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Abstract

Motivation: Adverse events resulting from drug-drug interactions (DDI) pose a serious health

issue. The ability to automatically extract DDIs described in the biomedical literature could further

efforts for ongoing pharmacovigilance. Most of neural networks-based methods typically focus on

sentence sequence to identify these DDIs, however the shortest dependency path (SDP) between

the two entities contains valuable syntactic and semantic information. Effectively exploiting such

information may improve DDI extraction.

Results: In this article, we present a hierarchical recurrent neural networks (RNNs)-based method

to integrate the SDP and sentence sequence for DDI extraction task. Firstly, the sentence sequence

is divided into three subsequences. Then, the bottom RNNs model is employed to learn the feature

representation of the subsequences and SDP, and the top RNNs model is employed to learn the

feature representation of both sentence sequence and SDP. Furthermore, we introduce the embed-

ding attention mechanism to identify and enhance keywords for the DDI extraction task. We evalu-

ate our approach using the DDI extraction 2013 corpus. Our method is competitive or superior in

performance as compared with other state-of-the-art methods. Experimental results show that the

sentence sequence and SDP are complementary to each other. Integrating the sentence sequence

with SDP can effectively improve the DDI extraction performance.

Availability and implementation: The experimental data is available at https://github.com/zhangyi

jia1979/hierarchical-RNNs-model-for-DDI-extraction.

Contact: zhyj@dlut.edu.cn or michel.dumontier@maastrichtuniversity.nl.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A drug-drug interaction (DDI) occurs when one drug influences on

the level or activity of another co-administered drug (Miranda et al.,

2011). DDIs can delay or decrease absorption of drugs, and may

cause severe adverse drug reactions (ADRs). When a patient

administers multiple drugs together, there is an inevitable risk of

DDIs. Some serious unexpected ADRs will be life-threatening or

even cause death. Although some drug knowledge database, such as

DrugBank (Knox et al., 2011), PharmGKB (Thorn et al., 2013),

Drug Interaction database (Hachad et al., 2010) and SFINX

VC The Author 2017. Published by Oxford University Press. 828

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34(5), 2018, 828–835

doi: 10.1093/bioinformatics/btx659

Advance Access Publication Date: 25 October 2017

Original Paper

https://github.com/zhangyijia1979/hierarchical-RNNs-model-for-DDI-extraction
https://github.com/zhangyijia1979/hierarchical-RNNs-model-for-DDI-extraction
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx659#supplementary-data
https://academic.oup.com/


(Böttiger et al., 2009), have been created to instruct physicians to

avoid DDIs and ADRs, the update periods of these databases are

generally 1–3 years. DDIs are frequently reported in the biomedical

literature and may prove to be a valuable source of DDI informa-

tion. Hence, the automatic extraction of DDIs information from the

biomedical literature has merit and may contribute significantly to

patient safety and pharmacovigilance (Percha and Altman, 2013).

In recent years, several efforts have been made in DDI extraction

from the biomedical literature. Various existing methods can be

mainly divided into two categories: statistical machine learning-

based methods and neural networks-based methods.

One major approach is statistical or machine learning-based

methods. Various of lexical and syntactic features are extracted and

supply to the classifier. (Björne et al., 2013) exploited shortest path

features and domain knowledge features to extract DDI. (Kim et al.,

2015) proposed a rich feature-based method to extraction DDI,

which including word features, dependency graph features, parse

tree features, etc. Similarly, (Raihani and Laachfoubi, 2016) inte-

grated lexical features, phrase features, verb features, syntactic fea-

tures and auxiliary features to extract DDI from biomedical

literature. In the feature-based methods, the major challenge is how

to choose the suitable lexical and syntactic feature for the DDI

extraction task. Up to now, feature extraction is still a time-

consuming and skill-dependent task.

