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Abstract
Introduction: Clustered regularly interspaced short 
palindromic repeat and its associated protein (CRISPR-
Cas)-based technologies generate targeted modifications 
in host genome by inducing site-specific double-strand 
breaks (DSBs) that can serve as a substrate for homology-
directed repair (HDR) in both in vitro and in vivo models. 
HDR pathway could enhance incorporation of exogenous 
DNA templates into the CRISPR-Cas9-mediated DSB site.  
Owing to low rate of HDR pathway, the efficiency of accurate 
genome editing is diminished. Enhancing the efficiency of 
HDR can provide fast, easy, and accurate technologies based 
on CRISPR-Cas9 technologies.
Methods:  The current study presents an overview of attempts 
conducted on the precise genome editing strategies based on 
small molecules and modified CRISPR-Cas9 systems.
Results: In order to increase HDR rate in targeted cells, several logical strategies have been 
introduced such as generating CRISPR effector chimeric proteins, anti-CRISPR proteins, modified 
Cas9 with donor template, and using validated synthetic or natural small molecules for either 
inhibiting non-homologous end joining (NHEJ), stimulating HDR, or synchronizing cell cycle. 
Recently, high-throughput screening methods have been applied for identification of small 
molecules which along with the CRISPR system can regulate precise genome editing through HDR.
Conclusion: The stimulation of HDR components or inhibiting NHEJ can increase the accuracy of 
CRISPR-Cas-mediated engineering systems. Generating chimeric programmable endonucleases 
provide this opportunity to direct DNA template close proximity of CRISPR-Cas-mediated DSB. 
Small molecules and their derivatives can also proficiently block or activate certain DNA repair 
pathways and bring up novel perspectives for increasing HDR efficiency, especially in human cells. 
Further, high throughput screening of small molecule libraries could result in more discoveries of 
promising chemicals that improve HDR efficiency and CRISPR-Cas9 systems.
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DSBs are repaired by two distinct pathways, error-prone 
nonhomologous end-joining (NHEJ) or precise homology-
directed repair (HDR).5,6 Since NHEJ naturally is an 
error-prone repair pathway, by inhibiting the expression 
or function of essential components that are involved in 
this pathway, we could ameliorate the nuclease-mediated 
HDR efficiency.7,8 In this regard, various small molecules 
have been recognized for modulating the efficiency of 
genome editing by either suppressing NHEJ or elevating 
the activity of HDR pathway. Using small molecules would 
develop a simple method that has several advantages for 
enhancing precision genome engineering. This review was 
focused on the mechanisms and effects of small molecules 
in DSB repair to progress the HDR pathway for improving 
the efficiency of precision genome editing in both in vivo 
and in vitro settings. Furthermore, we aimed to highlight 
the recent progress in enhancing HDR efficiency through 
using overlapping sequences and also applying novel Cas9 
chimeric variants.

DNA repair pathways
By introducing a DSB, several factors such as BRCA1 
(breast cancer type 1 susceptibility protein), 53BP1 (p53-
binding protein1), and receptor-associated protein 80 
(RAP80) are recruited to the damaged site and constitute 
ionizing radiation induced foci (IRIF). It is elucidated that 
a complex network of molecular interactions activating 

Introduction
The progress of programmable nucleases has considerably 
augmented the field of precision genome editing and 
provided a novel promising avenue for gene therapy 
approaches. Until now, four major classes of programmable 
nucleases have been established based on introducing 
a site-specific double-strand break (DSB); including 
i) meganucleases or homing endonucleases which are 
achieved from microbial mobile genetic compounds, ii) 
zinc finger (ZF) nucleases which are inspired by eukaryotic 
transcription factors, iii) transcription activator-like 
effector (TALE) nucleases which are originated from 
Xanthomonas bacteria, and iv) RNA-guided DNA 
endonucleases which are human codon-optimized form 
of archaeal and most bacterial adaptive immune systems, 
CRISPR-Cas.1,2 CRISPR-Cas systems are categorized into 
two basic classes and six types. Because of the diversity 
and practicability of CRISPR-Cas9, which is categorized 
in class II-type 2, most attractions have been concentrated 
on this system and considered as an impressive genome 
editing technology in eukaryotic cells. In meganucleases, 
ZFN and TALEN, specific DNA binding is developed 
by protein-DNA interactions, while Cas9 is recruited to 
target DNA sequences by a single-guide RNA (sgRNA) 
molecule.3,4 These four categories of genome editing 
tools have the common state of generating a site-specific 
DSB in the targeted genome (Fig. 1). Naturally occurred 

Fig. 1. The mechanisms and gene editing platforms for repairing DSB. DSBs which are induced by Meganucleases, ZFNs, TALENs, and CRISPR-Cas9 
at specific sites could be repaired by NHEJ or HDR pathway. Figure was created with BiorRender (https://biorender.com).
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BRCA1 or 53BP1 derives DSB to HDR or NHEJ repair 
pathway, respectively. These two antagonizing factors 
permanently are acting contrary to each other at the DSB 
site. In order to identify the effect of small molecules to 
increase HDR pathway for more efficient and precise gene 
editing, an overview of the DNA repair pathways and their 
key factors is presented.9 

NHEJ pathway
Following the induction of DSB, the first reaction usually 
occurs through the NHEJ pathway. In mammalian cells, 
almost three quarter of DSBs are repaired via NHEJ and 
its defect results in various developmental disorders 
and enhances the rate of DSB-related chromosomal 
mutagenesis.10 NHEJ is a broad term and commonly 
classified into two types:
1. Canonical NHEJ (c-NHEJ): it generally acts in end-

joining and for a long time was characterized by its 
association with Ku, DNA ligase IV, and dependent 
factors.10

2. Non-canonical NHEJ: several homology-independent 
repairs triggered by the c-NHEJ dysfunction which 
need DNA Ligase I/III and is known as “alternative 
NHEJ” (alt-NHEJ/A-NHEJ), “microhomology-
mediated end joining” (MMEJ), or “backup NHEJ”.10,11

According to distinct DNA ends, NHEJ uses different 
strategies and is initiated by phosphorylation of 53BP1 
at DSBs through protein kinase ataxia-telangiectasia 
mutated (ATM). 53BP1 is a chromatin-binding protein 
and an important part of DSB signaling repair in 
mammalian cells that during G1 promotes NHEJ. The 
basic effector proteins for 53BP1 are DNA polymerase 
zeta processivity subunit (REV7), PAX transactivation 
domain-interacting protein, and RAP1- interacting factor 
1 (RIF1) (Fig. 2A).12 RIF1 is acting together with REV7 for 
recruiting a large complex to DSB.13 This large complex 
is called shieldin which consists of four components 
including REV7, SHLD1 (induces NHEJ while decreasing 
the HR by constraining DNA end resection), SHLD2 (an 
effector of REV7), and SHLD3.14,15 Furthermore, the core 
NHEJ factor recognizes broken ends and keeps them next 
to each other so that the other processing factors can be 
activated.16 

In c-NHEJ, predominantly Ku 80 interacts and 
promotes the DNA-dependent protein kinase catalytic 
subunit (DNA-PKcs) and creates a permanent complex 
that remains bound to the DSB ends.16-18 DNA-PK can 
modulate the activity of different enzymes through 
autophosphorylation or phosphorylation and lead to DNA 
end processing by Artemis which cuts DNA overhangs for 
making blunt ends.19 Then, DNA polymerase µ and λ can 
add missing nucleotides at the DSB ends.16,20,21 The next 
step is ligation of blunt end that is accomplished by Ligase 
IV (Lig IV). Ligase IV usually makes a complex with X-ray 
repair cross-complementing 4 (XRCC4) and XRCC4-like 
factor (XLF) and induces related downstream pathways 

(Fig. 2B).22 
Alt-NHEJ pathway is generally active during the S and 

G2 phases of the cell cycle and repairs DNA DSBs through 
microhomology (MH)-mediated end joining (MMEJ) 
(Fig. 2C).23 With regard to the annealing of the flanking 
MHs, MMEJ is classified into three distinct steps: pre-
annealing, annealing, and post-annealing.24 The initial 
step starts from end resection to subject MHs flanking 
DSBs through joining of poly [ADP-ribose] polymerase 1 
(PARP1) to DSB ends for facilitating the resection factors 
[BRCA1/CtIP and MRN complex].25,26 Intermediate 
annealing is reclaimed by the XPF/ERCC1 structure-
specific nuclease complex, which is similar to XRCC4 in 
c-NHEJ. Then, this complex cuts the non-homologous 
ends and generates 3’- hydroxyl overhang that is desirable 
for developing by DNA polymerase. Finally, the DNA 
ligation is catalyzed by Ligase II and III.27 

