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Background: Gastric adenocarcinoma (GAC) is a common clinical malignancy

with a poor prognosis. Endoplasmic reticulum (ER) stress plays important roles

in the progression, immune filtration, and chemoresistance of cancers.

However, whether ER stress-related gene signatures can predict the

prognosis of GAC patients remains unknown.

Methods: GAC patient RNA-seq data downloaded from The Cancer Genome

Atlas and gastric cancer patientmicroarray data fromGene ExpressionOmnibus

datasets were analyzed using LASSO regression to construct an ER stress-

related signature. Survival analysis, time-dependent receiver operating

characteristic (ROC) curves, and Cox regression analysis were used to verify

the efficacy of the signature. Immune infiltration, somatic mutation, immune

checkpoint, and copy number variation analyses were utilized to explore the

potential biological significance of the signature.

Results: In the present study, eight ER stress-related gene signatures were

constructed. Survival analysis showed that patients in the high-risk group had a

significantly worse prognosis. The area under the time-dependent ROC curves

was 0.65, 0.70, and 0.63 at 1, 3, and 5 years, respectively, in the training cohort.

Cox regression analysis showed that the signature is an independent prognostic

factor. To predict GAC patients’ prognosis meeting individual needs, a

nomogram was constructed with good accuracy. In addition, gene set

enrichment and immune infiltration analyses showed that the ER stress-

related signature is associated with cancer-related pathway activation and

an immunosuppressive tumor microenvironment in GAC.

Conclusion: In the current study, we established an ER stress-related signature.

This prognostic signature has good predictive power and could facilitate the

development of novel strategies for the clinical treatment of GAC.
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Introduction

Gastric cancer is one of the most common malignancies

worldwide, ranking fifth in the number of new cases of all cancer

types in 2020 (Sung et al., 2021). The most common histological

type of gastric cancer is gastric adenocarcinoma (GAC), and

China accounts for 40% of new cases each year globally (Ajani

et al., 2017). Despite great progress in the treatment of GAC in

recent years, the 5-year overall survival (OS) remains low (Joshi

and Badgwell, 2021; Zheng et al., 2021). Therefore, it is important

to identify a novel prognostic signature for predicting the

prognosis of GAC patients and instructing rational treatment.

The endoplasmic reticulum (ER) is the main site for protein

synthesis and folding in eukaryotic cells and plays an important

role in maintaining intracellular homeostasis (da Silva et al.,

2020). However, external stimuli such as hypoxia, reactive

oxygen species, and drug exposure can disrupt the

homeostasis of the ER, triggering protein misfolding and

accumulation of proteins, ultimately leading to ER stress

(Chen and Cubillos-Ruiz, 2021). Interestingly, ER stress can

trigger the unfolded protein response (UPR), a protective

mechanism that induces a series of transcriptional and

translational changes to promote cell adaptation (Roy and

Kumar, 2019). If these corrective measures are inadequate to

restore homeostasis, various ER sensors actively signal cell

destruction (Oakes and Papa, 2015).

ER stress plays an important role in promoting tumor growth,

the tumor immune microenvironment, and chemoresistance. The

uncontrolled rapid growth of cancer cells and the hypoxic, nutrient-

poor tumor environment result in a state of ER stress in tumor cells

(King andWilson, 2020). Induction of the UPR by ER stress enables

cells to adapt to adverse environmental conditions and promotes

tumor progression (Madden et al., 2019). In addition, the adverse

effects of tumor cells on immune cells can disturb the ER

homeostasis of immune cells, thus hindering effective antitumor

immunity (Song and Cubillos-Ruiz, 2019). Various factors secreted

by tumor cells can induce ER stress in macrophages, which is

conducive to the survival of tumor cells (Di Conza et al., 2021). In

addition, multiple ER stress-related genes are upregulated in tumor

cells to promote chemoresistance, for example, GPR78

(Ranganathan et al., 2006), HSP47 (Chern et al., 2020), and

HSP90 (Azad et al., 2015). However, ER stress can also be an

important target for cancer therapy. Previous studies have shown

that cytotoxic compounds targeting the ER are generally more

selective for cancer cells than for noncancer cells (King and

Wilson, 2020). In melanoma cells, direct knockdown of XBP1,

an essential UPR gene, enhances the effect of immune

checkpoint (ICP) inhibitors (Chen and Cubillos-Ruiz, 2021). The

aforementioned results suggest that studies of ER stress-related

genes may be of great value in predicting the prognosis of GAC

patients and could serve as potential therapeutic targets.

