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Abstract: The development of informatic tools to improve the identification of novel antimicrobials
would significantly reduce the cost and time of drug discovery. We previously screened several
plant (Xanthomonas sp., Clavibacter sp., Acidovorax sp., and Erwinia sp.), animal (Avian pathogenic
Escherichia coli and Mycoplasma sp.), and human (Salmonella sp. and Campylobacter sp.) pathogens
against a pre-selected small molecule library (n = 4182 SM) to identify novel SM (hits) that completely
inhibited the bacterial growth or attenuated at least 75% of the virulence (quorum sensing or biofilm).
Our meta-analysis of the primary screens (n = 11) using the pre-selected library (approx. 10.2 ± 9.3%
hit rate per screen) demonstrated that the antimicrobial activity and spectrum of activity, and type of
inhibition (growth versus virulence inhibitors) correlated with several physico-chemical properties
(PCP; e.g., molecular weight, molar refraction, Zagreb group indexes, Kiers shape, lipophilicity, and
hydrogen bond donors and acceptors). Based on these correlations, we build an in silico model that
accurately classified 80.8% of the hits (n = 1676/2073). Therefore, the pre-selected SM library of
4182 SM was narrowed down to 1676 active SM with predictable PCP. Further, 926 hits affected only
one species and 1254 hits were active against specific type of pathogens; however, no correlation was
detected between PCP and the type of pathogen (29%, 34%, and 46% were specific for animal, human
foodborne and plant pathogens, respectively). In conclusion, our in silico model allowed rational
identification of SM with potential antimicrobial activity against bacterial pathogens. Therefore,
the model developed in this study may facilitate future drug discovery efforts by accelerating the
identification of uncharacterized antimicrobial molecules and predict their spectrum of activity.

Keywords: small molecules; virtual screening; high throughput screening; phytopathogens; animal
pathogens; foodborne human pathogens

1. Introduction

Technological advances in synthetic chemistry have made available billions of novel
molecules with uncharacterized antimicrobial properties [1]; however, the development
of novel antimicrobial agents can be expensive (over US $1 billion) and time consuming
(12–15 years) [2]. This is especially true with the use of large random small molecule
(SM) libraries where extensive high-throughput screenings are required to identify SM
candidates with desired properties (hit compounds). Further, random SM libraries are
often associated with low success rate (identification of novel hit compounds below 0.5%),
which makes drug discovery an unattractive sector for industrial development [2]. Thereby,
there is a crucial need to identify interconnections between the properties of a molecule
and its phenotype that will aid developing informatic tools minimizing the drug discovery
efforts and cost while improving the identification and discovery of novel therapeutics in
order to mitigate the antimicrobial resistance burden [3–5]. Virtual in silico screening is a
useful approach to minimize the work required for the identification and development of
lead antimicrobial compounds [6]. For example, it allows identifying SM with promising
druggable properties or design in silico small tailored libraries composed of SM likely to
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be active against a desired biological target. However, the in silico prediction and design of
SM with desired biological properties rely on the outputs obtained from in vitro screenings.
Therefore, it is essential to understand the relationships between the SM chemical structure
and its antimicrobial activity.

The study of chemical structures within compounds of interest has been for a long
time a key criterion for the classification of antibiotics [7]. To date, several functional
groups have been identified with specific antimicrobial effects [7,8]. The antimicrobial
agents can be classified into groups harboring distinct chemical structures (e.g., β-lactams,
aminoglycoside, macrolides, quinolones and fluoroquinolones, streptogramins, sulfon-
amides, tetracyclines, and nitroimidazoles) [7,8]. These characteristic chemical structures
are associated with specific antimicrobial properties (e.g., narrow versus broad-spectrum;
anti-viral/bacterial/fungal/parasitic), toxicity, and mode of actions (e.g., inhibitors of cell
wall, nucleic acids or protein synthesis, or membrane function) [7,8]. However, the antimi-
crobial activity of a designated molecule may also be influenced by other parameters, such
as the presence of radicals surrounding the functional group, the concentration of molecule
tested, and the physico-chemical properties (PCP) of molecules. In fact, several studies
highlighted the associations between the PCP of molecules and the characterization of
specific phenotypes (i.e., antimicrobial activity and anti-oxidant/cancer properties) [9–11].
The Lipinski rule of five is a standard for the discovery of potential therapeutic molecules
with druggable properties [12,13]. A previous study developed an in silico model facili-
tating the identification of hit molecules with antimicrobial activity against several model
organisms (i.e., yeast, bacteria, and nematodes) [14]. More precisely, a pre-selected library
of 7500 SM was built from an initial library of 81,000 uncharacterized synthetic SM using
a three-way approach: 1) enrichment of library in vitro using Saccharomyces cerevisiae as
the model; 2) prioritize the compounds using two-property filter (lipophilicity (LogP)
and Lipinski hydrogen acceptors (HBA)); and 3) predict the phenotypes of the selected
molecules using a naïve Bayes model. The pre-selected library showed an increased rate in
the identification of SM with growth inhibition properties in vitro (up to 16-fold) against
several model organisms (e.g., Escherichia coli, Candida albicans, Caenorhabditis elegans, and
Bacillus subtilis) compared to the original library. From this subset, in our earlier studies, we
screened a library of 4182 compounds to identify compounds effective against several plant
(Xanthomonas, Erwinia, Clavibacter, and Acidovorax), animal (Mycoplasma and Escherichia),
and foodborne-human (Salmonella and Campylobacter) pathogens that are of public health
and economic importance [15–26]. The objective of this study was to characterize and
associate the antimicrobial properties of the pre-selected library based on their PCP. Our
studies provide novel insights for the prediction of uncharacterized molecules with po-
tential antimicrobial activity and enable enriching the random libraries with SMs that are
more likely to have antimicrobial activity, thus accelerating drug discovery efforts.