Homology-directed repair (HDR) pathway
HDR, as a constant repair mechanism, comes into action 
in the S- or G2-phase and needs homologous DNA 
sequences. BRCA1 by suppressing 53BP1, is a pivotal 
initiating factor for HDR. Therefore, various inner and 
outer factors are involved in this case such as tudor-
interacting repair regulator (TIRR) which is able to mask 
the H4K20me2 binding surface (a specific target for 
53BP1).28 It is reported that overexpression of TIRR leads 
to 53BP1 reduction at the DSB site through competing 
with RIF1 to bind 53BP1.28,29 Furthermore, the special 
complex of MRN along with BRCA1 could identify 
dsDNA and create a 15–20 bp nick from the 5′-ends of 
the DSB.30 MRE11 is an Mn2+ dependent endonuclease 
that nicks the DNA upstream from the break site and 
involves in DNA DSB repair homologous recombination 
for maintenance of telomere (Fig. 2A, D).31,32 SCAI is 
a related protein to induce separation of 53BP1-RIF1. 
Dramatically the relation of SCAI-RIF1 leads to some of 
the BRCA1 activity. Hence, a great number of HR-factors 
such as BRCA1, MRN, CtIP, and so on are inhibited by 
knocking out of SCAI.29,33 A deubiquitinating enzyme 
(DUB), POH1, increases the removal of 53BP1 from the 
damaged locus by preparing interaction between RAP80 
and the BRCA1 BRCT domain.34 This enzyme is a part 
of proteasome that can neutralize RNF8/RNF168 (E3 
ubiquitin ligases)-dependent ubiquitination activity.29,34,35 
As above mentioned, the non-canonical NHEJ pathway is 
extremely complicated and needs numerous biochemical 
factors. Interestingly, HDR and A-NHEJ have a similar 
initial steps. However, it is not elucidated how these two 
repair pathways are segregated later.

The initiation of HDR is continued by a two-step end 
processing. First, it starts with the MRN complex and the 
CtIP nucleases that bind to the DNA DSB and second, 
in order to create longer 3′-ends, the second stage for 
deep resection is occurred by EXO1 and SGS1-DNA2 
nucleases.36,37 The impermanent single-stranded DNA 
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(ssDNA) overhang needs to be concealed by replication 
protein A (RPA) to be protected from exonuclease 
activities. Then, Rad51 replaces heterotrimeric RPA 
and for simplifying a quest for a homologous donor, 
generates a nucleoprotein presynaptic filament.38,39 The 
3′ DNA filament will be coated with many proteins, 
and then attacks homologous duplex DNA to develop 
the D-loop structure as an exchange intermediate. The 
D-loop structures are used for the synthesis of identical 
DNA sequences.34,40,41 The second end joins the D-loop 
and starts the development of a double Holliday Junction 
(HJ) structure.42 Indeed, 53BP1 and BRCA1- mediated 
mechanisms are complex systems that many factors 
and several antagonized points are involved in their 
inviolability. In this line, a plethora of targets exists for 
manipulating the efficacy of the HDR pathway.

Single-strand annealing (SSA) is an important subtype 
of HDR because of its specific mechanism. This pathway is 
observed when DSBs occur between two repeat sequences 
(Fig. 2E).43 SSA in terms of homological loci is similar to 
MMEJ. Although the applied mechanism is the same for 
both of them, the involving proteins in SSA are similar to 
HDR.40,41 

Importance of small molecules in DNA repair pathways
Certain DNA repair pathways could be successfully 
activated or blocked by small-molecule compounds.44 
During the past decade, multiple studies have shown 
that small molecules are a straightforward strategy 
for increasing precision genome engineering.7 Several 
advantages are mentioned for small molecules such 
as their high penetrant effects that lead to a rapid and 
controlled response. In addition, easy titration of small 
molecules provides optimal concentrations of inhibitors 
for delivering to the cell with extremely successful 
consequences.45 The pharmacological approach to 
obtain a functional small-molecule usually contains: i) 
screening a library of chemical compounds to recognize 
lead scaffolds; ii) examining substitution places of the 
small molecule in terms of medicinal chemistry because 
replacements may result in modifications in specificity 
or sensitivity; and iii) deriving additional formatives for 
optimizing the efficacy of the small molecule. Generally, 
pharmacological procedures have been successful for 
recognizing various classes of potent inhibitor proteins 
such as proteases, nuclear hormone receptors, kinases, 
channels, and G protein-coupled receptors. Several 

Fig. 2. The interaction of repair pathways at the DNA break site in mammals and comparison of c-NHEJ, a-NHEJ, HDR, and SSA mechanisms. (A) 
c-NHEJ key factor (53BP1) and HDR key factor (BRCA1) are motivated by complex interactions. (B) For DSB repair the first pathway choice in mammalian 
cells is NHEJ which is occurred in all cell cycle phases. When in DSB the terminuses are preserved from the incision and then ligated, NHEJ is promoted. (C) 
The microhomologous sequences which are adjacent to DSB are annealed in alt-NHEJ pathway. (D) HDR repair pathway employs a repair template such as 
sister chromatid to reliably amend the DSB. (E) SSA is a DSB repair pathway for fixing DSB by annealing lengthy homologous sequences at flanking sites. 
Figure was created with BiorRender (https://biorender.com). 
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efforts have been established to chemically scale up the 
efficiency of HDR pathway.46 The nuclear domain knock-
in screening that is described by multiple studies develops 
an idea that indicting simple means of quickly appraising 
small molecules that can elevate the efficiency of HDR is 
mediated by CRISPR-Cas9 technology.7,45 For example, 
Yu et al applied a high-throughput chemical screening 
test based on the reporter system for exploiting HDR 
efficiency.  It was reported that using the candidate small 
molecules could increased the efficiency of HDR for large 
fragments and point mutations 3- and 9-fold, respectively. 
L755507 and Brefeldin A were two small molecules whose 
positive effects were elucidated in this high-throughput 
chemical screening test. Moreover, many small molecules 
that inhibit HDR and could elevate indel mutations 
mediated by NHEJ were also reported.7 Therefore, 

research to screen other small molecule libraries has been 
going on and introduced a strategy that simplifies precise 
CRISPR-Cas gene editing for clinical applications and 
biomedical experiments.

Inhibition of key NHEJ factors
Recently numerous small molecules have been validated 
to enhance the efficiency of HDR, which is mediated 
by CRISPR-Cas9 in various cells.46 Several studies have 
shown that DSBs, introduced by CRISPR-Cas9 system, are 
mostly repaired by NHEJ. Hence, it seems reasonable, by 
inhibiting the key enzymes of NHEJ, the HDR efficiency 
would be increased. A comprehensive list of small 
molecules with NHEJ inhibitory effects is summarized in 
Table 1.

Table 1. Small molecules involved in inhibition of NHEJ and stimulation of HDR

Targeted 
protein

Small 
molecule Cell type Locus/Gene Dose of 

substance
Study 

method Observed effects Ref.

Inhibiting NHEJ

DNA-PK Nu7026 iPSC
CALD1
KATNA1
SLITRK1

20 µM In vitro
1.5
2.6

2.5-fold increase in HDR

46

Nu7026 HEK293 HPRT 20 µM In vitro 3.0-fold increase in HDR 46

Nu7026 K562 HPRT 20 µM In vitro 4.0-fold increase in HDR 46

Nu7026 CD4+ T HPRT 20 µM In vitro 3.0-fold increase in HDR 46

Nu7026 CD34+ progenitor cells HPRT 20 µM In vitro 1.7-fold increase in HDR 46

Nu7026 HEK293 GFP 30 µM In vitro 2.5 -fold increase in HDR 47

Nu7026 HepG2-1.1merHBV HBV genotype D 7.5 µM In vitro Increased A-NHEJ 48

NU7026 K562 GFP 3 µM In vitro Modest increase in HDR (1.1-fold) 49 

NU7441 K562 GFP 3 µM In vitro 2.4-fold increase in HDR (8.6% to 
21.5%)

49 

NU7441 HSPC PTPRC 3 µM In vitro 2-fold increase in HDR (12 to 24%) 49 

NU7441 iPSCs CTNNB1 2 µM In vivo Modest increase in HDR 1.2(16% 
vs. 13% in control)

50

NU7441 HEK293/ TRL GFP 2 µM In vitro 2-fold increase in HDR 51 
NU7441 MEFs TP53 2 µM In vitro 10- fold increase in HDR 51