In this research, we constructed and validated an ER stress-

related signature that not only predicts the prognosis of GAC

patients but also distinguishes the immune infiltration

characteristics of GAC. Our study provides a novel

perspective for future studies of ER stress and GAC.

Materials and methods

Data acquisition

GAC patient mRNA expression profiles and corresponding

clinical information were downloaded from The Cancer Genome

Atlas (TCGA). Tumor samples with complete clinical information,

including M, N, and T stage, TNM stage, and survival duration

longer than 1 month, were included in the study (a total of

290 samples). mRNA expression values were converted to TPM

(transcripts per kilobase of exon model per million mapped reads)

values. GSE84433 was profiled on an Illumina HumanHT-12

V3.0 Expression BeadChip, including 357 gastric cancer samples,

which resulted in 355 samples in our investigation, as 2 samples were

from patients whose survival time was less than 1 month (Table 1).

TCGA dataset was utilized as a training cohort to construct the ER

stress prognosis model, and the GSE84433 dataset was used as a

validation cohort to verify the signature’s prediction potential.

Somatic mutation data (MuTect2 Variant Aggregation and

Masking) were downloaded from UCSC Xena. Copy number

variation (CNV) data were downloaded from TCGA database

using the “TCGAbiolinks” R package.

Construction and validation of the
signature

The phrase “endoplasmic reticulum stress” was used as a

keyword to search for related genes in the Molecular Signatures

Database, eventually obtaining 16 gene sets (Supplementary

Material S1). After eliminating duplicates, 465 genes present

in the training and validation cohorts were included in the next

step of the analysis. Univariate Cox regression analysis was used

to identify ER stress-related genes associated with OS. Genes with

a p-value less than 0.05 were considered significant prognostic

signatures. Least absolute shrinkage and selection operator

(LASSO) Cox regression analysis was used to construct a

prognostic signature based on the identified prognostic ER

stress-related genes using the “glmnet” R package. Next, 10-

fold cross-validation was employed to determine the penalization

parameter (λ). Finally, those genes with nonzero coefficients were

chosen to develop the signature. The patient risk score was

computed using the following equation:

Riskscore � ∑
n

i�1
coefi × expressioni. (1)

The median risk score was used to divide patients into

high-risk and low-risk groups in both datasets. To evaluate the
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predictive power of the signature, the “survival” R package was

used to draw survival curves between the low-risk and high-

risk groups. In addition, time-dependent receiver operating

characteristic (ROC) curves were applied to evaluate the

prognostic value of the risk score for OS using the

“timeROC” R package The “survival” R package was also

used to perform univariate and multivariate Cox regression

analyses to verify the risk score’s independent prediction

power for other clinicopathological variables. The

relationship between clinicopathological characteristics and

risk scores was analyzed using Kaplan–Meier curves.

Construction of the predictive nomogram

The “rms” R package was used to generate a nomogram to

predict the 1-, 3-, and 5-year survival rates of GAC patients in the

training cohort by age, M stage, N stage, T stage, TNM stage, and

TABLE 1 Clinical information of tumor samples included in this study.

Clinical characteristic TCGA cohort GSE84433

Total cases 290 (100%) 355 (100%)

Event

Dead 121 (41.7%) 172 (48.5%)

Alive 169 (58.3%) 183 (51.5%)

Sex

Male 181 (62.4%) 240 (67.6%)

Female 109 (37.6%) 115 (33.4%)

Race

Asian 59 (20.3%) —

Black or African American 9 (3.1%) —

Native Hawaiian or other Pacific islanders 1 (0.3%) —

Not reported 40 (13.8%) —

White 181 (62.4%) —

Age

65≤ 133 (45.9%) 240 (67.6%)

65> 157 (54.1%) 115 (33.4%)

M

M0 262 (90.3%) —

M1 19 (6.6%) —

MX 9 (3.1%) —

N

N0 89 (30.7%) 71 (20.0%)

N1 76 (26.2%) 154 (43.4%)

N2 62 (21.4%) 99 (27.9%)

N3 59 (20.3%) 31 (8.7%)

NX 4 (1.4%) —

T

T1 12 (4.1%) 11 (3.1%)

T2 64 (22.1%) 35 (9.9%)

T3 142 (49.0%) 67 (18.9%)

T4 72 (24.8%) 242 (68.2%)

TNM Stage

Stage I 40 (13.8%) —

Stage II 98 (33.8%) —

Stage III 122 (42.1%) —

Stage IV 30 (10.3%) —
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risk score. The calibration curves were used to evaluate the

predictive power of our constructed nomogram.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) (Subramanian et al.,

2005) was utilized to identify molecular processes and functional

pathways that differed between the high-risk and low-risk groups

in the training cohort. The hallmark gene set and KEGG gene set

were retrieved from the Molecular Signatures Database.