Since the syntactic parse tree and dependency graph carry impor-

tant syntactic information for relation extraction task, some kernel

methods have been proposed and successfully used for DDI extrac-

tion. (Zhang et al., 2012) proposed hash subgraph pairwise kernel

method to extraction DDI, which can effectively capture syntactic

information of the dependency graph. (Chowdhury and Lavelli,

2013) proposed a hybrid kernel method for DDI extraction includ-

ing feature-based kernel, shallow linguistic kernel and path-enclosed

tree kernel. The hybrid kernel method achieved an F-score of 0.651

and the top rank in the DDI extraction 2013 challenge. (Thomas

et al., 2013) also employed multiple kernel methods and used major-

ity voting-based model to detect DDI, which ranked as the second in

the DDI extraction 2013 challenge. In general, these kernel-based

methods can make better use of syntactic information in the depend-

ency graph and syntactic parse tree than feature-based methods.

However, the suitable kernel functions require carefully crafting,

which have been proved difficult because of the powerful expressive-

ness of graph or tree structures (Gärtner et al., 2003). Therefore, the

performance of statistical machine learning-based methods is highly

dependent on the chosen feature set or the designed kernel function.

Deep neural networks have emerged as promising approaches

for automatic feature learning and have become a dominant method

for DDI extraction task. Convolutional neural networks (CNNs)

can effectively learn the local features through discrete convolution

with different size filters. Some CNNs-based methods have been

applied to extract DDI successfully. (Liu et al., 2016) used CNNs

model to extract DDI with the word and position embedding, and

achieved an F-score of 0.698 on the DDI extraction 2013 corpora.

(Quan et al., 2016) proposed a multichannel CNNs model for DDI

extraction task, which fused five version word embedding. (Zhao

et al., 2016) attempted to train word embedding based on syntax

information and employed CNNs model to detect DDI from bio-

medical literature. Recurrent neural networks (RNNs) are another

common neural networks. Compared to CNNs, RNNs are temporal

sequence models and good at capturing the sentence sequence fea-

ture, which is consider to be more suitable for natural language

processing (NLP) tasks. In the most recent, (Sahu and Anand, 2017)

employed RNNs model with attention pooling method to extract

DDI, and achieved better performance than CNNs-based methods.

DDI extraction 2013 challenge provided an opportunity to eval-

uate the performance of the various DDI extraction methods on the

same benchmark corpora. So far, the best performance of DDI

extraction is still <0.75 in F-score. The key challenge remains in

how to accurately detect and classify the DDI in the complicated

biomedical sentences. For example, the longest sentence in DDI

extraction 2013 corpora contains >150 words. The length of such

sentences are very hard to deal with for deep neural networks. A

recent study (Mingguang Xiao, 2016) has shown dividing a sentence

into multiple parts according to the entities present can boost the

performance of relation extraction effectively. On the other hand,

shortest dependency paths (SDP) are informative to determine the

DDI in the sentences (Xu et al., 2015). Most of neural networks-

based methods only use the sentence sequence, but do not take full

advantage of the valuable information of SDP. Incorporating the

SDP information will be beneficial for deep neural networks to

extract DDI, particularly for the complicated sentences.

In this article, we explore the effectiveness of SDP for extracting

drug-drug interactions. Inspired by the work of (Mingguang Xiao,

2016), the sequence sentence is divided into three context subse-

quences according to the two candidate drug entities. Attention

mechanism has been proven to be helpful in boosting the perform-

ance of NLP tasks (Wang et al., 2016). We exploit embedding atten-

tion mechanism to identify and enhance keywords for the DDI

extraction task. Then we integrate the context subsequences and

SDP of the sentence, and employ hierarchical bidirectional RNNs

model to automatically learning the latent feature from the both

sequence and SDP structure. The bottom RNNs learn the local con-

text representation of subsequence context and the syntax represen-

tation of SDP, respectively. The top RNNs learn the sentence

representation for DDI extraction from the subsequence context and

syntax representations. Softmax function is applied in the output

layer to implement DDI detection and classification. Finally, our

proposed model is evaluated on the DDI extraction 2013 corpus.

Experimental results show that the syntactic and semantic informa-

tion of SDP are valuable for DDI extraction. Our method can effec-

tively integrate the sequence and SDP for DDI extraction, and

achieve the state-of-the-art performance on DDI extraction 2013

corpus.