2. Results
2.1. Compounds’ Prioritization Increases the Identification of Antimicrobials Effective against
Bacterial Pathogens with Diverse Taxonomic and Host Range Profile

For in silico analyses, we used the in vitro or in vivo data obtained from our earlier
published studies using high throughput screening of 4182 compounds on nine different
pathogens [15–26]. This library was screened at the specified concentration (between
10 and 200 µM) against each pathogen (Table 1). The data associated with (1) the type of
inhibition (growth versus virulence) were recorded to determine whether growth inhibitors
possess different PCP profiles compared to virulence inhibitors, and (2) the spectrum of
the activity of the SM was recorded to determine whether narrow- and broad-spectrum
hits possess characteristic PCP profiles. Further, the lead compounds were separated
from the hit compounds to determine whether lead compounds possess a different PCP
profile compared to hit compounds. Additional details about the experiments performed
to select and validate the antimicrobial potency of these compounds (i.e., dose-response
assays, activity spectrum assays on beneficial and other pathogenic bacteria, antimicrobial
efficacy in planta and in chickens, microbiome studies) are described in our published
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studies [15–26]. By analyzing the previous eleven primary screening data, 2073 SM (49.6%)
were identified as hits (SM that completely inhibited the growth or attenuated at least
75% virulence of the designated pathogen(s); Supplementary File 1). A hit rate (number
of growth/virulence inhibitors hit compounds obtained out of the 4182 SM tested) of
10.2% ± 9.3% per screen was observed across the nine bacterial species (Table 1). The hit
rate of the screenings was not associated with the taxonomic diversity of the species studied.
However, avian pathogenic E. coli (APEC), Salmonella enterica subsp. enterica serotype
Typhimurium (ST), and Acidovorax citrulli (Ac) harbored a lower hit rate (between 0.5%
and 1.4%) compared to the other screenings (>11.1%) despite the use of limited nutrient
growing conditions (Table 1). Interestingly, the hit rate for virulence inhibitor screenings
was high as well (2.4% for APEC quorum sensing and 5.2% for ST biofilm inhibitors;
Table 1), and at least 50.6% of them were identified as specific virulence inhibitors with
no growth inhibiting effect on the other species tested (Supplemental File 1). The type
of inhibition (growth versus virulence) was recorded (Supplemental File 1) to determine
whether growth inhibitors harbor different PCP profiles compared to virulence inhibitors.

Table 1. Antimicrobial screening conditions and hit rates by species.

Bacterial Pathogens Screened [SM] (µM) Growing Conditions Hit Rate (%) References

Growth Inhibitor Screenings

Acidovorax citrulli Xu9-15 100 50% NBY A 1.4 Lu et al., 2020
Clavibacter michiganensis subsp

michiganensis C280 100 NBY A 11.2 Xu et al., 2016

Erwinia tracheiphila TedCu10 100 50% NBY A 11.1 Vrisman et al., 2020
Xanthomonas gardneri SM761 100 MMX B 29.3 Srivastava et al., 2020

Xanthomonas perforans SM755-12 100 MMX B 17.9 Srivastava et al., 2020
Avian pathogenic Escherichia coli O78 100 M63 C 1 Kathayat et al., 2019

Mycoplasma gallisepticum MG37 100 FREY C 14.1 Helmy et al., 2020
Campylobacter jejuni 81–176 100 MH D 18.7 Kumar et al., 2017

Salmonella enterica subsp. enterica
serotype Typhimurium LT2 200 M9 C 0.5 Deblais et al., 2018

Virulence Inhibitor Screenings

Avian pathogenic Escherichia coli O78 100 A M63 C 2.4 F Helmy et al., 2020
Salmonella enterica subsp. enterica

serotype Typhimurium LT2 10 B TSB E 5.2 G Koopman et al., 2015

[SM]: small molecule (SM) concentration used for screening; MMX: minimal medium for Xanthomonas; NBY: nutrient broth yeast extract;
50% NBY: one volume of NBY combined with one volume of sterile distilled water; MH: Mueller–Hinton; TSB: tryptic soy broth. A Aerobic,
24 h, at 28 ◦C; B Aerobic, 72 h, at 28 ◦C; C Aerobic, 12 h, at 37 ◦C; D Microaerophilic, 24 h, at 42 ◦C; E Aerobic, 24 h, at 30 ◦C. Hit: SM
inhibiting the growth or virulence (F quorum sensing or G biofilm) at a given SM concentration and growing condition.

A total of 1147 hits harbored antimicrobial activity against more than one bacterial
species tested (hits affecting between two to eight species; Table 2) and 1254 hits were
active against specific pathogens categories; 29% (n = 199/691) were specific to animal
pathogens (n = 2), 34% (n = 327/951) were specific of human foodborne pathogens (n = 2),
and 46% (n = 728/1581) were specific to phytopathogens (n = 5; Table 2). Forty-five percent
of the hits (n = 926) were active against only one bacterial pathogen tested (n = 26 growth
inhibitors for Erwinia tracheiphila (Et), n = 63 growth inhibitors for Clavibacter michiganensis
michiganensis (Cmm); n = 1 growth inhibitor for Ac; n = 56 and 346 growth inhibitors for
Xanthomonas gardneri (Xg) and perforans (Xp); n = 127 growth inhibitors for Mycoplasma
gallisepticum (Mg); n = 136 growth inhibitors for Campylobacter jejuni (Cj); n = 55 quorum
sensing inhibitors for APEC; n = 1 growth and 115 biofilm inhibitors for ST. The spectrum
of activity of the SM was recorded (Supplemental File 1) to determine whether narrow-
and broad-spectrum hits possess characteristic PCP profiles.
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Table 2. Antimicrobial and spectrum of activity of the SM by pathogen categories.

Antimicrobial Spectrum
Number of Hits per Pathogen Category Number of Hits Across All

the Pathogen Tested (n = 9)Plant (n = 5) Animal (n = 2) Foodborne (n = 2)

Nonhit 2601 3491 3231 2109
1 species 752 651 885 926
2 species 438 40 66 442
3 species 243 277
4 species 135 202
5 species 13 135
6 species 59
7 species 23
8 species 8
9 species 1

Total number of hits across
the whole pre-selected

library (n = 4182)
1581 691 951 2073

Antimicrobial spectrum: number of species affected (growth or virulence inhibition) by a given SM (hit). The number of hits presented in
columns 2–5 is independent between each column. Therefore, the sum of columns 2, 3, and 4 does not match the numbers in column 5
because some SM were effective against multiple pathogen categories (n = 819). Columns 2–4 display the number of hits effective against
specific pathogen categories (plant (n = 5), animal (n = 2), or foodborne (n = 2) pathogens, respectively) and their associated activity
spectrum (by rows). Column 5 displays the number of hits and their associated activity spectrum (by rows) across all three pathogen
categories (n = 9). Empty cell: no data available.