Statistical significance was defined as NOM p-value <0.05,
FDR <0.25, and |NES| > 1.

Immune infiltration analysis

To measure the correlations between our signature and tumor

immune cell infiltration, CIBERSORT (Newman et al., 2015) was

used to quantify 22 types of tumor-infiltrating immune cells in each

TCGA sample. The Wilcoxon test was used to compare immune

infiltration and function in the high-risk group to those in the low-

risk group. ESTIMATE (Yoshihara et al., 2013) was used to estimate

the tumor purity with the “estimate” R package.

Somatic mutation and ICP analyses

TCGA mutation data were analyzed using “maftools” to

explore the differences in GAC patient somatic mutations and

tumor mutation burden (TMB) between the high-risk and low-

risk groups. To assess the efficacy of the signature in

immunotherapy, boxplots were constructed to analyze the

expression of common ICPs, including PDCD1 (PD1), CD274

(PD-L1), LAG3, CTLA4, and PDCD1LG2 (PD-L2).

CNV analysis

GISTIC2.0 (Mermel et al., 2011) was used to identify regions

with significant amplifications or deletions. The threshold for

amplification and deletion scores was ˃ 0.1, and the q-value

threshold was <0.05.

Statistical analyses

Computational and statistical analyses in this study were

conducted using R (version 4.1.1). The log-rank test was used to

analyze survival. For quantitative data, statistical significance for

comparisons between two groups or more than two groups was

estimated using the Wilcoxon test. Statistical significance was

defined as a p-value <0.05.

Results

Construction and evaluation of the
prognostic signature based on ER stress-
related genes

Univariate Cox regression analysis was applied to identify

prognostic ER stress-related genes in the training cohort. A

total of 15 prognostic genes associated with ER stress

(Figure 1C) were used for subsequent signature

construction in the training cohort. A penalty parameter

was selected based on the results of LASSO regression and

10-fold cross-validation (Figures 1A,B). A total of eight genes

with nonzero coefficients associated with that penalty

parameter were obtained to construct the risk score

formula (Supplementary Material S2). The risk score for

each patient in the training and validation sets was

calculated according to the developed formula. The

distributions of risk scores, outcome events, and survival

time for each patient in both cohorts are shown in scatter

plots in Figures 2A, C. These results also suggested a trend in

which patients with GAC in the high-risk group died earlier

than those in the low-risk group in both the training and

validation sets. Additionally, the expression of the eight genes

in both datasets is shown using a heatmap (Figures 2B, D). To

evaluate the reliability of the signature, Kaplan–Meier survival

analyses were carried out on both cohorts, which revealed that

patients in the low-risk group experienced a higher overall

survival rate (Figures 2E, F). Analysis of time ROC curves

revealed area under the curve values for 1-, 3-, and 5-year OS

of 0.65, 0.70, and 0.63 and 0.62, 0.58, and 0.59 in the training

cohort and validation cohort, respectively, which

demonstrated a good predictive accuracy of the signature

(Figures 2G, H).

Independent prognostic value of the ER
stress-related signature

To determine whether the signature could be an

independent prognostic factor, univariate and multivariate

Cox regression analyses were conducted among the clinical

features and risk scores in both cohorts. The risk score was an

independent prognostic factor in both the training and

validation cohorts, according to the results of univariate

Cox regression (training cohort: HR = 13.827, 95% CI =

5.407-35.36, and p = 4.19E-08; Validation cohort: HR =

1.0227, 95% CI = 1.009-1.037, and p = 0.00155448)

(Figures 3A,C). In the multivariate Cox regression analysis,

the risk score remained an independent predictor of OS

(training cohort: HR = 13.8514, 95% CI = 5.2754-36.3691,

and p = 9.47E-08; validation cohort: HR = 1.0164, 95% CI =

1.0021–1.0308, and p = 0.024195032) (Figures 3B,D). The
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results of the Cox regression analyses are shown in

Supplementary Material S3.

Construction and validation of the
nomogram

To predict the survival probabilities of patients with GAC,

a nomogram was constructed integrating risk score, age, M

stage, N stage, T stage, and TNM stage (Figure 3E). The

calibration chart shows the accuracy of the assessment for

the prediction nomogram (Figure 3F). The nomogram

performed well when predicting the probability of patient

survival at 1, 3, and 5 years.