2 Materials and methods

DDI extraction task is generally tackled as the task of identifying the

semantic relation holding between the two drugs among a set of can-

didate relations. According to the DDI extraction 2013 challenge,

these candidate relations include Negative, Advice, Effect,

Mechanism, Int. In this section, we first introduce the value of the

SDP for DDI extraction task. Then, our DDI extraction model is

described in detail.

2.1 Shortest dependency path
The dependency syntax information is valuable and informative for

DDI extraction task. Recent studies (Liu et al., 2015; Miwa and

Bansal, 2016; Xu et al., 2015) have shown that the dependency path

or syntax tree can boost the performance of the relation extraction.

Figure 1 is an illustration example of SDP. We use the Stanford

parser to get the dependency syntax relations and part-of-speech

(POS) of each word in the candidate sentence. For example,

‘administered/VBN’ denotes that the POS of the word ‘administered’
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is ‘VBN’, whereas ‘nsubjpass’ denotes the dependency relation

between ‘administered’ and ‘regimen’ is ‘nsubjpass’ type. ‘Drug0’

and ‘Drug1’ denote two targeted drug entities, respectively. The

tokens and dependency relations on the shortest path between two

targeted entities are shown in bold. Based on the dependency rela-

tions, the SDP between the two targeted entities is obtained, which

only keep the vital words on the syntax path between two entities

while filtering out the less important adjunct word (e.g. ‘to’ and

‘with’). In Figure 1, the sentence consists of multiple clauses, but we

can determine the relation between ‘Drug0’ and ‘Drug1’ accurately,

based on the information of SDP. Therefore, DDI extraction will

benefit from the syntactic and semantic information of SDP, espe-

cially for the long and complicated sentences.

2.2 Hierarchical RNNs model
Most DDI extraction studies only use the sentence sequence as the

input of neural networks (Liu et al., 2016; Sahu and Anand, 2017).

Although the neural networks are able to learn the feature from the

sentence sequence directly, it is still hard to obtain enough lexical,

syntactic and semantic cues necessary to detect and classify the DDI

accurately. We propose an input level attention-based hierarchical

RNNs model to integrate the SDP with sentence sequence. The sche-

matic overview of our model is shown in the Figure 2. The input layer

consists of the sentence sequence and the SDP, which are encoded by

using word vector embedding, POS embedding and position embed-

ding. An input attention mechanism is employed to capture the rele-

vance of word with respect of the targeted drug entities. Then, the

sentence sequence is divided into five parts including three context

subsequences and two targeted drug entities based on the position of

the targeted drug entities. Hierarchical bidirectional RNNs model is

used to learn the feature representation from subsequences, SDP and

targeted drug entities. Finally, the feature representation learned from

the sentence sequence and SDP will be fed to Softmax function in the

output layer for the DDI detection and classification. The remainder

of this section will introduce the further details about our model.

2.2.1 Embedding input representation

The input of our model are sentence sequence and SDP. Given a sen-

tence S, w1;w2; . . . ;wmf g and s1; s2; . . . ; snf g denote the sentence

sequence and SDP. Each word wi on the sentence sequence and sj on

the SDP are represented by word vector embedding, POS embedding

and position embedding, respectively.

Bengio et al. (2003) proposed word embedding method using

neural networks, which was one of the important results achieved

by neural networks in the NPL domain. Word embedding maps

words to low-dimensional real space and captures the semantic

information underlying the words. In the past decade, various word

embedding methods (Mikolov et al., 2013; Pennington et al., 2014)

have been proposed for learning language models. Recently, word

embedding has successfully applied to NLP tasks and achieved the

state-of-the-art performance, such as information retrieval (Palangi

et al., 2016), relation extraction (Zeng et al., 2014), machine trans-

lation (Zou et al., 2013) and so on. Besides word embeddings, we

also exploit POS embedding and position embedding to extend the

input representation ability. The POS embedding reflects the POS

feature of the words, which is valuable for DDI extraction (Zhao

et al., 2016). The position embedding captures the position feature

and distinguishes the relative distances between each word and the

targeted drug entities (Zeng et al., 2014).