A total of 18 lead compounds were identified from our previously published drug
discovery studies (Table 3 and Supplemental File 1) [15–26]. These compounds have
been shown to significantly reduce the load of designated pathogens and severity of the
disease in vivo, with minimal impact on host, its microbiota, commensal bacteria, and
probiotics/biocontrols. In addition, 73 compounds with promising antimicrobial properties
for future development as lead compounds were identified across the eleven primary
screens (Supplemental File 1). These compounds have been shown to significantly reduce
the load of the designated pathogens in vitro, with minimal impact on commensal bacteria
and probiotics/biocontrols, but with limited antimicrobial efficacy in vivo. Additional
details about the experiments performed to select and validate the antimicrobial potency
of these compounds (n = 18 + 73) are described in our published studies [15–26]. These
91 compounds were used (Supplemental File 1) to determine whether lead compounds
possess different PCP profile compared to hit compounds.

2.2. The Antimicrobial Activity and Spectrum of Activity of the SM Correlated with Specific
Physico-Chemical Properties

Among the 60 PCP studied, 24 PCP were significantly associated with antimicrobial
activity (hits versus non-hits) of the SM (p < 0.01; Figure 1 and Table 4). More precisely, the
hits identified across the nine bacterial pathogens tested (n = 2073) were characterized by
significantly higher molecular weight (MW), lipophilicity (LogP), Kier shape, the number
of bonds (aromatic, heavy, hydrogen bond donor (HBD)), number of groups (aromatic,
atom, amine, basic, chlorine, carbon, halogen, hydroxy, and ring), Zagreb group index,
and molar refractivity (MR), but significantly lower number of azide group, hydrogen
bond donor acceptor (HBA) and double bonds compared to the SM with no antimicrobial
activity (p < 0.01; Figure 1). It is important to mention that 50% of the PCP described above
(n = 12/24, especially MW, MR, and Zagreb indexes) were predicted to have a higher
contribution to the antimicrobial activity than the other half (contribution score up to
10,000-fold different between the two populations; Table 4). Similar trends were observed
when the PCP was compared with the spectrum of activity (number of species affected by
a designated hit) of the SM (p < 0.01; Figure 1 and Table 4). Overall, the contribution of
the selected PCP was equivalent between the antimicrobial activity and the spectrum of
activity (r2 = 0.97; p > 0.001; Figure 1).
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Table 3. Lead compounds identified across different bacterial pathogens.

Screening
Type

Bacterial
Pathogens

Lead Compounds (Pubchem ID)

15
29

36
1

28
27

37
2

13
80

89
7

28
47

56
1

28
48

07
6

57
31

12
3

16
87

63
68

42
11

56
15

42
11

57
77

45
19

18
21

45
19

24
77

25
36

58
35

45
19

50
11

42
52

57
58

25
30

48
76

25
31

31
18

42
52

04
54

45
23

87
50

GI

Et X X X X X

Cmm X X X

Xp X X X X

Xg X X X X

APEC X

Mg X X

Cj X

ST X X

VI APEC X

“X” means the lead compound significantly reduced the load of designated pathogens and severity of the disease in vivo with minimal
impact on host, its microbiota, commensal bacteria, and probiotics/biocontrols. GI, growth inhibitors; VI, virulence inhibitors. Et, Erwinia
tracheiphila; Cmm, Clavibacter michiganensis michiganensis; Xp, Xanthomonas perforans; Xg, Xanthomonas gardneri; APEC, avian pathogenic
E. coli; Mg, Mycoplasma gallisepticum; Cj, Campylobacter jejuni; ST, Salmonella enterica subsp. enterica serotype Typhimurium.
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Figure 1. Impact of physico-chemical properties (PCP) on the antimicrobial activity and spectrum of activity of the small
molecules (SM). The antimicrobial activity/activity spectrum model was built based on the in vitro data from the primary
screenings (n = 11 screenings) and the PCP of the SM obtained from multiple reference database (ChemBridge, PubChem,
Joelib, ChemMine, and OpenBabel). The contribution of each PCP was determined based on the bootstrap forest method.
The contribution score was log-transformed. Red dots represent PCP significantly associated with both antimicrobial activity
and spectrum of activity of the SM (p < 0.01). Blue dots represent PCP significantly associated with only the spectrum of
activity of the SM (p < 0.01). Gray dots represent PCP not associated with antimicrobial activity and spectrum of activity of
the SM (p > 0.001). Nb: number; Gp: group; LogP: lipophilicity; HBA: hydrogen bond acceptor; HBD: hydrogen bond donor.
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Table 4. Impact of the physico-chemical properties of the pre-selected library on the antimicrobial activity of the
small molecules.

Physico-Chemical
Properties of the

SM Used for This
Study (n = 60)

Antimicrobial Activity
(Hit versus Nonactive

SM)

Spectrum of Activity
(Nb of Species Affected

by SM)