The ER stress-related signature is
associated with clinicopathological
features

To investigate the relationship between various

clinicopathological characteristics and prognostic models,

patients were divided into the following groups: age ≤65 years
and age >65 years (Figures 4A,B), MX–M0 and M1 (Figures

4C,D), NX-N1 and N2-N3 (Figures 4E,F), T1–T2 and T3–T4

(Figures 4G,H), and Stage I–Stage II and Stage III–Stage IV

(Figures 4I,J). The Kaplan–Meier curve analyses showed that the

prognosis of the low-risk group was better than that of the

control group, except for patients in the MX–M0, T1–T2, and

Stage I–Stage II groups. This may be related to the fact that most

patients were diagnosed with GAC at a late stage, resulting in a

FIGURE 1
Establishment of the ER stress-related prognostic signature. (A) Coefficients of the LASSO regression model for 15 genes in the training cohort
(TCGA cohort). (B) Cross-validation of 15-gene LASSO regression results. (C) Forest plot of univariate Cox regression analysis of 15 ER stress-
associated genes.
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relatively small number of early-stage patients in the dataset

(Digklia and Wagner, 2016).

GSEA between different risk groups

To investigate the potential function and significant

pathway changes associated with the signature, the

expression matrices of the different risk groups were

imported and examined by GSEA. The analysis of the

enrichment of the hallmark gene set indicated that many

pathways closely related to tumor progression were

activated in the high-risk group, such as

epithelial–mesenchymal transition, IL2-STAT5 signaling,

PI3K-AKT-MTOR signaling, and WNT β-catenin signaling

(Figures 5A–D). In addition, the results of KEGG enrichment

analysis showed that many pathways were enriched in the

high-risk group, including ECM–receptor interaction, MAPK

signaling pathway, TGF beta signaling pathway, and WNT

signaling pathway (Figures 5E–H). All of the enrichment

analysis results are shown in Supplementary Material S4.

Previous studies have shown that oncogenic signaling

pathways frequently activated in tumor cells, including the

MAPK and WNT/β-catenin pathways, can induce tumor cells

to produce immunosuppressive factors, leading to

immunosuppression in the tumor microenvironment

(Yaguchi et al., 2011). Similarly, the activity of most

immune cells is influenced to some extent by the PI3K-

AKT-MTOR signaling pathway (O’Donnell et al., 2018).

These results suggest a positive correlation between the ER

FIGURE 2
Prognostic value of the ER stress-related signature in the training and validation datasets. Risk score distribution and survival overview of each
GAC patient (A) in the training cohort and (B) in the validation cohort. The heatmap of the eight genes’ expression (C) in the training cohort and (D) in
the validation cohort. Survival analysis of the signature (E) in the training cohort and (F) in the validation cohort. ROC curves of the signature using the
8-gene signature (G) in the training cohort and (H) in the validation cohort.
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FIGURE 3
Identification of independent prognostic factors and establishing the nomogram. Forest plot for univariate Cox regression analysis of clinical
information and risk scores (A) in the training cohort and (B) validation cohort. Forest plot for multivariate Cox regression analysis of clinical
information and risk scores (C) in the training cohort and (D) validation cohort. (E) Patients’ risk scores and other clinical information from TCGA
dataset were used to construct nomograms to predict the prognosis of patients with GAC at 1 year, 3 years, and 5 years. (F) Calibration plot of
the nomogram in TCGA cohort.

FIGURE 4
ER stress risk score can distinguish different clinicopathological features of gastric adenocarcinoma. Patients aged (A) ≤65 years and (B) >
65 years. Patients with (C)MX–M0 and (D)M1. Patients with (E)NX–N1 and (F)N2–N3. Patients with (G) T1–T2 and (H) T3–T4. Patients with (I) Stage
I–Stage II and (J) Stage III–Stage IV.
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stress risk score and the malignancy of tumors in patients

with GAC.

The ER stress-related signature is
correlated with the tumor immune status

According to the GSEA results, we hypothesized that our

risk signature can detect differences in the immune infiltration

status of patients. The CIBERSORT algorithm was then used

to investigate the relationship between the ER stress model

and the tumor immune microenvironment. First, an identity

plot and a boxplot were used to roughly determine the

distribution of 22 immune cells in GAC patients, as

calculated using CIBERSORT (Figures 6A, B). Second, to

assess the differences in the proportions of the 22 types of

immune cells between different risk groups, we constructed a

boxplot, which demonstrated that the proportions of

M2 macrophages, naïve B cells, resting mast cells, and

monocytes were higher in the high-risk group than in the

low-risk group. The proportions of follicular helper T cells,

activated CD4 memory T cells, and neutrophils were lower in

the high-risk group than in the low-risk group (Figure 6C).