In our experiments, we use the abstracts containing the key word

‘drug’ from PubMed as the training corpus and employ word2vec

(Mikolov et al., 2013) to train the word embedding and POS embed-

ding. For position embedding, we randomly initialize the position

vector following standard normal distribution, as reported else-

where (Wang et al., 2016). Let Wword, WPOS and Wdis denote the

word embedding matrix, POS embedding matrix and position

matrix, respectively. Given a word wi on the sentence sequence, we

can obtain the word embedding vector wword
i , the POS embedding

vector wPOS
i , and two position vectors wdis0

i and wdis1
i , respectively,

based on Wword, WPOS and Wdis. Here, wdis0
i and wdis1

i are the two

position vector of i with regard to two targeted drug entities e0 and

e1. Thus, the overall word embedding representation for word wi is

Fig. 1. An illustration of SDP. The sentence example is from DDI extraction 2013 corpus. ‘Drug0’ and ‘Drug1’ denote two targeted drug entities, respectively. The

Stanford parser is used to syntactic parse the sentence and generate the dependency syntactic graph. The nodes and edges on the shortest path between ‘Drug0’

and ‘Drug1’ are shown in bold. SDP between ‘Drug0’ and ‘Drug1’ can be extracted from the dependency syntactic graph. The nodes and edges on the SDP denote

the tokens and dependency relations on the SDP between ‘Drug0’ and ‘Drug1’, respectively
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zwi ¼ wword
i

� �T
; wPOS

i

� �T
; wdis0

i

� �T
; wdis1

i

� �T
h i

. Similarly, for a given

word sj on the SDP, the overall word embedding representation is

zsj ¼ sword
j

� �T
; sPOS

j

� �T
; sdis0

j

� �T
; sdis1

j

� �T
� �

.

For DDI extraction, the drug entity generally contains one or a

few words. Let e denote a drug entity in the sentence S. The drug

entity e contains l words wi; . . . ;wiþl�1f g. In our experiments, we

consider the drug entity e as a whole. The word embedding vector of

drug entity e is mean value of l words embedding vectors

eword ¼ ð
Piþl�1

i wword
i Þ=l. The POS of drug entities are set as noun.

Thus, the overall entity embedding representation of e is

ze ¼ eword
� �T

; ePOS
� �T

; edis0
� �T

; edis1
� �T

h i
.

2.2.2 Entity attention mechanism

In general, the importance of different words in a sentence is generally

different for the DDI extraction task. Consider that in a long sentence

consisting of multiple clauses, the key words for determination of

DDI is likely to be only a few nouns and verbs. However, each input

word shares the same weight in the input layer of neural networks,

which cannot distinguish the importance of different words. It is more

reasonable to assign the weight for each word according to its contri-

bution or importance to DDI extraction. Therefore, we use the entity

attention mechanism to automatically learn the weight for each input

word, as proposed by (Wang et al., 2016).

Intuitively, the relevance of the word with respect of two drug

entities can reflect the importance of the word for DDI extraction.

The word embedding vector can effectively represent the hidden

semantic information of the word (Mikolov et al., 2013). We can

calculate the semantic relevant between two words using the dot

product of their word embedding vectors. For a word wi on the sen-

tence sequence, the relative relevance degree with regard as drug

entity ek (k 2 f0; 1g) is defined as follow:

hk
wi ¼

expðdotðwword
i ; eword

k ÞÞPm
l¼1 expððdotðwword

l ; eword
k ÞÞ

(1)

Based on the two relevance factors h0
wi and h1

wi, the joint weight for

word wi is calculated as a simple average. The attention vector rep-

resentation of the word wi is defined as follow:

zatt
wi ¼

h0
wi þ h1

wi

2
�zwi (2)

The words on both sentence sequence and SDP are mapped to the

attention vector representation using Equations (1) and (2). As shown

in Figure 2, we use ‘Attention-based sequence input’ and ‘Attention-

based SDP input’ to represent the sentence sequence matrix

[zatt
w1; z

att
w2; . . . ; zatt

wm] and the SDP matrix [zatt
s1 ; z

att
s2 ; . . . ; zatt

sn ], respectively.

