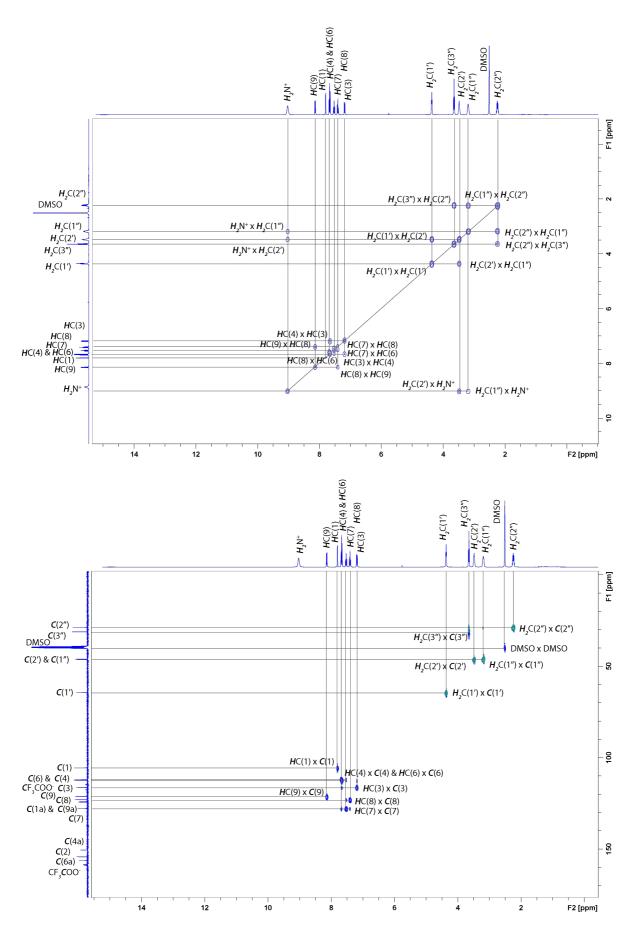

**Supplementary Fig. 6** | NMR spectroscopic analysis of MsOc $_3$ HBC ligand.  $^1$ H NMR (400 MHz) spectrum, top;  $^{13}$ C NMR spectrum (100 MHz), bottom.



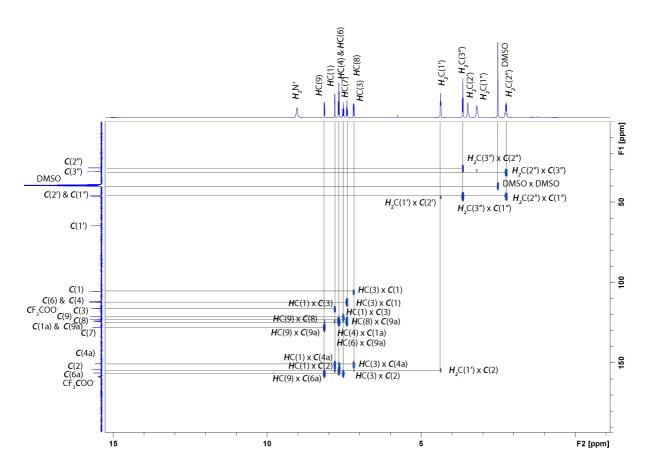

**Supplementary Fig. 7** | NMR spectroscopic analysis of MsOc<sub>3</sub>HBC ligand. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum, top; <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum, bottom.



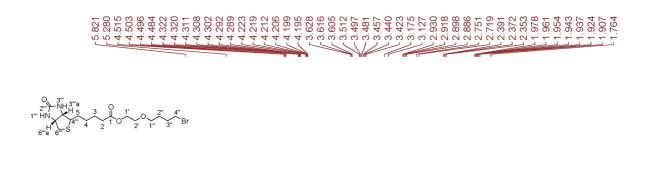

**Supplementary Fig. 8** | NMR spectroscopic analysis of MsOc<sub>3</sub>HBC-vinyl ligand. <sup>1</sup>H NMR spectrum (400 MHz), top; <sup>13</sup>C NMR spectrum (100 MHz), bottom.