The ESTIMATE algorithm was then used to compute the

estimated score, stromal score, and immune score in both

groups. The results showed that the estimated score and

stromal score were significantly higher in the high-risk

group than in the low-risk group. The immune score was

lower in the high-risk group than in the low-risk group, but

the difference was not statistically significant (Figures 6D–F).

In addition, patients’ risk scores exhibited a significant

positive correlation with the ESTIMATE and stromal

scores, but there was no significant correlation with

immune scores. These results not only suggested that

immune cell infiltration may have a significant impact on

the prognosis of patients with GAC but also suggested the

efficacy of the signature.

Tumor mutation and immune checkpoint
landscape in GAC patients

To evaluate differences in tumor mutation profiles between

different risk groups, the top 30 mutated genes in the high- and

low-risk groups in terms of mutation frequency were displayed

using an oncoplot (Figures 7A,B). Interestingly, the top five genes

in terms of mutation frequency were the same for patients in the

high-risk and low-risk groups. TMB has been found in certain

studies to be a useful tool for identifying individuals with a variety

of cancers who are better candidates for immunotherapy (Chan

et al., 2019). To determine whether our signature can identify

patients who are more suitable for immunotherapy, the TMB of

patients was calculated using maftools. The results showed that

the TMB in the low-risk group was significantly higher than that

in the high-risk group, suggesting that patients in the low-risk

group may have a better response to immunotherapy

FIGURE 5
GSEA of the TCGA cohort. (A–D) Hallmark gene set enriched in the high-risk group. (E–H) KEGG pathways enriched in the high-risk group.
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(Figure 7C). We then compared the expression levels of ICPs in

the high-risk and low-risk groups, and the results showed that

ICP molecules such as PDCD1 (Figure 7D), CD274 (Figure 7E),

LAG3 (Figure 7G), and CTLA4 (Figure 7H) were expressed at

similar levels in both groups. Only the expression of PDCD1LG2

(PDL2) differed significantly between the high-risk and low-risk

groups (Figure 7F).

CNV profile in GAC patients

GISTIC2.0 was used to detect CNVs between the different

risk groups. For all significant amplification and deletion

regions, a peak region with the greatest amplitude and

frequency of change was detected, and the corresponding

gene and chromosome regions are shown in Supplementary

Material S5. A total of 53 amplified regions and 66 deletion

regions were found in the high-risk group (Figures 8A,B). A

total of 52 amplified regions and 59 deletion regions were

detected in the low-risk group (Figures 8C,D). In the CNV

analysis, the five most significantly amplified and deleted

regions in the high-risk group were 19q12, 8p23.1,

8q24.21, 17q12, and 12p12.1 and 16q23.1, 5q11.2, 9p21.3,

4q22.1, and 6p25.3, respectively (Table 2). Similarly, in the

low-risk group, significant amplification and deletion regions

were 17q12, 19q12, 8q24.21, 7q21.2, and 12p12.1 and

16q23.1, 5q11.2, 4q22.1, 3p14.2, and 9p23, respectively

(Table 3). To investigate the frequency of amplifications

and deletions in the genome of GAC patients, we imported

the GISTIC results into maftools. An oncoplot plot shows the

top 30 regions exhibiting differences in copy number

frequency between GAC patient groups (Figures 9A,B).

The regions with the highest frequencies of copy number

amplifications and deletions in the high-risk group were

8q24.21 and 9p21.3, respectively. The regions with the

highest frequencies of copy number amplifications and

deletions in the low-risk group were 8q24.21 and 4q34.3,

respectively.

FIGURE 6
Immune landscape between different groups of GAC patients. (A) Identity plot of 22 types of immune cells per patient. (B) Proportion of 22 types
of immune cells. (C) Boxplot of the proportion of 22 immune-infiltrating cells in the high- and low-risk groups (*: p-value <0.05, **: p-value <0.01,
and ***: p-value <0.001). Boxplots of (D) estimated score, (E) stromal score, and (F) immune score, calculated by ESTIMATE algorithm in high- and
low-risk groups. The correlation plot of the risk score with the (G) estimated score, (H) stromal score, and (I) immunization score.
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Discussion

ER stress is reportedly involved in tumor progression and

exhibits great potential as a target in cancer treatment (Marciniak

et al., 2022). On the one hand, the ER stress-induced UPR can

make tumor cells more tolerant to an unfavorable environment.