Fig. 2. The overview of our hierarchical RNNs model on sequence and SDP
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2.2.3 Hierarchical bidirectional LSTMs

Given a sentence sequence with two targeted entities, most studies

consider the sentence sequence and the two targeted entities as a

whole part. Some recent studies (Mingguang Xiao, 2016; Vu et al.,

2016) explored to divide the sentence sequence into multiple parts for

relation extraction task and achieved excellent performance. Some

sentences in biomedical texts are very long and more complicated,

which are hard to deal with for neural networks, even though for

RNNs model. For instance, the longest sentence in the DDI extraction

2013 corpora contains >150 words. Inspired by the work of

(Mingguang Xiao, 2016), we divide the sentence sequence into three

subsequence according to the position of two targeted entities. Figure

2 shows how the sentence sequence is divided into five part including

‘subsequence 0’, ‘e0’, ‘subsequence 1’, ‘e1’ and ‘subsequence 2’. We

integrate the SDP with the sentence sequence to make use of the short-

est dependency information between two entities.

RNNs are powerful models for NLP tasks, and are particularly

suitable for encoding sequential text data. However, the traditional

RNNs suffer from the vanishing gradient problem during the model

training. Since RNNs models use the values of the previous hidden

states and gradients to update of the hidden states repeatedly, the

operations of multiplication and differentiation generally make the

gradients tend to vanish over a long time. To address this problem,

long short-term memory networks (LSTMs) (Hochreiter and

Schmidhuber, 1997) and gated recurrent units (GRUs) (Cho et al.,

2014) have been proposed based on RNNs.

The basic LSTMs model exploits the memory cell and gating mech-

anism to make each recurrent unit to adaptively capture dependencies

over different time scales and learn long-term dependencies. The

LSTMs model is introduced in the Supplementary Material. Since

LSTMs model is a sequential model, a LSTMs unit will generate a hid-

den state hj and keep current memory cell cj at the time step j, which

operates on the current word xj, the previous hidden state hj�1 and the

previous memory cell cj�1. The bidirectional LSTMs (Bi-LSTMs) model

consists of the forward LSTMs and backward LSTMs. This makes the

Bi-LSTMs model has the ability to read the sequential input

{x1; x2; . . . ; xk} not only from x1 to xk but also from xk to x1, and learn

more comprehensive feature than one way LSTMs model. The output

hf
k and hb

k of the forward LSTMs and backward LSTMs will be con-

catenated into hk¼ hf
k jjhb

k which is the output vector of Bi-LSTMs.

In this study, a hierarchical Bi-LSTMs model is employed to auto-

matically learn the feature representation for the DDI extraction task.

As shown in Figure 2, the hierarchical Bi-LSTMs model contains bot-

tom Bi-LSTMs and top Bi-LSTMs. The bottom Bi-LSTMs are used to

independently learn feature representations from three subsequences

and SDP, respectively. The input of the bottom LSTMs are the

attention-based vector representations of three subsequences and

SDP. The output of the bottom LSTMs are the feature representations

of the three subsequences and SDP. The top Bi-LSTMs are applied to

integrate the semantics and syntax information of three context subse-

quence, two targeted entities and SDP, which learn the feature repre-

sentation of the whole sentence and SDP.

2.2.4 Classification and training

In the output layer, the feature representation s generated by the

hierarchical Bi-LSTMs model will be fed to a fully connected neural

layer in which the number of output nodes equals to the number of

DDI types. Softmax function is employed as the activation function

of the output layer to implement the detection and classification of

DDI. The probability value of the candidate DDI belonging to the i

type category is calculated as follow:

pðijsÞ ¼ softmaxðWo � sþ boÞ (3)

where Wo and bo are the weight parameters, and s is the feature rep-

resentation of the candidate DDI. Our model uses cross-entropy cost

function as the training objective function. Resilient mean square

propagation (RMSProp) is used to optimize the parameters of our

model with respect of the objective function.