KU-0060648 HEK293/ TRL GFP 250 nM In vitro 2.1-fold increase in HDR 51

M3814  409B2 hiPSC1 FRMD7 2 µM In vitro Increased in HDR (18% to 81% ) 52

Ku complex STL127705 SF-767 cells 2.5 µM In vitro Not tested 53

Ku complex STL127705 PrEC cells 2.5 µM In vitro Not tested 53

ATR2 VE-822  hiPSC OCT4 
ALBUMIN

1 µM In vitro

4-fold increase in HDR by CRISPR-
Cas9 and CRISPR-Cpf1- mediated 

targeting
3.5-fold increase in HDR by 

CRISPR-Cpf1 5-fold increase by 
CRISPR-Cas-mediated targeting

54

ATM Trichostatin A iPSCs 
CALD1
KATNA1
SLITRK1

0.01 µM In vitro
1.5
2.2

1.8-fold increase in HDR

46

CRISPY mix
Trichostatin A
Nu7026 iPSCs

CALD1
KATNA1
SLITRK1

0.01 µM
20µM In vitro

1.8
2.5

3.1-fold increase in HDR

46

Ligation SCR-7 HCT-116 cells AAVS1 10 µM In vitro
In vivo

1.7-fold increase in β-catenin gene 
(14.6% vs. 8.4% in control %) 

55

SCR-7 Mouse embryos lgkc 1000 µM In vitro 4.5- fold increase in HDR (22.7% 
vs. 5% in control)

8

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ptprc
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Targeted 
protein

Small 
molecule Cell type Locus/Gene Dose of 

substance
Study 

method Observed effects Ref.

SCR-7 Mouse embryos Kell 1000 µM In vitro 2.2-fold increase in HDR (59.3 % 
vs. 26.6% in control)

8

SCR-7 CHO cells COSMC FUT8 0.1–20 µM + 
10 mM LiCl In vitro None 56

SCR7 iPSCs
CALD1
KATNA1
SLITRK1

1 µM In vitro None 46

SCR-7 Mouse ESCs3

Actb 1 µM In vitro Promoted Tild-CRISPR-mediated 
knock-in

57

SCR-7 HEK293T cells MALAT1 1-10 µM In vitro Modest fold increase in HDR 
(13.6% vs. 12.5 in control %)

58

SCR-7 Murine zygotes Tex15 50 µM In vivo 9.7-fold increase in HDR (56.2% vs. 
5.8% in control)

59

SCR-7 HEK293A LMNA 1μM In vitro Modest increase in HDR (11.7% vs. 
9.9% in control)

45

SCR-7 Porcine fetal fibroblasts GFP 200,50 µM In vitro 2-fold increase in HDR (11.2% vs. 
5.6% in control)

60

SCR-7 Porcine fetal fibroblasts ROSA26 100 µM In vitro
1.9-fold increase in HDR with 

neomycin selection (49.7% 
vs.26.2% in control)

60

SCR-7 Zebrafish embryos Ybx1S82A 20µM In vivo 3.6 -fold increase in HDR (55% vs. 
15% in control )

61

SCR-7 COS-7 cells PAH 15 µM In vitro 2.5-fold increase in HDR (22.1% vs. 
8.8% in control )

62

SCR-7 HEK293T cells GFP 1 µM In vitro 1.8- fold increase in HDR 51

CRISPY mix SCR-7
KU-0060648 HEK293T cells GFP 1 µM

250 µM In vitro 2.9- fold increase in HDR 51

CRISPY mix SCR-7
NU7441 HEK293T cells GFP 1 µM

2 µM In vitro 3- fold increase in HDR 51

Stimulating HDR

RAD51 RS-1 K562 GFP 3 µM In vitro 2.2-fold increase in HDR (17.6% vs. 
8.6% in control)

49 

RS-1 Zebrafish embryos eBFP2 30 µM In vivo 1.5-fold increase in HDR by Cas9-
mediated 

63

RS-1 U2OS LMNA 10 µM In vitro Modest increase in HDR (2.5% vs. 
1.9 in control %)

45

RS-1 HEK293 A cells LMNA 10 µM In vitro 6-fold increase in HDR
(21% vs. 3.5 in control %)

45

RS-1 HEK293 A cells PML 10 µM In vitro 4- fold increase in HDR(40% vs. 
10% in control %)

45

RS-1 Zebrafish embryos Ybx1S82A 20 µM In vivo 1.6- fold increase in HDR (24% vs. 
15% in control %) 61

RS-1 iPSCs
CALD1
KATNA1
SLITRK1

1 µM In vitro None 46 

RS-1 iPSCs CTNNB1
PRDM14 10 µM In vivo None

50

RS-1 Bovine zygotes XbaI 7.5 µM In vitro 2.1-fold increase in HDR (53% vs. 
25% in control %) 

64

1 Human iPS cells; 2 ATM and Rad3-related; 3Embryonic stem cells.

Table 1. Continued
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DNA-PK 
The first component of NHEJ for recognizing and binding 
to DSBs is DNA-PK. This holoenzyme is a compound of 
a 460 kD catalytic subunit, DNA-PKcs, Ku70, and Ku80 
subunits (regulatory heterodimer). It has been revealed 
that recruiting libraries of these compounds could 
develop several molecules for inhibiting DNA-PK activity. 
Since NHEJ repair relies on DNA-PK activity, detrimental 
genetic mutations or using small molecules with inhibitory 
effects on DNA-PK could result in an increase in HDR 
occurrence. Targeting the ATP binding site of DNA-PK 
by small molecules is the most successful procedure for 
inhibiting this pivotal factor in NHEJ. For the phosphate 
transfer reaction by irreversible alkylation, lysine 802 in 
DNA-PKcs active site could be targeted by Wortmannin 
which is a small molecule with an inhibitory effect on 
PI3 kinases. Wortmannin naturally originated from a 
furanosteroid metabolite from Penicillium funiculosum. 
Although the experimental efficacy of wortmannin has 
been proven, multiple obstacles such as poor solubility, 
lack of specificity, and in vivo toxicity restrict its clinical 
application.65 LY294002 is a competitive inhibitor of 
DNA-PK and PI3 kinase. It is reversibly able to interact 
with the kinase domain. This small molecule is originated 
from the plant flavonoid as a morpholine derivative. 
LY294002 leads to a delay in DSB repair, which might 
attribute largely to inhibition of DNA-PK. Because of fast-
metabolic clearance and in vivo toxicity, it is impossible 
to clinically evaluate the effects of LY294002. However, 
LY294002 has been demonstrated to be a productive 
and leading compound which by acquiring biochemical 
alterations, a series of recombinant compounds with more 
appropriate features would be established. A modified 
form of LY294002 is NU7026 which is more selective for 
DNA-PK compared to other PI3 kinases such as ATM 
and ATR that had an IC50 of 13µM for PI3K, 0.23µM for 
DNA-PK, and >100µM for ATR or ATM. Nonetheless, 
for obtaining potent and selective DNA-PK inhibitors, 
the substitution of 2-morpholin-4-yl and alteration of 
thiopyran-4-ones or pyran-4-ones is proposed.66 NU7441 
is another agent that originates from LY294002 with 
remarkably improved potency compared to NU7026. 
It strongly inhibits DNA-PK with an IC50 of 0.3 µM in 
cell lines. Tavecchio  et al reported that in the presence 
of ionizing radiation (IR) and NU7026, the induced 
DSBs continued for a long time and the activeness of 
HR enhanced moderately.67 Development of NU7441 
continues and leads to the identification of KU-0060648, 
which has greater solubility against DNA-PK and is a 
binary inhibitor of PI-3K and DNA-PK in vitro. Munck 
et al showed that the inhibitory effect of KU-0060648 on 
DNA-PK in MCF7 is approximately 8-fold higher than 
in SW620 cells.68 Other non-toxic compounds based on 
the LY294002 structure, such as IC86621, IC87102, and 
IC87361 have expanded the application of compounds 
derived from this small molecul.66 NU7026, NU7441, and 

