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ABSTRACT: In untargeted metabolomics approaches, the inability to structurally annotate relevant features and map them to
biochemical pathways is hampering the full exploitation of many metabolomics experiments. Furthermore, variable metabolic
content across samples result in sparse feature matrices that are statistically hard to handle. Here, we introduce MS2LDA+ that
tackles both above-mentioned problems. Previously, we presented MS2LDA, which extracts biochemically relevant molecular
substructures (“Mass2Motifs”) from a collection of fragmentation spectra as sets of co-occurring molecular fragments and neutral
losses, thereby recognizing building blocks of metabolomics. Here, we extend MS2LDA to handle multiple metabolomics
experiments in one analysis, resulting in MS2LDA+. By linking Mass2Motifs across samples, we expose the variability in
prevalence of structurally related metabolite families. We validate the differential prevalence of substructures between two distinct
samples groups and apply it to fecal samples. Subsequently, within one sample group of urines, we rank the Mass2Motifs based
on their variance to assess whether xenobiotic-derived substructures are among the most-variant Mass2Motifs. Indeed, we could
ascribe 22 out of the 30 most-variant Mass2Motifs to xenobiotic-derived substructures including paracetamol/acetaminophen
mercapturate and dimethylpyrogallol. In total, we structurally characterized 101 Mass2Motifs with biochemically or chemically
relevant substructures. Finally, we combined the discovered metabolite families with full scan feature intensity information to
obtain insight into core metabolites present in most samples and rare metabolites present in small subsets now linked through
their common substructures. We conclude that by biochemical grouping of metabolites across samples MS2LDA+ aids in
structural annotation of metabolites and guides prioritization of analysis by using Mass2Motif prevalence.

Large high-throughput metabolomics experiments are
becoming more prevalent across many areas of medicine

and the life sciences.1,2 Analysis of the resulting data sets is
challenging and current techniques fail to extract all of the rich
structure they encapsulate. Most techniques work at the level of
individual mass features (molecules); finding those that change
systematically across experimental groups before attempting to

identify them. Although analyses sometimes map the identified
molecules to molecular networks,2,3 relationships that exist
between molecules are rarely used earlier in the analysis.
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Identification of mass features (mapping them to molecular
structures) is the main bottleneck in untargeted metabolomics.
It is commonly recognized that gas-phase mass fragmentation
experiments are essential to support metabolite annotations.4,5

The resulting fragmentation data is complex and using it to
perform annotation and identification is challenging.4,5

Comparing measured fragment spectra with spectral databases
is largely ineffective (a recent commentary estimated that on
average around 2% of molecules in a typical experiment could
be confidently identified in this way5). Moreover, although
databases will continue to grow, they can only be populated
with “known unknowns” (i.e., previously studied molecules)
hindering discovery of novel natural products or unexpected
metabolites. Focusing on individual mass features also requires
chromatographic retention time alignment across the samples
which becomes increasingly challenging as the number of
samples increases and effectively precludes comparisons
between different chromatographic platforms. Retention time
alignment makes it hard to deal with molecules that only appear
in a small subset of the samples as they will often be considered
to be noise and removed. However, in some studies, molecules
of interest may appear in only a small subset of the samples
(e.g., a drug or other xenobiotic).
One strategy to overcome these limitations is to make better

use of fragmentation data. Recently, multiple tools have been
proposed for processing, analysis, and visualization of
fragmentation data sets.6−10 Of these, MS2Analyzer6 relies on
knowledge of the biochemistry of interest and fragment/loss
patterns of importance, which is only of limited use in
experiments where the goal is to uncover unknown
biochemistry. Molecular Networking7,11 groups spectra accord-
ing to their overall level of similarity. Those spectra that can be
structurally identified can annotate their neighbors, propagating
metabolite annotations to previously unknown molecules.5

However, each spectrum can only belong to one group even
though many molecules consist of multiple biochemically
diverse substructures. Should adenosine, which comprises
adenine and pentose (ribose) substructures, be grouped with
other adenine containing molecules or ribose containing ones?
MetFamily8 was recently introduced to sidestep the identi-
fication problem by clustering MS2 spectra to find structural
families and linking these clusters to differential expression,
thereby revealing regulated metabolite families. While this
approach neatly integrates MS1 and MS2 data, the cluster
analysis does not have the flexibility to represent molecules
consisting of multiple diverse substructures.
Recently, we developed MS2LDA10 for exploration of

fragment data. On the basis of Latent Dirichlet Allocation
(LDA),12 MS2LDA decomposes each molecule into one or
more Mass2Motifs, allowing for more efficient molecular
grouping, searching, and exploration. Mass2Motifs consist of
fragments and losses conserved across multiple spectra and
often correspond to chemical substructures. Spectra sharing a
Mass2Motif can be grouped even if the Mass2Motif only
accounts for a small portion of their spectra and, as they consist
of multiple Mass2Motifs, spectra can belong to multiple
structural families. We have previously shown that MS2LDA
can decompose metabolites into biochemically relevant
substructures, such as amino acid, nucleotide, or hexose related
Mass2Motifs.10