3 Results and discussions

3.1 Datasets and experimental settings
DDI extraction 2013 corpus (Herrero-Zazo et al., 2013; Segura-

Bedmar et al., 2014) is a manually annotated DDI corpus based on

the DrugBank and MedLine abstracts. The DDI extraction 2013

corpus is the major corpus to evaluate and compare the performance

of DDI extraction methods. The original DDI 2013 corpus contains

714 train files and 191 test files. There are 90 train files which have

no relevance to DDI in the 714 train files. In our experiments, we

use 624 train files and 191 test files to evaluate the performance of

our method.

The DDI 2013 corpus contains four DDI types: Advice, Effect,

Mechanism and Int. Advice is used to annotate the semantic relation

describing an advice or recommendation regarding a drug interac-

tion. Effect is used to annotated the semantic relation describing an

effect or pharmacodynamics mechanism. Mechanism is used to

annotated the semantic relation about pharmacokinetic mechanism.

Int is used to annotated the semantic relation without any further

information is mentioned. The DDI extraction model detects the

DDI as well as classifies the DDI with the correct DDI type. The

detailed statistics of DDI extraction 2013 corpus is listed in Table 1.

Most of the DDI extraction methods use F-score, precision and

recall as the evaluation metrics. To keep the same metrics with the

existing methods, we also use F-score, precision and recall to evalu-

ate the performance of our method. The F-score is defined as

ð2 � precision � recallÞ=ðprecisionþ recall
�

, which can quantify the

overall performance by balancing the precision and recall.

In our experiments, we use Keras library to implement our pro-

posed model. The dimensionality of word embedding, POS embed-

ding and position embedding is 200, 10 and 10, respectively. Due to

the computation reason of neural networks model, it is not possible

to search the optimal value for the hyper-parameters of our model.

We manually tune the hyper-parameters using 5-fold cross-

validation on the training set. The hyper-parameters after tuning

used in our experiments are as follows. The hidden unit number of

bottom LSTMs and top LSTMs are both 100, the learning rate of

RMSProp is set as 0.001, and the mini-batch size is set as 64. Neural

networks models generally contain a large number of parameters

and suffer from the overfitting problem. Dropout is an effective way

to alleviate the overfitting of the neural networks model (Srivastava

et al., 2014), which randomly drops units and their connections

from the neural networks during training. In our experiments, we

apply dropout on the embedding layer and output layer. The drop-

out rate of embedding layer and output layer are set as 0.7 and 0.5,

respectively.

Table 1. The statistics of the DDI 2013 extraction corpus

Corpus Advice Effect Mechanism Int Negative

Training set 826 1687 1319 188 23772

Test set 221 360 302 96 4737

Total 1047 2047 1621 284 28554
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3.2 Experimental results
In this section, we first evaluate the effectiveness of different RNNs.

The simple RNNs model is a traditional RNNs architechture, which

do not contain logical gate and memory cell. The GRUs model (Cho

et al., 2014) exploits the gating mechanism to make each recurrent

unit to adaptively capture dependencies over different time scales,

but does not contain a memory cell. The LSTMs model (Hochreiter

and Schmidhuber, 1997) employs a gating mechanism as well as the

memory cell to learn long-term dependencies. The comparison per-

formance of simple RNNs, GRUs and LSTMs for our method are

listed in Table 2.

Table 2 shows the results of using different RNNs. Simple RNNs

model can only achieve a F-score of 0.614 while GRUs and LSTMs

achieve a higher F-score of 0.724 and 0.729, respectively. The exper-

imental results suggest that the logical gate and memory cell can

help LSTMs model to capture more syntactic feature or information

over long-term scales, which are beneficial for determination of DDI

relation in the sentence.

Then, we evaluate the effectiveness of embedding feature of our

method. The experimental results are shown in Table 3. Our method

achieves an F-score of 0.703 when only using word embedding in

the embedding layer. When POS embedding and position embed-

ding are integrated with word embedding, the performance is fur-

ther improved. These results show that the word embedding

contributes to the success of the DDI extraction task, as only using

word embedding can also achieve a high F-score. Moreover, the

POS embedding and position embedding are valuable supplemental

features for DDI extraction task.