KU-0060648 provide high efficiency for improving the 
HDR rate in genome editing compared to other DNA-
PK inhibitors. Previously it was demonstrated that the 
efficiency of knock-in is augmented by NU7026 in hiPSCs. 
Likewise, this small molecule is a crucial complex in the 
NHEJ pathway. Riesenberg et al reported that NU7026 
was the only small  molecule that clearly increased the 
efficiency of targeted gene fragment insertion in HEK293 
(by 3-fold), K562 cells (by 4-fold), CD4+ T cell (by 3-fold), 
and CD34+ progenitor cells (by 1.7-fold).46 Besides, Robert 
et al described that treating HEK293 TLR with NU7441 
and KU-0060648 leads to, respectively, a 3- and 4-fold 
increase in HDR efficiency, and an approximately 2-fold 
reduction in the NHEJ repair. They also demonstrated that 
oligonucleotide-mediated HDR, as a repair template, at 
the endogenous site could be stimulated by both NU7441 
and KU-0060648. Therefore the results of using additional 
DNA-PK inhibitors lead to compatibility with the Cas9 
editing system.51 Moreover, combining proteins or siRNA 
along with small molecules could be more effective. They 
showed that Adenovirus 4 (Ad4), E1B55K and E4orf6 
proteins with KU-0060648 or NU7441 could induce HDR 
approximately up to 5-fold in HEK293T cells.51 Aksoy et 
al reported the initial application of NU7441 as a powerful 
HDR enhancer with an increase in HDR efficiency up to 
13.4-fold in zebrafish embryos genome-edited by CRISPR-
Cas9 system.63 Recently, M3814 was introduced as a new 
selective pharmacological inhibitor of DNA-PK which 
has not been applied in genome editing before. M3814 is 
a highly potent molecule that showed acceptable activity 
in preclinical models. This molecule was also introduced 
as a practical therapeutic strategy in cancer treatment.69 
For instance, in combination with cisplatin and etoposide, 
M3814 has represented promising activity in lung cancer 
in vivo models.70 On the other hand, Sun et al showed 
that the repair of radiation-induced DSBs could fruitfully 
be shut off by M3814. Furthermore, this small molecule 
can efficiently increase activation and phosphorylation 
of p53.71 Additionally, M3814 was used in phase Ib/II 
clinical trials for the treatment of several cancers such as 
rectal cancer (NCT03770689) and small cell lung cancer 
(NCT03116971). Riesenberg et al used M3814 in genome 
editing for the first time. It was used to transiently inhibit 
NHEJ and increase HDR from 18% to 81% in K562 cells 
while demonstrating moderate toxicity.52 In line with these 
premises, M3814 could be applied in gene therapy, where 
high HDR performances may be required to achieve 
therapeutic goals. VE-822, a specific inhibitor of ATR, 
that was recently used by Ma et al enhances the efficiency 
of HDR efficiency in combination with a plasmid donor 
and a ssODN donor by 5.9-fold and 3-fold, respectively. 
Furthermore, combining AZD-7762, a specific inhibitor 
of checkpoint kinase CHEK1 and the ATR inhibitor could 
remarkably boost the specificity of CRISPR-Cas9 genome 
editing.54
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Ku70/80 complex
The heterodimeric Ku complex is the most logical choice 
for inhibition of the entire NHEJ process. This protein 
shows a great binding affinity for dsDNA termini and 
has a ring-like shape which upon binding DNA, cannot 
tolerate any substantial structural variation. This ring-like 
structure leads to the interaction of Ku protein with DNA 
that is crucial for the activation of kinase and in this regard, 
it is also an appropriate target for intervention.65 Although 
in the initiation of the NHEJ pathway, Ku has a key role, 
limited studies have addressed this protein and only one 
inhibitor of Ku protein was obtained (STL127705).44 For 
the first time, Weterings et al in the low micro-molar range, 
confirmed the compound with Ku-inhibitory activity. 
However, the ability of this molecule to block NHEJ is not 
well documented.53 Recently, Gavande et al represented 
novel small molecule inhibitors that bind to the Ku–DNA 
protein to block the protein–DNA interaction. These 
specific Ku–DNA binding inhibitors (Ku-DBi’s) block Ku-
DNA interaction, the activity of DNA-PK kinase, and in 
vitro NHEJ by directly binding to Ku protein. Moreover, 
Ku-DBi’s increase the cellular activity of radiomimetic 
agents and IR.72

DNA-end processing enzymes
The DNA-end processing step in NHEJ is an attractive issue 
for studying and various nucleic acid enzymes involved in 
this step are recognized. However, no remarkable effort has 
been made to validate these enzymes as potential targets. 
Because of the hardness in purifying the proteins and 
the requirements for complex assay, no inhibiting agent 
has been identified for Artemis as DNA-PK dependent 
endonuclease. Polynucleotide kinase/phosphatase 
(PNKP) can bind to DNA 5'-end and dephosphorylate 
DNA 3'-end in the NHEJ pathway. Furthermore, PNKP 
is essential for both single- and DSB repairs. Therefore 
identifying small molecule inhibitors for this enzyme 
seems very useful to regulate NHEJ.65 Five compounds 
with remarkable inhibitory effect on PNKP phosphatase 
activity was recognized by Freschauf et al.73 A12B4C3 is 
one of these compounds with IC50 value of 0.06 Mmol/L, 
showing the highest noncompetitive inhibitory effect on 
phosphatase activity of PNKP by obstructing its secondary 
structure.73 There is no more information about the effect 
of this inhibitor on NHEJ pathway. Therefore, identifying 
and introducing additional small molecules for inhibition 
of DNA-end processing enzyme is required.

Ligation process enzymes
The ligation process of NHEJ particularly the DNA ligase 
enzyme is an attractive target for regulating NHEJ. L189 
was the first recognized compound by Chen et al for 
inhibiting the DNA ligase.74 Although this molecule had 
a poor specificity, it represented a promising inhibitory 
effect on Ligase I, III, and IV.74 One of the L189 derivatives, 
SCR7, was synthesized as a more specific and putative 

inhibitor of NHEJ. This compound blocks end-joining 
through intervening with the connection of Ligase IV 
to DNA, consequently, the accumulation of DSBs within 
the cells and increasing cytotoxicity were accrued.75 Most 
investigations showed a considerable dose-dependent 
decline of NHEJ in various models, both in vitro and in 
vivo. Some groups demonstrated that a modest increasing 
efficiency of HDR-mediated gene insertion could be 
achieved by combining SCR7 with enhancing genome 
engineering techniques such as synchronization or 
optimized Cas9 delivery.76,77 The SCR7 effects in CRISPR-
Cas9 experiments and subsequently the increased HDR 
rate was demonstrated in various cells such as HEK293T 
(by 2-fold),51 A549 (by 3-fold), MelJuSo (by 19-fold),8 and 
HEK293 (by 5-fold).77 However, complete inefficiencies 
of Scr7 or slightly increasing the HDR rate were reported 
in cells such as human embryonic stem cells,78 iPSCs,50 
Porcine fetal fibroblasts,79 rabbit embryos,80 HEK293A,45 
and CHO cells.56 Srivastava et al demonstrated that the 
reason for these inconsistency effects of SCR7 is related 
to different expressions of LigIV in various cell cultures, 
and the cells with high expression level of LigIV are 
more sensitive to SCR7.40, 75 Contrary to the results for 
SCR7 reported by Raghavan et al, others discovered 
several differences in the original structure of SCR7.75, 81 
Greco et al performed a broad investigation on structural 
determination of SCR7 and confirmed the structure of 
SCR7-R and its closely related derivative, SCR7-G, that is 
generated by the synthesis protocol described by Raghavan 
(Fig. 3).81 They found that commercially available SCR7 
(SCR7-X) structurally is similar to SCR7-G. Indeed, 
both SCR7-G and SCR7-R have weak inhibitory effects 
on LigIV while providing stronger activity with regard 
to LigI and LigIII/XRCC1. Hence, they suggested that 
the effect of increasing HDR by SCR7, particularly at a 
low concentration (about <200 uM) is occurred by other 
mechanisms.81 Despite these differences, it is confirmed 
that at the defined concentration of SCR7-X/SCR7-G (1 
µM), the efficiency of CRISPR-Cas9 gene editing could 
be enhanced.75,81 By focusing on embryos, it was observed 
that SCR7 increases HDR efficiency in the mouse 
embryos,8,82 but not in the rabbit embryos.80 Likewise, 
Singh et al reported the increased rate of HDR (by 10-fold) 
in murine zygotes82 and Maruyama et al also reported 
correcting homozygous editing in addition to increased 
HDR efficiency.8 In order to improve the efficiency of 
SCR7, combining this small molecule with other NHEJ 
inhibitors is a logical suggestion. Chu et al showed that 
using Scr7 simultaneously with XRCC6 and LIG4 knock-
out models resulted in 5-fold increase in HDR efficiency,77 
while others have not observed such increasing effects.83 
Moreover, it was determined that a combination of SCR7 
with KU-0060648 or NU7441 in HEK293 cell (CRISPY 
mix) could stimulate HDR efficiency by 3-fold.51 In 
general, inhibiting the key factors of NHEJ causes the 
unrepaired DSB accumulation in the cell, as a result, 
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apoptosis and cell death would be increased. In this line, 
this approach could increase cytotoxicity and should be 
applied with precaution.