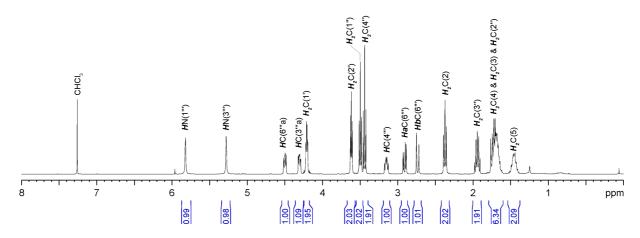


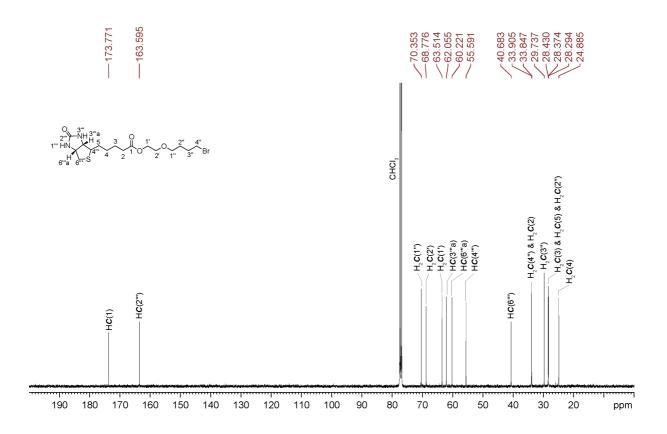

**Supplementary Fig. 9** | NMR spectroscopic analysis of MsOc<sub>3</sub>HBC-vinyl ligand. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum, top; <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum, bottom.



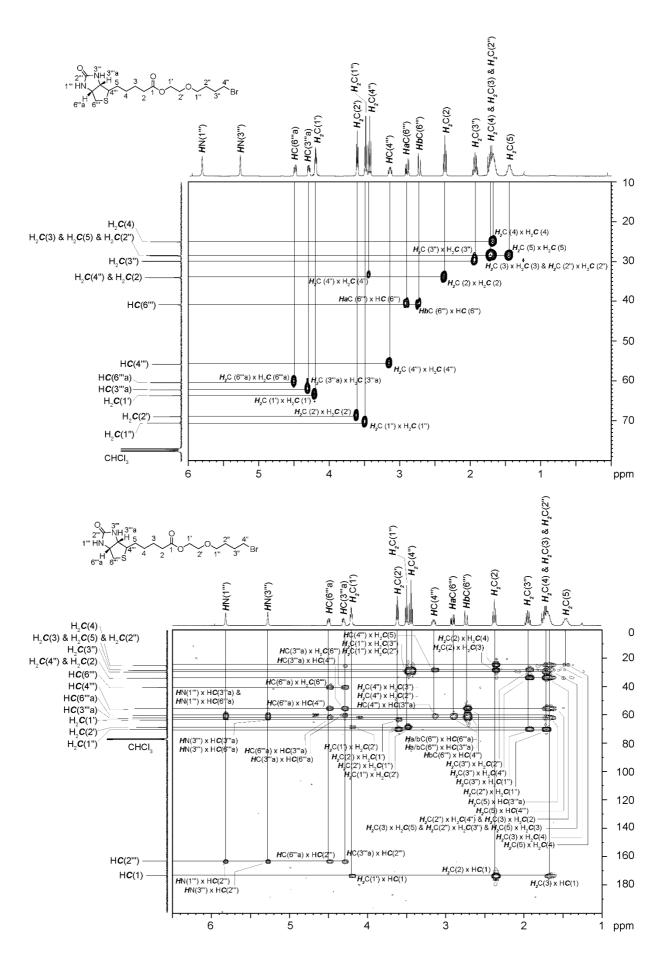




**Supplementary Fig. 10** | NMR spectroscopic analysis of Brc<sub>3</sub>DBF. <sup>1</sup>H NMR spectrum (400 MHz, DMSO-*d*<sub>6</sub>), top; <sup>13</sup>C NMR (400 MHz, CD<sub>3</sub>OD) spectrum, bottom.





**Supplementary Fig. 11** | NMR spectroscopic analysis of Brc<sub>3</sub>DBF.  $^{1}$ H- $^{1}$ H COSY (400 MHz, DMSO- $d_{6}$ ) spectrum, top;  $^{1}$ H- $^{13}$ C HSQC NMR (400 MHz, DMSO- $d_{6}$ ) spectrum, bottom.




**Supplementary Fig. 12** | NMR spectroscopic analysis of Brc<sub>3</sub>DBF.  $^{1}$ H- $^{13}$ C HMBC (400 MHz, DMSO- $d_{6}$ ) NMR spectrum.







**Supplementary Fig. 13** | NMR spectroscopic analysis of Br-C4-biotin. <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>), top; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum, bottom.



**Supplementary Fig. 14** | NMR spectroscopic analysis of Br-C4-biotin. <sup>1</sup>H-<sup>13</sup>C HSQC NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum, top; <sup>1</sup>H-<sup>13</sup>C HMBC NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum, bottom.