Tumor cells can transmit their ER stress state to certain immune

cells to suppress antitumor immunity (Mahadevan et al., 2011;

Lee et al., 2014). On the other hand, excessive ER stress can lead

to cell death (Oakes and Papa, 2015). The effect of ER stress on

tumor cells is dependent on the expression of ER stress-related

genes. Moreover, previous studies reported that the

overexpression of some ER stress-related genes is correlated

with poor prognosis in patients with several types of cancer,

including breast cancer (Chen et al., 2014), endometrial cancer

(Matsuo et al., 2013), and malignant melanoma (Shimizu et al.,

2017). However, the prognostic value of ER stress-related genes

in GAC remains to be fully elucidated.

FIGURE 7
Analysis of somatic mutations and Immune checkpoint expression in patients in high and low-risk groups. (A)Oncoplot of the top 30 mutation
genes in the high-risk group and (B) in the low-risk group. (C) Box plot of TMB values for patients in the different groups. (D) PDCD1, (E) CD274, (F)
PDCD1LG2, (G) LAG3, and (H) CTLA4 expression between the high-risk and low-risk groups.
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FIGURE 8
Landscape of copy number variants in high- and low-risk groups. (A) Amplification in the high-risk group. (B)Deletion in the high-risk group. (C)
Amplification in the low-risk group. (D) Deletion in the low-risk group (dark pink: residual q-value and q-value below 0.05, blue: only q-value below
0.05, and black: residual q-value and q-value greater than 0.05).
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In this study, a signature of eight ER stress-related genes was

established based on TCGA cohort and validated in the GEO

cohort. These eight genes include PTTG1IP, FBXO6, ACKR3,

CDIP1, SNAI2, CYP1B1, BHLHA15, and CREB3L3. According

to univariate Cox analysis, higher expression of PTTG1IP,

ACKR3, CDIP1, SNAI2, CYP1B1, BHLHA15, and

CREB3L3 is an unfavorable factor for OS in GAC patients,

whereas higher expression of FBXO6 is a favorable factor.

Previous studies have reported the roles of the aforementioned

genes. For instance, PTTG1IP (PTTG1-binding factor, PBF/

PTTG1IP) is a proto-oncogene. In thyroid cells, PTTG1IP

specifically binds to p53 and significantly inhibits the

transactivation of responsive promoters, and PTTG1IP reduces the

stability of p53 (Read et al., 2014). According to another report,

p53 participates in the regulation of mitochondrial and ER

interactions, and the knockdown of p53 reduces ER stress-induced

injury in mouse cardiomyocytes by protecting mitochondria (Chen

et al., 2019). Interestingly, a mutant of PTTG1IP, C51R, was reported

to be mainly confined to the endoplasmic reticulum

(Imruetaicharoenchoke et al., 2017). PTTG1IP may not be directly

related to ER stress, but they may be indirectly involved in ER stress

processes due to their close interaction with p53.

SNAI2 (Snail family transcriptional repressor 2) is a member of

the Snail family of proteins and plays a crucial role in the

developmental process (Cobaleda et al., 2007). In ER stress-

activated HEK293T cells, IRE1-XBP1 signaling pathway

activation can upregulate the expression of some EMT-TFs

including SNAI2 (Cuevas et al., 2017). Moreover, SNAI2 induces

MDM2 expression to promote p53 degradation in colon cancer cells.

It has also been shown that the loss of p53 in tumors activates the

IRE1α/XBP1 pathway to enhance protein folding and secretion

(Namba et al., 2015).

TABLE 2 Most significant amplification/deletion region in the high-risk group.

Cytoband CNV type q-value Residual q-value Wide peak
boundary

Genes in
the wide
peak

19q12 Amp 3.27E-19 3.27E-19 chr19:29774394-29907229 CCNE1

8p23.1 Amp 5.98E-12 5.98E-12 chr8:11739598-11786293 GATA4, NEIL2, and C8orf49

8q24.21 Amp 1.73E-12 1.26E-11 chr8:127701853-127712180 CASC11

17q12 Amp 1.21E-13 2.64E-11 chr17:39698255-39720948 ERBB2

12p12.1 Amp 2.51E-10 3.46E-10 chr12:25186964-25361662 KRAS, CASC1, and ETFRF1

16q23.1 Del 1.58E-44 1.58E-44 chr16:78095161-79593873 WWOX

5q11.2 Del 2.65E-36 4.18E-36 chr5:58964471-60492158 PDE4D, PART1, and MIR582

9p21.3 Del 1.31E-33 2.60E-31 chr9:21865499-21997723 CDKN2A and CDKN2A-AS1

4q22.1 Del 2.33E-25 2.33E-25 chr4:90227129-92262630 CCSER1

6p25.3 Del 5.05E-17 5.05E-17 chr6:1608602-2252191 FOXC1 and GMDS

CNV, copy number variation; Amp, copy number amplification; Del, copy number deletion.