Supporting HDR key factors
HDR is a substantial pathway for certifying the precise 
repair of nicks and DSBs. Therefore, another way for 
changing DNA repair from NHEJ to HDR is instigation 
of HDR key components.84 A comprehensive list of small 
molecules, which are involved in stimulation of HDR, is 
represented in Table 1.

Rad51, a factor for exchanging DNA strands, is 
the central and target point for HDR, and by the 
accumulation of other proteins on ssDNA, it forms 
presynaptic filaments.85 Indeed, it has an extensive role in 
the formation of a RAD51–ssDNA filament by replacing 
RPA, and interactingwith ssDNA. In order to enhance 
RAD51 binding to DNA, Jayathilaka et al developed a 
high-throughput microplate-based assay for evaluation 
of the filament formation of hRAD51 on ssDNA.86 By 
applying this approach, a library with 10,000 compounds 
was screened that resulted in the recognition of a small 
molecule called RAD51-stimulatory compound 1 (RS-
1).87 In different biochemical conditions, RAD51 binding 
could be enhanced by RS-1. After the ultrastructural assay 
of developed filaments on ssDNA, it was determined 
that RS-1  could increase protein–DNA complex lengths 
and the pitch of helical filament turns. Moreover, the 
experiment of RS-1 by salt titration demonstrated 
increasing filament stability. According to experiments, 

RS-1 depending on the condition can stimulate the 
activity of RAD51-mediated homologous strand (D-loop) 
at least 5- to 11-fold.86 Actually, the organization of active 
presynaptic filaments is boosted by RS-1 that can increase 
the homologous recombination activity of RAD51 by 
about 2-fold.86 Therefore, Jayathilaka et al showed that 
RS-1 could motivate the performance of homologous 
recombination repair; thereby, it is functional in both 
medical and research settings.86 In research, RS-1 in 
HEK293A could increase the HDR rate up to 6-fold and 
4-fold by using Cas9 and Cas9 nickase, respectively.88 Song 
et al reported impressive results in both in vivo and in vitro. 
They indicated that RS-1 enhanced the HDR rate by 6-fold 
for the ROSA26-like locus (RLL) in vitro and by 2.4-fold 
for the CFTR gene in rabbit embryos.80 Combinatorial 
treatment using RS-1 and NU7441 in zebrafish embryos63 
or applying both SCR7 and RS-1 with/without L755507 
in HEK293 cells did not show a significant increase 
in HDR efficiency compared to RS1 alone.45 Similar 
results were also observed when L755507, SCR7, and 
RS-1 were used together in stem cells.46 However, in one 
report it was revealed that the combination of SCR7 and 
RS1 increased HDR efficiency up to 74% in zebrafish 
embryos.61 Unfortunately, contradictory outcomes have 
been achieved for both small drugs, SCR7 and RS-1, in 
various cell types. In this regard, the highest efficiency of 
RS1 was observed in bovine zygotes.64 In addition to RS-1, 
MLN4924 is another small molecule for stimulating HDR. 
It is a Nedd8 activating enzyme (NAE) inhibitor that can 
block the neddylation of CtIP and result in a rise in the 

Fig. 3. Different structures of the Ligase IV inhibitor, SCR7. (A) L189 as a human DNA ligase inhibitor. (B) Less stable parental SCR7 reported by 
Srivastava et al can get autocyclized into a more stable form (SCR7-R). (C) Having the same molecular weight, number of protons, molecular mass, and 
melting point. Pending dehydrogenation, SCR7-R gets converted into SCR7-G (D), the compound sold as SCR7 by XcessBio (SCR7-X), possessing a 
different molecular weight, number of protons, molecular mass, and melting point.
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extent of DNA end cutting at strand breaks. MLN4924 
through inhibition of neddylation artificially increases 
the CtIP expression level which in turn promotes HDR 
efficiency.46 Although the effect of some small molecules 
was unknown or was observed in different stages of DNA 
repair (multiple effects), they could provide increasing 
HDR efficiency. A comprehensive list of small molecules 
with multiple or unknown effects is summarized in 
Table 2.

Synchronizing cell-cycle
HDR and NHEJ are dominant repair pathways at different 
phases of cell-cycle. Synchronization of cells is reversible 
and provides to be widely used while it does not affect the 
pluripotency of stem cells. One approach for increasing 
HDR efficiency in CRISPR-Cas9 genome-edited cells is 
using small molecules for cell-cycle synchronization. In 
this line, various small molecules have been introduced 
for arresting cell cycle at different phases. For example, 
Lovastatin hampers cell cycle at early G1 and partly at G2/M 
phase; L-mimosine, Hydroxyurea (HU), Aphidicolin, 
Dideoxycytidine (ddC), and Thymidine could apprehend 
cells at G1-S frontier before starting the DNA replication; 
and antineoplastic microtubule polymerization inhibitor 
(Nocodazole), Indirubin-3-monoxime, Vinblastine, 
and ABT block cell cycle at G2/M phase. Since HDR is 
restricted to the S and G2 phases, synchronizing the cell 
cycle in these two stages might be beneficial for increasing 
the HDR rate. Some small molecules arrest cells at the 
G1-S border before the onset of DNA replication by 
inhibiting the effective enzyme of A-NHEJ pathways. 
Some molecules arrest cells at the G2/M phase, thereby 
providing modulation of HDR-mediated Cas9 genome-
editing through cell cycle synchronization.

Arrest at the G1-S border
Aphidicolin is a reversible chemical inhibitor that inhibits 
the DNA polymerase-α, δ, and blocks cell cycle in S phase.89 
Several reports have estimated that Aphidicolin increases 
HDR rate in HCT116 cells, embryonic stem cells (ESCs), 
and primary neonatal fibroblasts by 3-fold, 1.6-fold, and 
1.3-fold, respectively.90,91 Furthermore, the frequency 
of HDR was enhanced with thymidine treatment in H9 
human embryonic stem cells (hES) and human primary 
neonatal fibroblasts (neoFB).91 It is determined that HU 
arrests cell cycle in S-phase by inhibiting ribonucleotide 
reductase enzyme. Tsakraklides et al reported that cells, 
by using HU before transformation process in five yeast 
strains, were synchronized in S-phase and the efficiency 
of gene targeting was increased.92 2′,3′-dideoxycytidine is 
another promising small molecule that slows down the 
replication fork movement and results in S-phase extension. 
Brachman et al reported that this small molecule develops 
the S phase up to 70% and increases HDR rate by 3-fold 
in DLD-1 cells.93 Recently, XL413, a new small molecule 
targeting cell division cycle 7(CDC7) plays an important 

role during initiation of DNA replication, arrests primary 
T cells in S phase, and enhances the HDR efficiency up 
to 3.5-fold.94 According to these observations, designing 
experiments for identifying the most optimal small 
molecules is necessary because different small molecules 
that intervene in cell synchronization have varied effects 
on various cells. 

Arrest at G2/M 
G2/M phase is another crucial hot spot in cell cycle for 
being regulated by small molecules to increase HDR 
efficiency. Lin et al reported that Nocodazole is able to 
arrest cell cycle at specific phases and increase HDR rate 
with CRISPR-Cas9 by 1.4-6-fold in HEK293T cells.91 
By applying Nocodazole or ABT-751, Yang et al could 
successfully enhance HDR-mediated knock-ins by 3- to 
6-fold.78 The treatment with Nocodazole reverses the 
synchronization of cell cycle in different cell models 
such as iPSCs and human pluripotent stem cells (hPSCs), 
50,78,91 albeit not observed in ESCs and primary neonatal 
fibroblasts.91 Combinatorial treatment with CCND1, 
a cell cycle regulatory subunit in G1/S transition, and 
Nocodazole increased the HDR efficiency up to 30% in 
iPSCs.50 Vinblastine is another useful small molecule for 
cell cycle synchronization in the G2/M phases through 
binding to tubulins and blocking microtubule dynamics.95 
It is elucidated that Vinblastine increases HDR rate by 6- to 
10-fold in HeLa, U-2OS, and HT-1080 cell lines. Likewise, 
Indirubins by inhibition of several cyclin-dependent 
kinases, leads to cell-cycle prevention in G1/S or G2/M 
in different cell models.96 Rahman et al reported that by 
utilizing meganuclease I-SceI and ZFNs together with 
indirubin-3′-monoxime, the HDR rate increased by 2- to 
5-fold in Hela, U-2OS, and HT-1080 cell lines. Incredibly, 
indirubin-3′-monoxime results in an enhancement in 
HDR by 10-fold in primary umbilical cord–derived 
mesenchymal stromal cells (UC-MSCs). Finally, it was 
concluded that indirubin-3′-monoxime is a promising 
small molecule for enhancing adeno-associated virus/
ZFN-mediated gene editing especially in UC-MSCs for 
clinical approaches.97

The effective strategy of modified CRISPR-Cas Systems 
for boosting HDR activity
HDR pathway leads to the precise insertion of the donor 
template at the DSB site in the presence of a homologous 
donor strand. Induction of the HDR pathway for repairing 
DSBs which is introduced by CRISPR-Cas9 is a suitable 
approach for increasing the accuracy of knocking in 
approaches. This procedure provides plenty of technical 
capabilities for researchers and industries such as 
developing insertions or deletions models, inserting 
sequences for epitope tags, generating SNPs, and inserting 
whole genes into target site to produce modified organisms. 
Although the HDR pathway along with CRISPR-Cas9 is 
an easy way to introduce a site-specific rectification, HDR 
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activity is very low that has a negative and direct effect on 
precision genome engineering functions.98,99 Enhancing 
the efficiency of HDR provides fast, easy, and accurate 
technologies based on CRISPR-Cas9.44,100 In this regard, 
engineering strategies are required for inducing the HDR 
pathway for accurate gene modification. 