MS2LDA exploits biochemical similarities within a single
fragmentation run (i.e., one DDA data set) and therefore does
not tackle a key step in many analyses, the direct highlighting

and extraction of changes in metabolomes across samples.
Here, we introduce MS2LDA+, an extension of MS2LDA that
simultaneously analyzes multiple samples, across which the
Mass2Motifs are shared. Crucially, this sharing means we can
measure the change in prevalence of Mass2Motifs across
samples allowing us to perform differential analysis of
Mass2Motifs (something that was not possible with
MS2LDA). The development of this new model is motivated
by the observation that very similar Mass2Motifs were found
independently (through manual comparison) across multiple
samples.10 MS2LDA+ formalizes and automates this laborious
matching process by processing multiple samples with the same
set of Mass2Motifs, allowing us to decompose molecules from
different samples into a shared set of substructures and
automatically compare the prevalence of Mass2Motifs across the
samples.
To validate our MS2LDA+ model, we apply it to a data set

consisting of 19 beer samples and 22 urine samples,
hypothesizing that MS2LDA+ will discover substructures with
differential prevalence (i.e., substructures that are beer and
urine specific). The MS2LDA+ pipeline is then applied to
perform fragmentome-based molecular phenotyping of 22 urine
samples from a cohort of stroke patients and finally applied to a
set of fecal samples obtained from children with Crohn’s
disease at different time points during nutritional therapy.
Previously, we have shown that untargeted mass spectrometry
fragmentation experiments can expose not only the presence of
different classes of antihypertensive drugs and their metabolites
in urine samples but also over-the-counter drugs and
endogenous metabolite families.13 By applying the MS2LDA+
pipeline to discover fragmentation patterns across urine
samples, we aim to structurally characterize the discovered
urinary metabolite families. Our hypothesis is that Mass2Motifs
with highly variable prevalence, representing drug (or other
xenobiotic) substructures, appear in only a subset of samples,
whereas Mass2Motifs that display low variance represent
common endogenous substructures, such as acylcarnitines
and acylglutamines.13 This paper introduces the concept of
MS2LDA+ that allows for the determination of Mass2Motif’s
prevalence across multiple samples.

■ MATERIAL AND METHODS
Materials. Urine Samples. Urine samples from anonymized

human volunteers were used from a clinical sample set in the
Glasgow Polyomics’ archive. These samples were obtained as
part of a trial for which ethical approval was applied for through
the Multi-Centre Research and Ethics Committee (MREC),
which was granted by the Scottish MREC and (with MREC
No. 06/MRE00/106). Informed consent was obtained from all
individual study participants. Spot urine samples were obtained
from the cohort of elderly patients upon their first admission in
the clinic. A different subset as in13 was chosen: urine extracts
of 22 patients were selected as follows, diagnosed with stroke,
administering a variety of drugs including a number of
antihypertensives, and availability of the sample extract in the
Glasgow Polyomics’ archive. The resulting subject’s age range
spanned from 52 to 85; 13 were male, and 9 female. More
details can be found in Supporting Information section S1 and
Table S1.

Beer Samples. The 10 mL samples of 18 different beers were
collected from bottles over a period of 5 months. One beer was
sampled twice from different bottles. Details can be found in
the Supporting Information section S2.
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Stool Samples. Stool samples originated from two children
with active Crohn’s disease (9.2 and 12.9 years) who received
disease induction treatment with exclusive enteral nutrition
(EEN) as described previously.14,15 Both children entered
clinical remission and their fecal calprotectin, a marker of
colonic inflammation decreased significantly at the end of their
treatment. In total, five serial stool samples were collected per
patient and a single one from two healthy controls (10.7 and
11.2 years). From CD children, a first sample was collected
before EEN, three samples were collected during EEN (at ∼15,
30, and 56 days), and a final sample was collected when
patients returned to their habitual diet (∼60 days after EEN
cessation). Stool samples were collected within 2 h of
defecation, homogenized with mechanical kneading immedi-
ately, and aliquots were stored at −80 °C until further analysis.
Carers and participants provided written informed consent, and
the study was approved by the local research ethics committee
(Reference Number 05/S0708/66).
Chemicals. HPLC-grade methanol, acetonitrile, isopropanol,

and analytical reagent grade chloroform were acquired from
Fisher Scientific, Loughborough, U.K. HPLC grade H2O was
purchased from VWR Chemicals, Fountenay-sous-Bois, France.
Formic acid (for mass spectrometry) and ammonium carbonate
were acquired from Fluka Analytical (Sigma-Aldrich), Stein-
heim, Germany.