TABLE 3 Most significant amplification/deletion region in the low-risk group.

Cytoband CNV type q-value Residual q
value

Wide peak
boundary

Genes in
the wide
peak

17q12 Amp 1.45E-34 3.90E-25 chr17:39692293-39747957 ERBB2, GRB7, MIEN1, and MIR4728

19q12 Amp 3.23E-23 3.23E-23 chr19:29815851-29825968 CCNE1

8q24.21 Amp 5.68E-12 1.57E-11 chr8:127214429-127226866 CCAT1

7q21.2 Amp 1.83E-13 1.98E-11 chr7:92525796-92928684 CDK6, PEX1, RBM48, FAM133B, and LOC101927497

12p12.1 Amp 5.17E-08 5.17E-08 chr12:25177518-25437858 KRAS, CASC1, and ETFRF1

16q23.1 Del 1.58E-56 1.58E-56 chr16:78095161-79593873 WWOX

5q11.2 Del 3.71E-40 8.78E-40 chr5:58964471-60492158 PDE4D, PART1, and MIR582

4q22.1 Del 1.29E-37 2.17E-37 chr4:90227129-92262630 CCSER1

3p14.2 Del 5.19E-28 4.22E-27 chr3:59717096-61040678 FHIT and MIR548BB

9p23 Del 3.67E-24 3.67E-24 chr9:8310705-10619051 PTPRD, PTPRD-AS1, and LOC105375972

CNV, copy number variation; Amp, copy number amplification; Del, copy number deletion.
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FBXO6 (F-box protein 6, FBG2) is a substrate recognition

component of certain SCF (SKP1, CUL1, and F-box protein)-

type E3 ubiquitin ligases involved in the degradation of ER-

associated proteins, and its role in cancer is highly complex.

Previous studies have shown that FBXO6 inhibits cadmium-

induced ER stress and reduces cell death induced by subsequent

c-Jun N-terminal kinase 1 (JNK1) activation (Du et al., 2014).

Furthermore, it has been demonstrated that FBXO6 inhibits

Chk1 activation in non-small cell lung cancer, increasing

cisplatin sensitivity (Cai et al., 2019).

ACKR3 (atypical chemokine receptor 3, CXCR7) is an atypical

chemokine receptor that binds to chemokines to control chemokine

levels and localization. ACKR3 is reportedly involved in protecting

cardiomyocytes from palmitate-induced ER stress and apoptosis

induced by SDF-1β (Zhao et al., 2013).

CDIP1 is a pro-apoptotic gene. Previous studies have shown

that the loss of CDIP1 blocks ER stress-induced apoptosis (Namba

et al., 2013). CYP1B1 encodes an enzyme that is a member of the

cytochrome (CYP) P450 family. Human granular lutein cells in a

state of ER stress can increase the expression of AHR and ARNT,

FIGURE 9
Oncoplot shows the top 30 regions of amplification and deletion frequencies for (A) the high-risk and (B) low-risk groups.
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increasing CYP1B1 expression and activity (Kunitomi et al., 2021).

Atrazine activates nuclear xenobiotic receptor responses that disrupt

CYP P450 homeostasis and CYP isoform transcription, including

CYP1B1, triggering inflammatory injury in the heart induced by

pathways such as ER stress (Li X.-N. et al., 2018).

BHLHA15 is also known as MSIT1. BHLHA15 expression is

downregulated in pancreatic cancer tissues, whereas overexpression

of BHLHA15 inhibits the proliferation, migration, and invasion of

human pancreatic cancer cells (Li X. et al., 2018). In a state of ER

stress, BHLHA15 induced by XBP1 can enhance the UPR by

synergizing the expression of genes encoding multiple secreted

proteins (Hess et al., 2016).

CREB3L3 (CAMP-responsive element binding protein 3 like 3)

is a transmembrane transport factor (Llarena et al., 2010). In

hepatocytes, proinflammatory cytokines can induce cleavage of

CREB3L3 and activate the acute phase response and UPR

(Zhang et al., 2006).

Based on the 8-gene signature described here, patients who

had low-risk scores had a better prognosis and longer survival

time in the training and validation cohorts. The results of Cox

regression analyses suggested that our risk score is an

independent prognostic factor. Time-ROC curve analyses

revealed that the risk signature predicted better short- and

long-term survival for GAC patients in both datasets. In brief,

the aforementioned results demonstrated the good predictive

effect of our ER stress-related signature.