Growth Inhibitors
versus Virulence

Inhibitors

Lead Compounds
versus Other Hits

Contribution
Score p-Value Contribution

Score p-Value Contribution
Score p-Value Contribution

Score p-Value

Geometrical
diameter 7.61 0.203 29.63 0.305 169.84 <0.001 6.25 0.253

Geometrical radius 0.07 0.021 0.46 <0.001 0.02 0.254 0.02 0.197

Kier shape 1 326.23 <0.001 568.69 <0.001 574.78 <0.001 6.76 0.739

Kier shape 2 99.72 <0.001 176.7 <0.001 138.93 <0.001 6.83 0.128

Lipophilicity
(logP) 101.87 <0.001 134.83 <0.001 17.47 <0.001 12.21 0.071

Molar Refractivity 14,978.5 <0.001 26,375.9 <0.001 26,292.7 <0.001 572.9 0.426

Molecular weight 109,599 <0.001 166,671 <0.001 163,353 <0.001 1249.76 0.878

Number of acidic
groups 0.04 0.423 0.53 0.001 0.02 0.757 0.18 0.009

Number of
aromatic bonds 1617.33 <0.001 1952.13 <0.001 559.94 <0.001 13.63 0.632

Number of
aromatic groups 37.09 <0.001 44.38 <0.001 22.15 <0.001 0.68 0.328

Number of atoms 1079.04 <0.001 2205.34 <0.001 4288.17 <0.001 187.23 0.177

Number of basic
groups 3.08 0.004 8.42 0.001 5.5 <0.001 0.42 0.334

Number of bonds 1339.92 <0.001 2580.42 <0.001 4965.25 <0.001 252.18 0.101

Number of carbon 645.53 <0.001 959.85 <0.001 764.19 <0.001 29.41 0.120

Number of charges 0.31 0.031 1.57 0.002 0.27 0.066 2.31 <0.001

Number of
chlorine 2.21 <0.001 3.85 <0.001 0.17 0.637 0.94 0.033

Number of double
bonds 11.3 <0.001 18.39 <0.001 6.75 <0.001 4.49 0.010

Number of
hydrogen 89.86 0.164 374.23 0.019 1185.4 <0.001 75.43 0.187

Number of
halogens 5.22 0.004 16.37 <0.001 0.39 0.914 1.67 0.149

Number of HBA1 17.46 0.897 208.74 0.436 1140.71 <0.001 71.69 0.176

Number of HBA2 48.85 <0.001 93.98 <0.001 18.06 <0.001 3.71 0.123

Number of HBD 1 19.11 <0.001 47.64 <0.001 3.83 0.006 2 0.063

Number of HBD 2 10.67 <0.001 25.51 <0.001 2.05 0.051 0.58 0.550

Number of heavy
bonds 800.79 <0.001 1195.37 <0.001 1320.5 <0.001 48.79 0.079

Number of
heterocycles 0.51 0.613 5.26 0.048 19.56 <0.001 11.95 <0.001
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Table 4. Cont.

Physico-Chemical
Properties of the

SM Used for This
Study (n = 60)

Antimicrobial Activity
(Hit versus Nonactive

SM)

Spectrum of Activity
(Nb of Species Affected

by SM)

Growth Inhibitors
versus Virulence

Inhibitors

Lead Compounds
versus Other Hits

Contribution
Score p-Value Contribution

Score p-Value Contribution
Score p-Value Contribution

Score p-Value

Number of
nitrogen 2.8 0.106 8.25 0.083 21.19 <0.001 0.47 0.697

Number of NO2 0.18 0.081 0.68 0.393 0.42 0.009 0.89 <0.001

Number of R-2NH 5.28 <0.001 19.71 <0.001 0.68 0.060 2.44 <0.001

Number of R-3N 6.55 <0.001 18.59 <0.001 1.25 0.117 3.3 0.006

Number of R-CN 0.01 0.349 0.03 0.194 0 0.839 0.12 <0.001

Number of
R-COO-R 0.35 0.029 1.04 0.002 0.04 0.750 0.03 0.764

Number of
R-COOH 0.03 0.072 0.25 <0.001 0.03 0.252 0.02 0.296

Number of R-OH 1.18 0.002 3.44 <0.001 1.36 0.138 1.54 0.087

Number of RINGS 14.73 <0.001 21.92 <0.001 22.23 <0.001 7.39 <0.001

Number of single
bonds 48.57 0.991 625.48 0.501 2326.73 <0.001 269.52 0.111

Zagreb group
index 1 27,153.5 <0.001 54,499.4 <0.001 133,000 <0.001 10,537.2 0.059

Zagreb group
index 2 40,446.8 <0.001 71,160 <0.001 153,738 <0.001 11,507.2 0.042

Only PCP with significant differences are displayed in the table (n = 37/60). Orange cells indicate the selected PCP significantly contributed
to the designated phenotype (p < 0.01 with a false discovery rate (FDR) LogWorth above 2). HBA: hydrogen bond acceptor; HBD: hydrogen
bond donor. Nb: number. ND: not determined. The contribution of each PCP was determined based on the bootstrap forest method.
Statistical analyses were performed using one-way ANOVA for the antimicrobial activity (hits versus non-hits) and using simple linear
regression for the spectrum of activity (number of species a hit affected). Details about the PCP of the pre-selected library that were not
associated with the antimicrobial activity of the SM are displayed in Supplemental File 2.

Several broad-spectrum hits (n = 32; SM effective against at least seven species) were
identified across the 11 screenings performed. These hits were characterized by a lower
number of hydrogen bond acceptors 2 (HBA-2 from OpenBabel; n = 3 ± 1 HBA per SM)
compared to the other hits (SM effective against less than seven species; n = 4.6 ± 1.3 HBA
per SM) and the inactive SM (n = 4.4 ± 1.2 HBA per SM; Table 4). However, it is important
to mention that population size of the broad-spectrum hits is small, thereby reducing the
statistical power of our analysis. Similarly, the lead compounds (n = 18) were characterized
with a significantly higher number of charges and a significantly lower number of rotatable
bonds compared to the other hits (n = 2055; p < 0.01). However, these two PCP were identi-
fied with a lower contribution score (n < 1), perhaps because of the small population of lead
compounds (Table 4). We analyzed by combining the lead compounds with the hits that
displayed antimicrobial properties having potential for developing into lead compounds
(n = 18 + 73) to increase the statistical power. These compounds were characterized by a
significantly higher number of charges, nitrile, amine, and nitro groups, and a significantly
lower number of rings and heterocycles compared to the other hits (n = 1982; p < 0.01;
Table 4); however, only the number of charges, amine groups, heterocycles, and rings had a
contribution score value above one.

A total of 23 PCP showed significant differences between the growth inhibitors’ hits
(n = 1898) and the virulence inhibitors’ hits (n = 310; Table 4). The majority of the PCP
(n = 15/23) had a contribution score above 100. Growth inhibitors were characterized
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by significantly higher MW, MR, Kier shapes, Zagreb indexes, lipophilicity, geometric
diameter, and the number of bonds (single, heavy, HBA, and aromatic), atoms (nitrogen,
hydrogen and carbon) and groups (heterocycles, basics, aromatics, and rings) compared
to the virulence inhibitors (p < 0.01). Interestingly, only the number of double bonds was
significantly lower with growth inhibitors compared to the virulence inhibitors (p < 0.01).