■ METHODS
Sample Preparation. A general metabolome extraction

procedure was performed:16 (i) 5 μL urine was extracted in 200
μL of chloroform/methanol/water (1:3:1) at 4 °C; (ii) then
vortexed for 5 min at 4 °C; (iii) then centrifuged for 3 min
(13 000g) at 4 °C. The resulting supernatant was stored at −80
°C until analysis. A pooled aliquot of the 22 selected urine
samples was prepared prior to the LC−MS runs with DDA
applying higher collision dissociation (HCD) as in ref 13. The
same procedure was followed for the 19 beer samples, see also
ref 10. Finally, to create fecal extracts, the stool samples were
freeze-dried and 5 mg of lyophilized fecal material was extracted
in 200 μL of chloroform/methanol/water (1:3:1) at 4 °C;
followed by homogenization in a FastPrep-24 homogenizer for
60 s at stroke setting 5, after which the same procedure as for
urine was followed.
Analytical Platform. A Thermo Scientific Ultimate 3000

RSLCnano liquid chromatography system (Thermo Scientific,
CA) was used. That system was coupled to a Thermo Scientific
Q-Exactive Orbitrap mass spectrometer equipped with a HESI
II interface (Thermo Scientific, Hemel Hempstead, U.K.).
Thermo Xcalibur Tune software (version 2.5) was used for
instrument control and data acquisition.
LC Settings. The HILIC separation was performed with a

SeQuant ZIC-pHILIC column (150 mm × 4.6 mm, 5 μm)
equipped with the corresponding precolumn (Merck KGaA,
Darmstadt, Germany). A linear biphasic LC gradient was
conducted from 80% B to 20% B over 15 min, followed by a 2
min wash with 5% B, and 7 min re-equilibration with 80% B,
where solvent B is acetonitrile and solvent A is 20 mM
ammonium carbonate in water. The flow rate was 300 μL/min,
column temperature was maintained at 25 °C, injection volume
was 10 μL, and samples were maintained at 4 °C in the
autosampler.13

MS and MS/MS Settings.MS and MS/MS settings used to
generate separate mode fragmentation files are fully described
in refs 10 and 13. In short, for positive- and negative-ionization

separate fragmentation modes, the duty cycles consisted of a
full scan in positive-ionization mode, followed by a TopN data-
dependent MS/MS (MS2) fragmentation event taking the 10
most abundant ion species not on the dynamic exclusion list.
MS/MS fragmentation spectra were acquired using stepped
higher collision dissociation combining 25.2, 60.0, and 94.8
normalized collision energies in one MS2 scan. In full-scan
mode, the duty cycle consisted of two full-scan events
alternating positive and negative ionization modes.

■ DATA ACQUISITION AND PROCESSING
Data Acquisition. Quality control procedures from

Glasgow Polyomics were used.16 Details can be found in the
Supporting Information section S3.

Data Processing: Feature Extraction. Data, in the form
of .mzXML (full scan) and .mzML (fragmentation) files, are
preprocessed using XCMS17 and MzMatch18 for peak detection
and RMassBank19 for detecting MS1−MS2 pairs, before matrix
formation by aligning MS2 features across different spectra and
samples. One benefit of working at the level of the structural
families defined by MS2LDA is that the samples can be
preprocessed separately and no retention time alignment is
required. The resulting data set consists of a set of MS2 spectra
for each sample, containing fragment and loss features (and
their intensities) that have been matched across all samples
(Supporting Information section S3).