HDR-fusion Cas9 
According to previous findings, each of NHEJ and HDR 
pathways is dominated in different cell-cycle phases 
separately.40,101 In this line, precisely activating Cas9 in S 
and G2 phases results in an increased HDR rate. The main 
studied fusion motifs include CtIP, Rad52, DN1S, mSA, 
and Geminin. These engineered variants usually enhance 
knock-in occurrence in both in vivo and in vitro (Fig. 4). It 
is reported that by fusing a N-terminal fragment of CtIP, 
which is a key protein in HDR initiation, to Cas9 protein, the 
CtIP was forced to DSB site that increasing the efficiency of 
HDR by 2-folds. Moreover, when comparing the patterns 
of indels introduced by wild-type Cas9 and engineered 
Cas9, it was speculated that existence of different patterns 
could originate from a different balance of DSB repair 
pathways.102 According to this observation, recently Tran 
et al designed an experiment to establish Cas9 fusion with 
other factors which are involved in HDR pathway. They 
reported that similar to CtIP, fusing Cas9 to Mre11 and 
Rad52 but not Rad51C, could scale up the efficiency of 
HDR by 2-fold. Moreover, it was indicated that fusing CtIP 
to gRNA through MS2 binding loops resembling Cas9-
CtIP variant is able to extend the ratio of HDR/NHEJ 
approximately by 6-folds (Fig. 4A). Remarkably, when 
simultaneously using Cas9-CtIP with MS2-CtIP, the ratio 
of HDR/NHEJ boosted up to 14.9-fold.103 However, there 
are several limitations in using these chimeric proteins 
broadly. For example, Mre11 and CtIP have complex 
post-translational regulation and the prediction of protein 
interactions is confusing. This phenomenon could not be 
profitable because it originates from endogenous cellular 
components.104 53BP1 plays a key role in the initiation of 
NHEJ. In this line, by inhibiting this protein the efficiency 
of HDR would be increased (Fig. 4B). It is indicated that 
fusing Cas9 to a truncated piece of p53 named DN1S, a 
dominant-negative mutant of 53BP1, could significantly 
reduce NHEJ and increase the efficiency of HDR up to 
86% especially at DSB sites introduced by CRISPR-Cas9 
system in different human cell lines.105 A challenging 
limitation for using chimeric Cas9 proteins for increasing 
HDR efficiency is their cellular toxicity. It is indicated 
that Cas9-DNS1, in reality, increases cellular toxicity by 
about 10%. Finally, it should be considered that these 
chimeric proteins would not be effective for increasing 
HDR ratio because none of these engineered proteins are 
involved in regulating long range 5’ to 3’ end resection.106 
To address these limitations, Hackley et al fused Cas9 
to human Exo1 and reported that this chimeric protein 
compared to wild-type, Cas9 is able to increase the rate 

of HDR by 2.5-fold and reduce cellular toxicity about 
4-fold (Fig. 4C).107 Furthermore, miCas9 is the recently 
developed small-size HDR-fusion variant that increases 
HDR capacity. Fusion motif, Brex27 of the engineered 
variant interacts with RAD51 and enhances the chance 
of RAD51 presence at the target locus. MiCas9 increases 
the knock-in rates of large size genes which are mediated 
by dsDNA, consistently lessens insertion occurrences and 
off-target deletion, and keeps or enhances single-stranded 
oligodeoxynucleotide (ssODN)-mediated precise gene 
editing rates (Fig. 4D).108 Anti-CRISPR proteins, which 
are naturally derived from bacteriophages, are promising 
inhibitory proteins for controlling the activity of CRISPR-
Cas systems (Fig. 4E). Recently, Matsumoto et al observed 
that during phase S and phase G2 the fused human Cdt1 
is degraded where HDR is dominant. When AcrIIA4, the 
natural anti-CRISPR protein, was fused to the N-terminus 
region of Cdt1, engineered CRISPR-Cas system was 
activated at the intended phases, S/G2, and DNA repair 
was boosted through HDR.109

Modified sgRNA, Cas9 and/or donor template 
For simplifying CRISPR approaches, enhancing the 
efficiency of HDR seems laborious. Another helpful 
application is employing the assembly of ssDNA 
template, sgRNA, and Cas9 along with donor DNA 
at the targeted site to a homologous sequence. These 
strategies are implemented to increase the ratio of HDR 
through bringing donor template close to the introduced 
DSB site by CRISPR-Cas9 system. Several reports have 
corroborated the simplicity of increasing the HDR 
efficiency by advancing the assembly of these components 
individually or in a complex. 

In agrobacteria, Vir proteins are able to transfer 
T-DNA construct into plant cells. VirD2 relaxase is a 
component of Vir proteins that covalently binds to the 
5’-site of single-stranded T-DNA and by using its nuclear 
localization signal, directs attached T-DNA into nucleus 
and integrates it in the plant genome. When VirD2 was 
fused to Cas9, this chimeric protein was able to recruit 
repair template in close proximity to the introduced DSB 
by Cas9 and increased HDR rate up to 6-fold more than 
repair with Cas9 alone (Fig. 5A). This finding opens up 
novel promising opportunities for precise plant genome 
editing.110 Several attempts have been taken to recruit 
donor oligonucleotides to introduce DSB by Cas9. It is 
indicated that donor template could be fused into gRNA 
and by using this strategy HDR efficiency was increased 
three times.56 Several studies also used the advantage 
of biotin-streptavidin interaction for directing donor 
template close proximity to Cas9- mediated DSB.111,112 
Moreover, the high-affinity biotin-streptavidin interaction 
was also used for increasing HDR rate at DSB induced 
by CRISPR-Cas9 ribonucleoproteins (RNPs). RNPs have 
shorter half-life compared to their plasmid counterparts, 
so by using these components the off-target effects would 
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be reduced significantly. Recently, it is elucidated that by 
combining two cells homologous recombination CRISPR 
genome editing with a modified biotin–streptavidin 
approach, in a site-specific manner, the knock-in 
efficiency of any large fragment could increase up to 
95% compared to standard methods in mouse embryos. 
Although the function of sgRNA may be interrupted by 
linking an aptamer, engineered Cas9 could be recruited 
to the biotinylated DNA template. Ma et al fused avidin 
to Cas9 in mouse embryos for enhancing the efficiency 
of accurate knock-in from 0 to 15-22%. On the other 
hand, it was indicated that when wild-type Cas9 is used 
all mutations contained indels, generated through NHEJ 
(Fig. 5B).111 Furthermore, Gu et al reported the use of mSA 
fused to Cas9 for localizing donor DNAs to target sites. 
Fusing mSA, because of its monomer structure, to Cas9 
demonstrates a biotin-binding domain to recruit repair 
templates without accumulating the nuclease (Fig. 5C). By 
incorporating reporter genes at 20 different loci in various 
cell types, this design was evaluated.113 Several studies 
were developed that consistent with other observations 
have revealed the crucial role of donor localization to 
increase HDR pathway.114-116

Another strategy for directing donor template to 
close proximity of Cas9-mediated DSB is to bind donor 
template to Cas9 through covalent linkage. In this line, 
covalent tethering was reported between RNP complex 
form of CRISPR-Cas9 and ssODN via a fusion of 
porcine circovirus 2 (PCV) target sequence with HUH 
endonuclease. The need to alter donor ssDNA or the 
sgRNA is resolved via HUH-tagged recombinant protein 
(Fig. 5D). It is estimated that this strategy augmented 

HDR efficiency up to 30-fold.116 In addition, Savic et al 
reported that donor template can physically link to Cas9 
enzyme through a SNAP-tag (Fig. 5E). They indicated 
that O6-benzylguanine (BG)-labeled DNA oligos are able 
to covalently bind to Cas9-SNAP chimeric proteins and 
the efficiency of HDR increased up to 24-fold.115 There 
are several limitations for these introduced methods, such 
as i) there are technical and commercial difficulties for 
obtaining terminally modified long ssOND; and ii) the 
expression level of Cas9 or its delivery efficiency might be 
changed by fusing a functional domain or linker and also 
maybe a susceptible chimeric protein to protease cleavage. 