The results presented in Figure 1 identified 37 PCP significantly associated with the
antimicrobial and spectrum activity of an SM (Table 2). Using these PCP, we built an in silico
model that accurately classified 80.8% of SM as hit compounds from 2073 active compounds
(p < 0.01; Supplemental File 1). Similar accuracy (81 ± 3%) was obtained when subsets
were randomly selected by omitting 4.2–9.5% of our pre-selected library (n = 3785, 3819,
and 4007 compounds per subset). Similarly, an accuracy of 81.6% ± 2.1% was obtained
when three subsets of 10% randomly excluded SM library were analyzed using our in
silico model. The SM identified as hits in vitro but not in silico (mis-predicted hits; n = 397)
displayed distinct PCP profiles compared to the SM identified as hits in vitro and in silico
(accurately predicted hits; n = 1676). A total of 24 PCP displayed significant differences.
Interestingly, 21 of the 24 PCP showing significant differences between accurately predicted
and mis-predicted hits also displayed significant differences between hit and nonactive
SMs (all PCP except number of rings and both Zagreb groups indexes; Table 4). Out of
the three PCP (geometric radius, the number of charges, and ether groups) showing only
significant differences between accurately and mis-predicted hits, only the number of ether
groups was significantly lower in mis-predicted hits compared to the accurately predicted
hits (p < 0.01) and with a contribution score above one (n = 7.7). The mis-predicted hits
were evenly distributed across the eleven screenings performed. Further, only one SM
(PubChem ID 1529361, a quorum sensing inhibitor for APEC) out of 18 lead compounds
(compounds that significantly reduced the pathogen load and severity in vivo) and 9%
(n = 7/73) of the promising hits (compounds that significantly reduced the pathogen load
and severity in vitro but limited impact in vivo) were mis-predicted based on our model
(Supplemental File 1).

A discriminant analysis combined with a principal component scoring matrix showed
that the pre-selected SM library (n = 4182) was composed of five distinct clusters (Cluster
V (n = 594 SM), W (n = 1396 SM), X (n = 404 SM), Y (n = 1355 SM), and Z (n = 433 SM);
Figure 2A) based on the PCP studied (n = 60). Therefore, more than one PCP profile might
to be associated with the antimicrobial activity and spectrum of activity of the SM. Cluster
Z harbored highest hit rate (67.5%), followed by the cluster Y (52.1%), W (47.2%), X (35.8),
and V (35%; Figure 2A).
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Figure 2. Impact of the physico-chemical properties (PCP) of small molecules (SM) on their antimicrobial activity and
spectrum of activity. (A,B) Spatial distribution of the pre-selected SM library (n = 4182) based on their PCP using a principal
component analysis plot. Component 1 and 2 explained 26.8% and 9.25% of the variability across the 4182 SM based on the
60 PCP obtained from multiple reference databases (ChemBridge, PubChem, Joelib, ChemMine, and OpenBabel). Each
dot represents the distribution of a SM based on its PCP. (A) displays the clusterization of the SM library into 5 distinct
clusters based on the PCP of the SM. (B) displays the spectrum of activity of each SM (dot) based on the published
primary screening data. The color of the dots is proportional the spectrum of antimicrobial activity of a given SM based on
the primary screenings performed (number of species affected by the SM; from 0 to 8 species). Cluster V (n = 594 SM),
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W (n = 1396 SM), X (n = 404 SM), Y (n = 1355 SM), and Z (n = 433 SM). (C) The two-way clustering plot was built based
on the 34 PCP showing significant correlations with the spectrum of antimicrobial activity of the SM. Five clusters were
generated based on the PCP profile similarities described in Figure 2A. HBA and HBD: hydrogen bond acceptor and donor,
respectively. TPSA: topological polar surface area. LogP: lipophilicity. NS: nonsignificant correlation (p > 0.01). (D) Linear
regression between the spectrum of activity and the PCP of the clusters (r2 = 0.66). PCP score: score generated based
on the number of significant (p < 0.01) correlation between the spectrum of activity of the SM and their PCP (Figure 2C).
Spectrum score: score generated based on the hit compounds and the number of bacteria affected by hit compounds
(Supplemental File 3).

Interestingly, a unidirectional gradient in the spectrum of activity was observed within
and between clusters (Figure 2B), suggesting that small PCP variations within each cluster
have detrimental impact on the spectrum of activity of the SM. The multivariate analysis
identified 28 PCP positively and seven PCP negatively correlated with the spectrum of
activity of the SM across the five clusters (0.07 < r2 < 0.23; −0.20 < r2 <−0.07; p < 0.01;
Figure 2C). Only LogP was positively correlated with the five clusters (r2 > 0.12; p < 0.01).
Overall, the clusters V, X, and Z displayed different spectrum/PCP correlation profile
compared to cluster W and Y (Figure 2C). The clusters Z and Y were the only clusters
positively correlated with the number of heavy and single bonds and the Zagreb indexes
(r2 > 0.09; p < 0.01), and negatively correlated with topological surface polar area (TPSA;
r2 < −0.10; p < 0.01; Figure 2C). Interestingly, clusters Z and Y harbored the highest number
of multitarget hits (Supplemental File 3), and the highest number of correlations between
the PCP and the spectrum of activity (n = 23 and 18, respectively). Therefore, the spectrum
of activity of the SM might be explained at some level by these specific PCP profiles and
the number of correlations between the PCP and the spectrum of activity (linear regression
r2 = 0.66; p = 0.09; Figure 2D). However, it is important to mention that only five clusters
were used to test this hypothesis, which limits the statistical power of our analysis. In
contrast, cluster Y had the highest correlation values (r2 = 0.17 ± 0.02) while cluster Z had
the lowest correlation values (absolute r2 = 0.11 ± 0.02; Figure 2C), which suggest that the
intensity (r2 value) of the correlations between the PCP and the spectrum of activity was
not associated with the spectrum of activity of the SM (r2 = 0.001).