According to the GSEA results, immune-related pathways were

upregulated in the high-risk group, indicating that our ER stress

signature is potentially related to the tumor immune

microenvironment in GAC. Thus, we performed ESTIMATE and

CIBERSORT analyses to determine the relationship between our

signature and immune infiltration. The high-risk group had higher

estimate scores and stromal scores, suggesting that these scores are

associated with poor prognosis in GAC. In addition, a significant

increase in the proportion ofM2macrophages in patients in the high-

risk group was observed. Previous studies reported that

M2 macrophages recruited by tumor-initiating cells can promote

the immune escape of tumor-initiating cells (Guo et al., 2017).

Similarly, polarized M2 macrophages induced by stromal cells

reportedly promote metastasis of gastric cancer cells (Yamaguchi

et al., 2016; Li et al., 2019). Interestingly, the aforementioned data

suggest that higher proportions of M2 macrophages and higher

stromal scores are associated with poor prognosis in patients with

GAC.Meanwhile, the proportions of follicular helper T cells, activated

CD4 memory T cells, and neutrophils in the high-risk group were

significantly lower. Previous studies have shown that follicular helper

T cells can restore antitumor responses in the immune

microenvironment in a CD8+-dependent manner (Niogret et al.,

2021). Neutrophils release a variety of cytokines that promote T-cell

proliferation and cytokine synthesis to enhance the adaptive immune

response (Tillack et al., 2012). Collectively, high-risk patients had a

reduced proportion of immune cells and demonstrated a state of

immunosuppression. These results confirm the promising ability of

the ER stress-related model to differentiate the immune infiltration

status of GACpatients andmay provide clinical recommendations for

treatment.

The accumulation of somatic mutations and other genetic

alterations can damage cell division checkpoints, leading to

abnormal cell proliferation and ultimately tumor formation

(Iranzo et al., 2018). The TMB is broadly defined as the number

of somatic mutations permegabase of the genomic sequence, and it is

correlated with the response rate of different tumors to ICP inhibitors

(Barroso-Sousa et al., 2020). To identify the potential mechanism of

our signature, we analyzed the somatic mutation profile and

expression of ICPs in GAC patients. Unexpectedly, low-risk GAC

patients had a greater TMB, suggesting that low-risk patients may be

more likely to benefit from immunotherapy. This result is consistent

with the findings of Shao et al. (2021). Among the common ICPs,

however, only the expression of PDL2 was significantly higher in the

high-risk group. The affinity of PDL2 for PD1 was three times higher

than that of PDL1 (Ohaegbulam et al., 2015). An anti-PD1 antibody

can block the binding of both PDL1 and PDL2 to PD1, increasing the

tumor cell-killing ability of T cells compared with an anti-PDL1

antibody (Zou et al., 2016). We thus hypothesized that the high-risk

group may be better suited for treatments targeting PD1.

SomaticCNVs canbe used to identify genomic regions involved in

disease phenotypes (Shlien and Malkin, 2009). Interestingly, the top

five copy number amplification regions in both risk groups overlapped

at two regions: 8q24.21 and 20q13.2. Similarly, the copy number

deletion regions had one overlapping region, namely, 9p23. Although

8q24.21 and 20q13.2 amplifications were detected in both risk groups,

the peaks with the greatest variation and frequency detected in those

regions and the genes corresponding to the peaks were different. The

region in which CASC11 is located was the most significantly

amplified region on 8q24.21 in the high-risk group. However, the

gene detected in the same region in the low-risk group was CCAT1.

The most amplified gene detected in the 20q13.2 region was

LOC105372672 in the high-risk group, but in the low-risk group,

ZNF217, TSHZ2, LOC101927770, and LOC105372672 were detected.

These results suggested that this ER stress-related prognostic model is

also able to distinguish copy number changes in patients with GAC.

Our study has some limitations. First, the relatively small dataset

sourced from public databases limited the predictive effect of our

constructedmodel. Second, the expression and prognostic predictive

effects of these eight genes at the protein level need further

evaluation. Third, the ability of our model as an early biomarker

remains to be developed. In the future, we will work to improve the

reliability and ability of our model as an early biomarker. Despite

these limitations, our study still provides a landscape of ER stress in

GAC that may be useful for future studies.

Conclusion

We constructed an ER stress-related prognostic signature to

predict the prognosis of GAC patients. The signature was closely
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related to the immune infiltration status of patients. These eight

ER stress-related gene signatures are good predictors of

prognosis for GAC patients and may provide new perspectives

for clinical treatment.
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