In order to overcome these limitations, recently a novel 
innovative strategy known as genetic code–expansion 
technology was developed. This technology is established 
by using chemically modified Cas9 mutant including an 
azide-containing noncanonical amino acid which is able 
to recruit modified or unmodified repair template to the 
DSB site (Fig. 5F). Such modifications enable conjugation 
of alkyne-azide cycloaddition by dibenzylcyclooctyne 
(DBCO)-DNA adaptor or dibenzylcyclooctyne modified 
donor ssODN, which in turn facilitates recruitment of 
the repair template to the cleavage complex for the HDR 
pathway. A universal platform is developed by these 
Cas9 conjugates for using unmodified ssODNs which are 
commercially available at high purity and a low cost to the 
RNP complex by base pairing. This strategy increased the 
HDR efficiency up to 10-fold in both mouse zygotes and 
human cell culture.117

As mentioned about the advantage of biotin-
streptavidin interaction, this approach was only successful 
for knocking-in large fragments into a limited number of 

Fig. 4 Accumulation of fusion Cas9 to improve the efficiency of the HDR pathway. Generally, knock-in events are less frequent than template-free 
indels. (A) Accumulating CtIP via MS2 and association with special sgRNA loops of Cas9 increased knock-in ratio significantly. (B) Fusing Cas9 to DN1S, a 
truncated piece of p53 reduces NHEJ and increases the efficiency of HDR. (C) Fusing Cas9 to human Exo1 by inhibiting NHEJ increases the rate of HDR. (D) 
To improve the HDR capacity of Cas9, the miCas9 was created by adding thirty-six amino acids to spCas9. Adding Brex27 to miCas9 results in enrichment 
of edited region. (E) Activating specific Cas9 system by Anti-CRISPR AcrIIA4 by binding to Cas9-sgRNA acts as an inhibitor for SpyCas9 in G1 phase. In S/
G2/M phases, degradation of Cdt1 (S phase degradation domain) leads to AcrIIA4 degradation and consequently, activates the SpyCas9-sgRNA complex. 
Figure was created with BiorRender (https://biorender.com). 
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Fig. 5 Variation methods for tethering the ssODN donor template to modified Cas9 for enhancing gene editing efficiency. Modified Cas9 along with 
sgRNA were joined to ssODN donor template to enhance the rate of precise repair via the targeted HDR pathway (A-F). Figure was created with BiorRender 
(https://biorender.com). 

targeted loci. Two-cell stage has an exceptional long G2 
phase in embryos. In addition, the chromatin state in this 
extended phase is open and provides a golden opportunity 
for editing enzymes and repair template to easily reach 
targeted sites. Recently, S1mplex, a modular RNA aptamer-
streptavidin strategy (Fig. 6), was developed for delivering 
RNP form of purified CRISPR-Cas9 system together with 
an engineered sgRNA containing a streptavidin-binding 
aptamer into target cell for in vitro or ex vivo genome 
editing. It is reported that this system increased precise 
editing up to 18-fold and augmented pool cells including 
multiplexed precise edits by 42-fold.112

Furthermore, new genetic information can help to 
increase HDR efficiency by utilizing timed delivery 
of CRISPR-RNP complexes along with various drugs 
which are arresting the cell cycle.118 In addition, recently 
inhibiting main factors in NHEJ and stimulating proteins 
participating in HDR by using small molecules are highly 
regarded.40 

Small molecules impact on improving CRISPR-Cas-
mediated gene or transcript editing
Over the past decade, several studies have been done on 
the effect of small molecules on improving the genome 
editing systems. Pruett-Miller et al used small molecules to 
enhance the rate of gene targeting by ZFN and reduced its 
toxicity. Indeed, they could increase transiently expression 
level of the modified ZFNs, by adding a manipulated 
destabilizing FKBP12 domain to the N-terminus, fusing 
a ubiquitin moiety to the N-terminus, linking a modified 
destabilizing FKBP12 domain to the N-terminus, adding 
MG132 proteasome inhibitor and Shield1 synthetic 
ligand.119 Intuition of the CRISPR-cas9 system has 
revolutionized genomic editing approaches. Using small 
molecules for regulating Cas9 activity to improve the 
efficiency of this system have been recently investigated in 
both direct and indirect approaches. In the direct approach, 
Davis et al generated a Cas9 endonuclease with impaired 
cleavage activity by incorporating a 4- hydroxytamoxifen 
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(4-HT)- responsive intein sequence at specific positions. 
In the presence of 4-HT, this small molecule binds to 
intein, enforces conformational changes, provokes protein 
splicing, and restores the DNA cleavage activity of inactive 
Cas9. This approach showed that conditionally activated 
Cas9 corrects target genomic sites with higher specificity 
(up to 25-fold) than wild-type Cas9 in human cells.120 The 
indirect approach has relied on the regulation of Cas9 
activity by using small molecules that target endogenous 
cellular processes.91 By analyzing 4000 small molecules 
with known function, Brefeldin A, a small molecule 
inhibiting protein transportation between endoplasmic 
reticulum to Golgi apparatus and L755507, an β3-
adrenergic receptor agonist, increased targeted reporter 
gene integration by 2-fold and 3-fold, respectively.7 It is 
indicated that SCR7 is able to enhance the proficiency of 
the genome editing which is performed by CRISPR-Cas9 
technology.77 Maruyama et al demonstrated that by using 
CRISPR-Cas9 technology, SCR7 is able to increase the 
HDR efficiency approximately to 19-fold in mammalian 
cells and mouse embryos. Indeed, this increased efficiency 
has a positive dual function on the HDR pathway and 
CRISPR-Cas9 system.8 Moreover, the small molecules 
involved in the stimulation of the HDR pathway, such 
as RS-1, are able to increase the CRISPR-Cas9 efficiency. 
Pinder et al showed that RS-1 increases the performance 
of both Cas9 and HDR up to 3-fold.45 Moreover, the 
combination of small molecules known as "CRISPY mix", 
such as NU7026, MLN4924, inhibiting neddylation of 
CtIP, Trichostatin A, and NSC15520, in collaboration 
with Cas9 nickase, enhanced the efficiency of knock-
in experiments.46 Besides all successful achievements in 
increasing HDR efficiency through stimulation of HDR 
or inhibition of NHEJ, it should be considered that these 
strategies are harmful to genome integrity.121 On one hand, 
inhibition of NHEJ would increase premature aging and 
the incidence of cancers. On the other hand, stimulation 
of RAD51 would lead to an augmentation in spontaneous 
recombination especially across widespread repetitive 
sequences which in turn, could result in loss of key genetic 
information.122,123 In this line, discovering small molecules 
with minimal off-target effects on global genome 
stability sounds extremely crucial. Recently, Zhang et al 
established a novel and easy-to-score screening system 

by doing a mechanistic study and analyzing 722 natural 
small molecules which are commonly used in traditional 
Chinese medicine. It is elucidated that farrerol, isolated 
from Rhododendron dauricum, with anti-inflammatory 
and anti-bacterial properties, scaled up homologous 
recombination without any effect on NHEJ. Furthermore, 
this natural small molecule enhanced CRISPR-Cas9-
mediated genome editing in different in vitro and in 
vivo models.124 Precise control over exposure time and 
expression level of CRISPR-Cas9 system during gene 
editing approaches is extremely important for enhancing 
its application. To address this serious challenge, Wu et 
al generated a chimeric endonuclease by fusing small 
molecule-assisted shut-off (SMASh) to Cas9 protein. It 
was well-demonstrated that in the presence of hepatitis 
C virus (HCV) protease inhibitor asunaprevir (ASV), a 
clinically approved small molecule for HCV, this chimeric 
endonuclease degraded but upon ASV removal, this 
phenomenon reversed. Generating chimeric endonuclease 
such as Cas9-SMASH fusion could increase the accuracy 
and versatility of genome editing approach based on 
CRISPR-Cas9 technology.125 Although CRISPR-Cas9 
technology has presented high efficiency in various in vitro 
and in vivo models, knock-in efficiency by this technology 
has not been successful in hESC. Cas12a (also known as 
Cpf1) is a CRISPR effector which is categorized in class 
II- type V. CRISPR-Cas12a has shown promising potential 
for expanding genome editing toolbox. One special feature 
of this system is introducing a staggered DSB in targeted 
regions which seems to have increased the HDR rate.126 
A high-throughput chemical screening for identifying the 
candidate small molecules elucidated that AZD-7762 and 
VE-822 are able to improve CRISPR-Cas12a -mediated 
precise genome engineering.54 Furthermore, the design 
of a new paradigm for stimulation of the structure of Cas 
protein and/or small molecules interaction with Cas-
DNA seems a logical approach for the enhancement of the 
efficiency of the CRISPR-Cas mediated gene editing. In 
this line, Li et al provided a new paradigm for modulating 
the efficiency of CRISPR-Cas12a-mediated gene editing by 
small molecules. According to their results, a rational small 
molecule, quinazoline-2,4(1H,3H)-dione, is able to work 
like a molecular glue between Acidaminococcus Cas12a 
(AsCas12a) and crRNA and stabilize endonuclease-crRNA 