2.3. Using Virtual Screening Tools to Prioritize the Selection of SM with Potential Antimicrobial
Activity

The two-dimension Tanimoto scoring system (measures the molecular similarity)
clustered the 4182 SM into six major groups (A–F). These groups were subdivided into
total of 141 clusters (n = 4 to 144 SM per cluster) with highly similar chemical structures
(p < 0.01; Figure 3). Each cluster harbored an equivalent hit rate (47.7 ± 13.8% per cluster)
with equivalent spectrum of activity. Only seven clusters (n = 40 SM total) were composed
of hits effective against a specific type of pathogen and only two clusters (n = 10 SM)
harbored no hits (Figure 3). Thereby, the Tanimoto scoring system was inconclusive in
characterizing the antimicrobial activity of the SM. Similarly, the pre-selected SM library
(n = 4182) used in this study is composed of 92.6% of SM following the Lipinski rule of five
(n = 3873); by consequence, the Lipinski rule of five was also inconclusive in characterizing
the antimicrobial activity of the SM.
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Figure 3. Analyses of the pre-selected small molecule (SM) library based on the two-dimension Tanimoto scoring system.
(A) Chemical structure diversity of the SM library based on two-dimension Tanimoto scoring (PubChem database) combined
with a hierarchical clustering method. The SM (4182 SM) were grouped into 141 clusters that contain between 4 and 144 SM
with high chemical structure similarities (Bartlett’s test; p < 0.01). Cluster A: 188 SM; B: 252 SM; C: 727 SM; D: 802 SM;
E: 231 SM; F: 43 SM. (B) Proportion of hit compounds within each cluster. (C) Activity spectrum of the hits within each
cluster. Green, orange, and purple bars: hits specific to plant, animal, or human/foodborne pathogens, respectively at a
given SM concentration and growing condition (Table 1); blue bar: hits effective against more than one pathogen category.
(D) Proportion of the hits per pathogen (n = 9). The cell color (from blue to red) is proportional to the number of hits for the
designated pathogen for a given SM cluster. Cj: Campylobacter jejuni 81–176; ST: Salmonella enterica subsp. Enterica serotype
Typhimurium JSG626; APEC: avian pathogenic Escherichia coli O78; Mg: Mycoplasma gallisepticum MG37; Cmm: Clavibacter
michiganensis subsp. Michiganensis C290; Ac: Acidovorax citrulli Xu9-15; Et: Erwinia tracheiphila TedCu10; Xg: Xanthomonas
gardneri SM761; and Xp: Xanthomonas perforans SM755-12. Data presented in Figure (B–D) are based on the in vitro data
obtained from the primary screenings (n = 11 screenings) of our previous studies.
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3. Discussion

The pre-selected SM library used in this study was created based on the empirical in
silico model developed by Wallace et al. [14]. This model was previously shown to improve
the identification of uncharacterized molecules with potential antimicrobial properties
against several model organisms (e.g., E. coli, C. albicans, C. elegans, and B. subtilis) [14].
Our pre-selected SM library, obtained based on Wallace et al. [14], provided a high hit rate
(average of 20-fold higher compared to conventional libraries [2]) despite the taxonomic
diversity and host range of the bacterial pathogens screened. Therefore, our study supports
the following statement from Wallace et al.: “Compounds that inhibit yeast growth are more
likely to induce phenotypes in other model organisms.” [14]. It is also important to notice
that nutrient availability was a decisive factor influencing the hit rate [16]. However, certain
pathogens (e.g., ST, APEC, and Ac) were less susceptible to the pre-selected SM library
(hit rate between 0.5% and 5.2%), even when limiting nutrient conditions and higher SM
concentrations (200 µM instead of 100 µM) were used for the primary screens. Therefore, we
hypothesize that these species might have antimicrobial resistance mechanisms (i.e., efflux
pump or periplasmic enzymes) that increase their resistance to the SM [27,28]. Overall,
the screening of the plant (n = 5), animal (n = 2), and foodborne-human (n = 2) pathogens
against the pre-selected SM library allowed the identification of 18 lead compounds (SM
that successfully mitigate the designated pathogen in vivo/in planta, with minimal impact
on the host and its microbiota) and 73 hits with promising antimicrobial properties in vitro
for the development of future lead compounds [15–26] (Supplemental File 1).

The taxonomy and host range of the screened pathogens, and the growing conditions
used for the SM screens were not associated with the PCP profile of the hit compounds. On
the other hand, the antimicrobial activity and the activity spectrum of a SM was associated
with its PCP [29,30]. The pre-selected SM library was composed of five distinct PCP profiles
with different hit compound discovery rates (between 35% and 67.5%) and the number
of narrow- and broad-spectrum SM. Our empirical model accurately predicted 80.8% of
the SM with antimicrobial activity (n = 1676/2073) based on the 11 screens performed
on nine species and the 60 PCP recorded. Therefore, by using our new selected library
(n = 1676) developed based on our in silico model, we would be able to reduce by 2.5-fold
future in vitro primary screening efforts while increasing the hit rate. Further, most of the
lead compounds (n = 17/18) and best hit compounds (n = 66/73) identified across our
studies were accurately predicted by our in silico model (Supplementary File 1). However,
it is important to note that the pre-selected SM library (n = 4182) is composed of a broad
diversity of SM with different backbone structures and PCP profiles. Further, this study
was based on the screens performed with bacterial pathogens grown in specific conditions
(Table 1), which might not reflect the full antimicrobial potential of the pre-selected SM li-
brary, and therefore reducing the resolution of our prediction model. Performing additional
screens against other plant, animal, and human pathogens using the same pre-selected
library will further enhance the accuracy of our model and aid accelerated discovery of
narrow- and broad-spectrum antimicrobials. In addition, it was observed that some PCP
(Figure 1; e.g., geometrical shape coefficient, TPSA, and the number of oxygen) harbored a
high contribution score among all the PCP studied, but these parameters did not display
significant differences between antimicrobial activity profiles. By consequence, they may
have contributed to some extent to the mis-prediction of our model.

Among the 60 PCP used in this study, MW, Zagreb group indexes, Kier shape, logP,
MR, and the number of bonds (aromatic, heavy) had the highest predicted impact on the
antimicrobial activity and spectrum of activity of the SM, which is in accordance with
previous studies [31–35]. Interestingly, the precision of the in silico model was greater (up to
100% prediction accuracy) with broad-spectrum hits (SM with antimicrobial activity against
at least seven species). Although only 7 SM were effective against at least seven species.
A total of the 34 PCP were correlated with the activity spectrum of the SM. Several of
these parameters (e.g., MR [32], logP [30,36], HBD [37], hydroxyl groups [38–40], aromatic
groups [41], MW [31], carbons atoms [42], pyrophosphate [43], double bonds [44,45], and
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boron [46]) are known to influence the antimicrobial activity of a molecule. It was also
shown that, for clusters X and W, the number of carboxylic acid groups and HBD per
SM were positively correlated with the spectrum of activity, while the number of acyl
groups per SM were negatively correlated. Similar observations were made with salvic
acid derivatives in their antimicrobial properties when tested against E. coli, Staphylococcus
aureus, and Bacillus cereus [37,47]. The in vitro analyses and docking studies revealed that
the antimicrobial activity of salvic acid derivatives (labdanes and diterpenoids) was closely
associated with the presence of the carboxylic acid groups in the molecules. The carboxylic
group in the derivatives acted as HBD enhancing lipophilicity of the molecules, and thus
modulated the interactions with the bacterial membrane [37,47]. It is important to notice
that hydrogen bond acceptors (HBA) parameter was the only PCP strongly negatively
correlated with the spectrum of activity of the SM, which coincides with the negative
correlation observed between HBA and HBD (r2 = –0.47).