Next, we compare with the baseline method to evaluate the

effectiveness of our model. (Sahu and Anand, 2017) proposed bidir-

ectional LSTMs model (B-LSTMs) and joint LSTMs model (Joint-

LSTMs) for DDI extraction task. B-LSTMs model use bidirectional

LSTMs and max pooling on the sentence sequence. Joint-LSTMs

integrate two B-LSTMs models and attention pooling on the sen-

tence sequence. The comparison performance with B-LSTMs and

Joint-LSTMs is shown in Table 4. When Bi-LSTMs model is

employed on sentence sequence and SDP, we achieve F-score of

0.696 and 0.526, respectively. The sentence sequence contains all

the words, whereas SDP only keep the vital words of the sentence.

Hence, the sentence sequence contains richer lexical and syntactic

information than SDP. This is the mainly reason why Bi-LSTMs

model achieves higher performance on sentence sequence than SDP.

When the hierarchical Bi-LSTMs method is employed on sentence

sequence, the F-score improves from 0.696 to 0.707. This suggests

that the hierarchical Bi-LSTMs can capture more valuable features

by dividing the sentence into three subsequences, and improve the

performance effectively. When the embedding attention mechanism

is added, the F-score improves to 0.717. This indicates that the

embedding attention can identify and enhance the weight of the key

words in the sentence, which further improves the performance of

RNNs model for DDI extraction. Furthermore, our model achieves

a F-score of 0.729, when integrating the SDP with sentence

sequence. The improvement of performance benefits from the vital

syntactic and semantic information of the SDP, which is valuable for

the relation of the two candidate drug entities. Compared with

(Sahu and Anand, 2017), our method achieves superior F-score of

0.729 based on integrating SDP and embedding attention. Beside of

F-score, precision and recall, we also provide the confusion matrix

of our results in the Supplementary Material.

3.3 Performance comparison with state-of-the-art

methods
In this section, we compare our method with other state-of-the-art

methods on DDI 2013 corpus. In Table 5, we compare the overall

performance and each DDI type. Neural networks-based methods

generally achieve better performance than feature-based methods

and kernel-based methods. For example, (Quan et al., 2016)

employed multichannel CNNs model and achieved the highest preci-

sion of 0.76 and a high F-score of 0.702, respectively. (Sahu and

Anand, 2017) used LSTMs model with attention pooling and

achieved an F-score of 0.715. We also notice that (Raihani and

Laachfoubi, 2016) used rich feature-based method and achieved a

high F-score of 0.711, which benefited from many rules and hand-

craft features. Compared with feature-based method, Neural

networks-based methods not only learn the feature representation

from the sentence automatically but also achieve state-of-the-art

performance. This indicates the effectiveness and potential of the

neural networks-based methods for DDI extraction. Among the neu-

ral networks-based methods, CNNs and RNNs are the two models

commonly used for DDI extraction task. Yin et al. (2017) compared

the performance between CNNs and RNNs on NLP tasks systemati-

cally. The comparison results have shown that the performance of

CNNs and RNNs are very close for the relation classification task

on SemEval 2010 corpus (Hendrickx et al., 2009). However, some

studies (Sahu and Anand, 2017; Yi et al., 2017) also suggested that

RNNs models achieved higher performance than CNNs models on

DDI 2013 corpus. The mainly reason is that the DDI 2013 corpus is

based on DrugBank and MedLine, and contains many long and

complicated sentences. Compared with CNNs, RNNs model can

effectively learn the long-term dependence of the sentence, which is

Table 2. The evaluation of different RNNs model on performance

RNNs model Precision Recall F-score D

Simple RNNs 0.657 0.576 0.614

GRUs 0.733 0.715 0.724 þ0.11

LSTMs 0.741 0.718 0.729 þ0.05

Note: ‘D’ denotes the corresponding improvement of F-score.

Table 3. The effect of the embedding feature on performance

Embedding feature Precision Recall F-score D

Word 0.688 0.717 0.703

WordþPOS 0.717 0.713 0.715 þ0.12

WordþPOSþPosition 0.741 0.718 0.729 þ0.14

Note: ‘Word’, ‘POS’ and ‘Position’ denote word embedding, POS embed-

ding and position embedding, respectively. ‘D’ denotes the corresponding

improvement of F-score.