Fig. 6 Engineered sgRNA which is harboring a streptavidin aptamer that contains streptavidin-binding aptamer was joined to a biotinylated 
ssODNA donor providing an efficient method of recruiting biotinylated DNA. Figure was created with BioRender (https://biorender.com).
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complex which in turn, would improve the efficiency of 
gene editing which is mediated by AsCas12a mammalian 
cells.127 Manipulation of genetic information flow at 
the RNA level provides the opportunity to change the 
expression level of genes without long-term modification 
to the host genome. Cas13 proteins are CRISPR effectors 
with RNA targeting activity and are classified into class 
II- type VI. CRISPR-Cas13 has shown promising results 
in RNA targeting strategies and RNA-based diagnostic 
tests.128 The large size (~100-130 kDa) and bacterial origin 
restrain the applications of CRISPR-Cas13 technology in 
both research and therapeutic developments. Recently, 
a novel CRISPR-Cas-inspired RNA targeting system 
(CIRTS) was generated to overcome these limitations. 
CIRTS is an engineered RNP that is able to recruit protein 
cargo site-selectively to target the transcript through using 
Watson-Crick-Franklin base-pair interactions with a 
gRNA.129 In order to temporally control CIRTS dynamics, 
a small molecule-inducible RNA-targeting platform 
was established based on this effector by coupling 
heterodimerization domains of the abscisic acid small 
molecule system with CIRTS. This system provides an 
opportunity to easily target any desired transcript under a 
small molecule inducible-CIRTS platform.130

CRISPR-Cas applications in in vivo preclinical and 
clinical models
Currently, most of clinical applications which are 
mediated by CRISPR-Cas technology for monogenic 
disorders are ex vivo approaches. During last years, 
several in vivo gene editing studies have been represented 
that target both HDR and NHEJ pathways. Since the 
efficiency of in vivo editing is lower compared to in vitro, 
a screening approach for detecting the modified cells 
through accurate editing boosts the feasibility of HDR 
approach in clinical models.131 Although CRISPR-Cas9 
has been used in ex vivo clinical trials related to human 
immunodeficiency virus-1 (HIV) infection, cancers, 
b-thalassemia (ClinicalTrials.gov: NCT03655678), and 
sickle cell disease(ClinicalTrials.gov: NCT03745287), 
mentioned strategies such as synchronization, modified 
CRISPR-Cas Systems, and small molecules in the clinical 
models could be promising in future. Some of the recent 
applications based on HDR gene editing in preclinical 
and clinical models are presented in Table 3. Hereon, 
we emphasize several HDR-based accurate in vivo gene 
editing experiments utilizing CRISPR-Cas that can be 
potentially applied to human in future.

Table 3. List of the recent therapeutic gene editing studies based on HDR in preclinical models

 Human disease Organ Editing strategy Delivery system Gene editing tool Ref.

Hemophilia A and B Mouse liver HDR-dependent gene insertion Systemic injection of AAV8 ZFN 132

Hemophilia A and B Mouse liver HDR-based corrective gene editing Systemic injection of AAV8 ZFN 133

Hemophilia B Mouse liver HDR-based point mutation 
correction Injection of AAV8 CRISPR-Cas9 134

Hemophilia B Mouse liver HDR-mediated insert into mFIX 

into murine ROSA26 safe harbor Intravenous injection of AAV8 CRISPR-Cas9 135

Hemophilia B Mouse liver HDR-based point mutation 
correction in F9 locus 

Intravenous injection of adenovirus CRISPR-Cas9 136

Hunter's syndrome Mouse liver HDR-mediated integration into 
albumin locus Systemic injection of AAV8 ZFN 137

HTI Mouse liver HDR-based point mutation 
correction

Intravenous injection of AAV2/8 and LNP CRISPR-Cas9 138

HTI Rat liver HDR-based point mutation 
correction

Intravenous injection of adenovirus CRISPR-Cas9 139

AATD Mouse liver HDR-based point mutation 
correction

Intravenous and intraperitoneal injection 
of AAV CRISPR-Cas9 140

DMD Mouse 
muscle

HDR-mediated dystrophin gene 
correction

Intramuscular and retro-orbital injection 
of dual AAV6 CRISPR-Cas9 141

DMD Mouse 
muscle

HDR-based point mutation 
correction

Intramuscular injection of Gold 
nanoparticle Cas9 RNP and donor DNA CRISPR-Cas9 142

Retinitis pigmentosa Mouse Eye HDR-based point mutation 
correction

Subretinal and electroporation of RecA-
MS2 Plasmid and ssDNA donor CRISPR-Cas9/ RecA 143

OTC deficiency Mouse liver HDR-based point mutation 
correction Intravenous injection of AAV8 CRISPR-Cas9 144

OTC deficiency Mouse liver
HDR- mediated insert codon 
optimized human OTC into intron 
4 of mouse OTC locus

Intravenous injection of AAV8 CRISPR-Cas9 145

MPS type I Multiorgan HDR- mediated insert Idua into 
murine ROSA26 safe harbor

Intravenous injection of cationic 
liposomes CRISPR-Cas9 146

AAV, adeno-associated virus; mFIX, factor IX; HTI, hereditary tyrosinemia; LNP, lipid nanoparticle; AATD, alpha-1 antitrypsin deficiency;  DMD, Duchenne 
muscular dystrophy;  OTC, ornithine transcarbamylase; MPS, mucopolysaccharidosis.
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Conclusion
The stimulation of HDR pathway can increase the 
accuracy of CRISPR-Cas-mediated engineering systems. 
Generating chimeric programmable endonucleases 
provides this opportunity to direct DNA template close 
proximity of CRISPR-Cas-mediated DSB. However, it 
should be considered that by fusing a functional domain 
or linker, the expression level of Cas9 or its delivery 
efficiency might be changed and also the generated 
fusion protein may be prone to protease cleavage. Small 
molecules and their derivatives are able to proficiently 
block or activate certain DNA repair pathways. Most small 
molecules increase precise genome editing through HDR. 
The results of most studies suggest that for increasing 
HDR-driven knock-in events, blockade of NHEJ is more 
efficient than improving HDR. Furthermore, the targeting 
upstream protein in NHEJ provides a greater potential for 
increasing the HDR-mediated gene insertion. Nonetheless, 
small molecules have unequal and even diverse influences 
on the efficiency of precise genome  editing in various 
cell models. Hence, it is necessary to survey the efficacy 
of this approach in certain cells, different DNA loci, and 
in vivo studies. In summary, inhibitors of DNA-PK and 
ligase complex enhance the efficiency of precise genome 
editing efficiency in various cell types. There is serious 
consideration about genome integrity by inhibiting NHEJ 
or stimulating HDR components. In this line, discovering 
safe natural products such as farrerol, which is able to 
increase HDR with no effect on NHEJ, brings up a novel 
perspective for increasing the efficiency of genome editing 
approach. Ultimately, high throughput screening of small 
molecule libraries could result in more discoveries of 
promising chemicals that improve HDR efficiency and 
CRISPR-Cas9 systems. Another remarkable advantage of 
small molecules is their usefulness for establishing drug-
inducible genome editing platforms. This finding would 
help researchers temporally control the dose and exposure 
time of genome or transcriptome editing tools.

What is the current knowledge?
√ HDR is attractive for its high fidelity; the choice of repair 
pathway is biased in a biological context.
√ Mammalian cells preferentially employ NHEJ over and 
HDR is restricted. 

What is new here?
√ Facilitating the development of a modified CRISPR-Cas9 
system to achieve more precise gene editing.
√ Suggesting the remarkable advantage of small molecules for 
establishing drug inducible genome editing platforms.
√ Drug inducible genome editing platform would help 
to control editing approaches dose- and exposure time-
dependently.  
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