4. Materials and Methods
4.1. Physico-Chemical Properties of the Pre-Selected SM Library and High Throughput Screening
Data Associated with the Pre-Selected SM Library

Physico-chemical properties of the pre-selected library and the in vitro data from our
earlier screening studies performed on plant, animal, and foodborne/human pathogens
were used for in silico analyses in this study. A pre-selected library of 4182 bioactive
SM obtained from ChemBridge (San Diego, CA, USA) was used in this study. Details
about the prioritization methods used for the selection of the pre-selected library of SM
is described in a previously published study [14]. A total of 60 PCP obtained using
ChemBridge (hit2lead), PubChem, ChemMine, OpenBabel, and Joelib [48–51] were cor-
related with the antimicrobial activity of the SM (Table 2 and Supplemental File 4). The
pre-selected SM library used for this study was deposited and is freely available in the
following website: (http://chemogenomics.med.utoronto.ca/supplemental/bioactive/,
accessed on 30 August 2021).

The in vitro data generated from our previously published drug discovery studies [15–25]
using this SM library were used for in silico analyses. This library was previously screened
against two foodborne (Salmonella enterica subsp. Enterica serotype Typhimurium JSG626
(ST) [16,18,23] and Campylobacter jejuni 81-176 (Cj) [17,22]), two animal (avian pathogenic
Escherichia coli serotype O78 (APEC) [19,20] and Mycoplasma gallisepticum MG37 (Mg) [24]),
and five plant pathogens (Xanthomonas gardneri SM761 (Xg) [25], Xanthomonas perforans
SM775-12 (Xp) [25], Acidovorax citrulli Xu09-15 (Ac) [26], Clavibacter michiganensis subsp.
Michiganensis C280 (Cmm) [15], and Erwinia tracheiphila TedCu10 (Et) [21]). The ST and
APEC were also screened for virulence inhibitors [19,23] using this library and data as-
sociated with these screens were also included in the in silico analyses. Summary of
the screening methodology and main findings from our previous studies are displayed
in Table 1. Antimicrobial activity of the hits (SM that completely inhibited the growth
(bacteriostatic or bactericidal effects) or attenuated at least 75% virulence of the bacterial
pathogen at the designated concentration), SM screening conditions (growth medium,
incubation conditions, small molecule concentration), taxonomy of the screened pathogens,
hit rate (percentage of SM that completely inhibited the growth of the pathogen) were
analyzed and organized from each study to determine the antimicrobial activity (hit versus
non-hit) and spectrum of activity (number of pathogenic species inhibited) of the tested SM.
For the in silico analyses, the in vitro data (antimicrobial activity and spectrum of activity
of the SM) were used to correlate with the PCP of each compound to identify PCP profiles
associated with the antimicrobial activity and spectrum of activity of the SM. A total of
2073 active SMs were identified across the nine pathogens screened from our previous
studies (Supplemental File 1). Further, the activity spectrum of these 2073 compounds was
determined by comparing the antimicrobial activity of the hits across all pathogens tested
(Table 2 and Supplemental File 4). Veracity of our previously published in vitro data has
been confirmed by resynthesizing all hit compounds identified during the primary screen-
ing and testing using similar screening conditions (Table 1). Details concerning the 2073
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active SMs identified across the nine pathogens from our previous studies are presented in
Supplemental File 1. Additional details concerning the antimicrobial activity and toxicity
of SM in vitro and in vivo are available in our previously published studies [15–25].

4.2. Statistical Analyses

Only SM showing bacteriostatic or bactericidal activity (growth inhibitors) and the
SM inhibiting the bacterial virulence (biofilm or quorum sensing inhibitors) at a given
concentration and specific growing conditions were considered as “hit compounds” (con-
firmed antimicrobial activity; Table 1). A schematic of the methodology used in this study is
described in Supplemental File 4. The analyses were performed using JMP PRO 14 software
(SAS Institute, Cary, NC, USA). Three random subsets obtained by omitting 4.2–9.5% of the
pre-selected library (n = 3785, 3819, and 4007 compounds per subset) were used to validate
the prediction accuracy obtained using the in silico model presented in this study. Further,
three random subsets of 10% of the SM molecule library were also used to validate the
prediction accuracy of the model. Structural similarity of the SM was determined using
Bartlett’s test and displayed using a hierarchical clustering method based on a Tanimoto
score system (two-dimensional structure fingerprint with a single linkage algorithm). The
contribution of each PCP on the antimicrobial (hits versus nonhits), spectrum (number
of species a hit affected) of activity of the SM, and the type of inhibition (growth versus
virulence inhibitors) was determined based on the bootstrap forest method. Statistical anal-
yses were performed using one-way analysis of variance (ANOVA) for the antimicrobial
activity and using simple linear regression for the spectrum of activity. The veracity of the
significant discoveries was validated using a false discovery rate (FDR), equivalence test,
and Huber M-estimation to identify only PCP large enough to be of pragmatic interest and
reduce the impact of outliers on the statistical differences. A discriminant analyses was
performed to predict the antimicrobial activity and spectrum of activity of the SM based on
their PCP. A principal component analysis (PCA) was performed to identify clusterization
patterns between SM based on their PCP. Similar analyses were performed to identify
clustering patterns based on the pathogen type (plant, animal, and human pathogens).
A Chi2 test combined with a Pearson and likelihood ratio test were used to identify hit
rate differences between groups. A multivariate analysis was performed on the clusters
generated by the PCA to identify correlation between the PCP and the antimicrobial activity
and spectrum of activity of the SM. A scoring system was used to study the associations
between the antimicrobial performance (spectrum of activity and hit rate) of the designated
SM clusters and its PCP. The spectrum score was generated based on the number of hit
compounds and the number of species affected by hit compounds (Supplemental File 3).
The PCP score was generated based on the number of significant (p < 0.01) correlations
between the spectrum of activity of the SM and their PCP (Figure 2C). Linear regression
was used to assess the veracity of the in silico model (Figure 2D).