Table 4. The effect of strategy on performance

Model Precision Recall F-score

B-LSTMs (Sahu and Anand, 2017) 0.76 0.656 0.704

Joint-LSTMs (Sahu and Anand, 2017) 0.734 0.697 0.715

SDP Bi-LSTMs 0.592 0.474 0.526

Sequence Bi-LSTMs 0.702 0.691 0.696

Hierarchy Bi-LSTMs 0.725 0.689 0.707

Hierarchy Bi-LSTMs þAtt. 0.73 0.703 0.717

Hierarchy Bi-LSTMs þAtt.þSDP 0.741 0.718 0.729

Note: ‘Att.’ denotes using embedding attention mechanism.

Drug–drug interaction extraction via hierarchical RNNs 833

Deleted Text: R
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx659#supplementary-data
Deleted Text: s
Deleted Text: C
Deleted Text: S
Deleted Text: (


vital to capture the lexical and syntactic feature in the long and com-

plicated sentence for the relation extraction task. Our method

exploits hierarchical Bi-LSTMs to integrate the sentence and SDP,

and the embedding attention mechanism to identify and enhance

key words of the candidate sentences. The strategy can further

improve the ability of RNNs model to deal with the long and com-

plicated sentences. Our method achieves the highest F-score of

0.729 and recall of 0.718, respectively. (Yi et al., 2017) proposed a

GRUs-based method to extract DDI and employed multiple layer

attention to boost the performance, which achieved precision, recall

and F-score of 0.737, 0.708 and 0.722, respectively. The high

F-score of 0.722 (Yi et al., 2017) is only inferior to our method, and

outperforms other methods, which benefits from the word level

attention and sentence level attention. Both our results and (Yi

et al., 2017) indicate that the attention mechanism can improve the

performance for DDI extraction effectively.

Then, we compared the performance on each DDI type. Our

method achieves the highest F-score on advice and effect types,

whereas Joint-LSTMs and FBK-irst achieve the highest F-score on

mechanism and int type, respectively. As a whole, the performance

on different DDI type vary significantly. On advice type, all methods

achieve relatively high performance. On the contrary, all the F-score

on int type are no >0.6. This suggests that it is the most difficult to

accurately extract int type DDI on the DDI extract 2013 corpus.

From Table 1, we can see that the training set for int type only con-

tain 188 instances which is far less than other DDI types. The suffi-

cient training data is crucial for the performance of both statistical

machine learning-based models and neural networks-based models.

The insufficient training data for int type will lead the under fitting

of the models. This is probably the major reason for the worse per-

formance on int type.

In addition, we perform error analysis for the false negatives in

the Supplementary Material.

Overall, the performance comparison shows that our method is

competitive or superior in performance, compared with other state-

of-the-art methods used for DDI extraction.

4 Conclusions

The SDP contains valuable syntactic and semantic information for

the DDI extraction task. However, most neural networks-based

methods only use the sentence sequence as the input of the models,

which limits the performance of DDI extraction task. In this paper,

we present a hierarchical RNNs model to integrate the SDP of can-

didate sentence with the sentence sequence for DDI extraction task.

We divide the sentence sequence into three parts according to the

position of two entities, and apply a hierarchical RNNs model to

integrate sentence sequence and SDP for DDI extraction.

Furthermore, we introduce an embedding attention mechanism to

identify and enhance the key words which exist the close semantic

relation with regard of two entities. Experimental results show that

hierarchical RNNs model can effectively integrate SDP with sen-

tence sequence, and improve the performance for DDI extraction. It

is encouraging to see that our method achieves the highest F-score of

0.729 on the DDI 2013 corpus, which outperforms other state-of-

the-art methods.

Although our method has achieved the best performance on DDI

2013 corpus, there is still some room to improve. In particular, our

method does not perform well on the int type, likely because of

insufficient training data. This indicates that our method depends on

the high quality training data. As future work, we aim to develop

new human-computation approaches to increase the amount and

quality of training data. In addition, we also plan to employ semi-

supervised method for biomedical relation extraction.
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