5. Conclusions

Overall, our study demonstrated that the antimicrobial activity and the spectrum
of antimicrobial activity of SM were correlated with specific PCP (especially, MW, LogP,
MR, Zagreb index, Kier shape, TPSA, MR, HBD, and HBA). These findings support the
compound prioritization approach developed by Wallace et al. [14] (yeast-active screening;
in silico prioritization using Lipinski rule; phenotype prediction using the naïve Bayes
model), which allowed for building the original pre-selected library (n = 4.182 SM) used
for this study. In addition, the in silico analyses performed in this study reduced the
pre-selected library of 4182 compounds to 1676 narrow- or broad-spectrum compounds
that truly possessed the antimicrobial activity and with predictable PCP. Therefore, virtual
screening is a valuable tool to reduce the cost and time associated with drug discovery.
Further, the screening data presented in this study would facilitate the development of
novel derivatives likely to harbor a selective antimicrobial activity (narrow versus broad
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spectrum). In contrast, our analysis suggested the limited use of the two-dimension
Tanimoto scoring system for the prediction of antimicrobial activity.

6. Patents

The following patents are associated with the lead compounds described in this study:
US 62/608,335; US 62/697,876; US 16/083,811; and US 9,896,450.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10091065/s1. Supplemental File 1. Details concerning the 2073 hits identified across
the eleven primary screenings; Supplemental File 2. Physico-chemical properties of the pre-selected
library not associated with the antimicrobial activity of the small molecules; Supplemental File 3.
Hit rate and spectrum of antimicrobial activity of the small molecules by cluster; Supplemental File
4. Virtual screening methodology used for the identification of narrow- and broad-spectrum small
molecule antibacterials with predictable physico-chemical properties.
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R.J.L.; Breukink, E.; Martin, N.I. De Novo Identification of Lipid II Binding Lipopeptides with Antibacterial Activity against
Vancomycin-Resistant Bacteria. Chem. Sci. 2017, 8, 7991–7997. [CrossRef]

44. Hsiao, C.P.; Siebert, K.J. Modeling the Inhibitory Effects of Organic Acids on Bacteria. Int. J. Food Microbiol. 1999, 47, 189–201.
[CrossRef]

45. Totaro, G.; Cruciani, L.; Vannini, M.; Mazzola, G.; Di Gioia, D.; Celli, A.; Sisti, L. Synthesis of Castor Oil-Derived Polyesters with
Antimicrobial Activity. Eur. Polym. J. 2014, 56, 174–184. [CrossRef]

46. Sayin, Z.; Ucan, U.S.; Sakmanoglu, A. Antibacterial and Antibiofilm Effects of Boron on Different Bacteria. Biol. Trace Elem. Res.
2016, 173, 241–246. [CrossRef] [PubMed]

47. Urzúa, A.; Rezende, M.C.; Mascayano, C.; Vásquez, L. A Structure-Activity Study of Antibacterial Diterpenoids. Molecules 2008,
13, 882–891. [CrossRef] [PubMed]

48. Backman, T.W.H.; Cao, Y.; Girke, T. ChemMine Tools: An Online Service for Analyzing and Clustering Small Molecules. Nucleic
Acids Res. 2011, 39, W486–W491. [CrossRef]

49. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019
Update: Improved Access to Chemical Data. Nucleic Acids Res. 2019, 47, D1102–D1109. [CrossRef]

50. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox.
J. Cheminformatics 2011, 3, 33. [CrossRef]

51. Guha, R.; Howard, M.T.; Hutchison, G.R.; Murray-Rust, P.; Rzepa, H.; Steinbeck, C.; Wegner, J.; Willighagen, E.L. The Blue
Obelisk—Interoperability in Chemical Informatics. J. Chem. Inf. Model. 2006, 46, 991–998. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jhazmat.2016.03.006
http://doi.org/10.1016/j.bmc.2015.04.063
http://doi.org/10.1016/j.arabjc.2012.11.021
http://doi.org/10.3390/molecules22071039
http://doi.org/10.1002/jsfa.9357
http://www.ncbi.nlm.nih.gov/pubmed/30206947
http://doi.org/10.1111/j.1472-765X.2006.01938.x
http://www.ncbi.nlm.nih.gov/pubmed/16869897
http://doi.org/10.3390/molecules22040608
http://www.ncbi.nlm.nih.gov/pubmed/28394271
https://www.hindawi.com/journals/ecam/2016/3012462/
http://doi.org/10.1094/MPMI-03-11-0074
http://doi.org/10.1039/C7SC03413J
http://doi.org/10.1016/S0168-1605(99)00012-4
http://doi.org/10.1016/j.eurpolymj.2014.04.018
http://doi.org/10.1007/s12011-016-0637-z
http://www.ncbi.nlm.nih.gov/pubmed/26864941
http://doi.org/10.3390/molecules13040822
http://www.ncbi.nlm.nih.gov/pubmed/18463590
http://doi.org/10.1093/nar/gkr320
http://doi.org/10.1093/nar/gky1033
http://doi.org/10.1186/1758-2946-3-33
http://doi.org/10.1021/ci050400b
http://www.ncbi.nlm.nih.gov/pubmed/16711717

	Introduction 
	Results 
	Compounds’ Prioritization Increases the Identification of Antimicrobials Effective against Bacterial Pathogens with Diverse Taxonomic and Host Range Profile 
	The Antimicrobial Activity and Spectrum of Activity of the SM Correlated with Specific Physico-Chemical Properties 
	Using Virtual Screening Tools to Prioritize the Selection of SM with Potential Antimicrobial Activity 

	Discussion 
	Materials and Methods 
	Physico-Chemical Properties of the Pre-Selected SM Library and High Throughput Screening Data Associated with the Pre-Selected SM Library 
	Statistical Analyses 

	Conclusions 
	Patents 
	References