MS2LDA+ Model. The MS2LDA+ model is an extension
to standard LDA in which a single set of motifs (known as
topics in standard LDA) is shared across multiple samples. For
inference, we have developed a Variational Bayes12 scheme in
which each sample is modeled with standard MS2LDA except
for the updates of the motifs which are pooled across the
samples (Supporting Information section S4). The output is a
set of Mass2Motifs and assignments of Mass2Motifs to each
MS1 peak in each sample. Essentially, all mass fragments and
neutral losses are now linked across samples to assess their co-
occurrence in the entire collection of fragmentation spectra
while also storing feature matrices for each individual sample.
The extension from MS2LDA to MS2LDA+ model is depicted
in Figure 1.
The MS2LDA pipeline was extended to MS2LDA+ to enable

the analysis of multiple samples in one analysis by linking all
fragments and losses and their co-occurrences across the entire
corpus while storing sample-specific information (Figure 1). In
MS2LDA+, the sample-specific prevalence of the different
Mass2Motifs for the f th sample is captured by a parameter
vector αf, that has one value per Mass2Motif (αk

f ) (represented
by the bar charts at the bottom of Figure 1). The higher the
value, the more prevalent that Mass2Motif is within the sample.
Prevalence here can be interpreted as the proportion of all
feature intensity (of the fragmented molecules) that is
explained by this Mass2Motif. These α vectors provide a
high-level view of the biochemical makeup of each sample in
terms of the prevalence of the different, shared Mass2Motifs
(Figure 1).
Following MS2LDA, we used the Mass2Motif-molecule

probabilities to define the links between the molecules. The
probability can be interpreted as the proportion of a molecule’s
spectrum that is explained by this Mass2Motif, and it is
therefore affected by the number of peaks in the molecule’s
spectrum. For example, two molecules that both include a
complete Mass2Motif would have very different probabilities if
one of them had many more other peaks. In a further
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development from the original MS2LDA, we have therefore
implemented a second, complementary linking score: the
overlap score. The overlap score measures how much of the
Mass2Motif is present in the spectrum rather than how much
of the spectrum is explained by the Mass2Motif (Supporting
Information section S5). The higher that score, the more mass
fragments and neutral losses from the Mass2Motif can be found
in the fragmentation spectrum of the parent ion, increasing the
confidence that the substructure is indeed present. An intrinsic
model property is that all spectra must be assigned to at least
one Mass2Motif. This enforces “alien” metabolites not sharing
any substructures with other metabolites to be part of a
structural family (with very high probabilities) despite sharing
hardly any or no characteristic features. These outliers are now

easily recognized by the combination of a high membership
probability but very low overlap score.

■ DATA ANALYSIS

Statistical Tools. PCA Analysis. PCA analysis was
performed on the 41 × 500 matrix of α values to project it
down into a 41 × 2 matrix for visualization. The values were
normalized so that the total value within each sample was equal
to 1. This allows the values to be interpreted as Mass2Motif
probabilities within each sample. The standard approach of
whitening the variables (motifs) prior to PCA was performed.
PCA analysis was done in Python using the PCA method
provided in the scikit-learn package.20

Mass2Motif differential prevalence was determined by
computing the z-score for each Mass2Motif between the two
groups (difference of α means divided by the sum of the
standard deviations). As for PCA, the α values within each
sample were normalized to sum to 1. To compute similarity
between Mass2Motifs, their α values (now the vector of values
across samples for each Mass2Motif) were compared by
computing their pairwise Pearson correlation values.

Structural Characterization of Mass2Motifs. Mass2Mo-
tifs discovered in beer and urine were structurally characterized
by comparison to earlier discovered Mass2Motifs10 and
characteristic fragments found by manual inspection of clusters
in a Molecular Network,13 through expert knowledge and
matching of the Mass2Motif spectra to reference spectra in
MzCloud (www.mzcloud.org).

Data Availability. All data, processed data, and codes used
for this paper will be available for download from the university
repository (http://researchdata.gla.ac.uk/402/). In addition,
data is available through GNPS/MassIVE: MassIVE data set
MSV000081118 contains the urine sample data ,
MSV000081119 the beer sample data, and MSV000081120
the stool (fecal) sample data. All codes can be found in GitHub
(https://github.com/sdrogers/lda).

Figure 1. Extension from MS2LDA to MS2LDA+. In MS2LDA, a
single sample (containing M molecules) is decomposed using K
Mass2Motifs. In MS2LDA+, F samples (containing M1, M2, M3
molecules, etc.) are decomposed onto shared Mass2Motifs. Prevalence
of the Mass2Motifs can then be compared across the samples. In this
example, the red Mass2Motif is most prevalent in the second sample,
and the green in the third.

Figure 2. (A−C) Paracetamol mercapturate Mass2Motif in beer and urine samples with (A) metabolites displayed in m/z vs RT plot, (B) αf, and
(C) degrees. Note that the model finds (almost) no molecules from beer (as expected) that contain the paracetamol mercapturate Mass2Motif;
those that do spuriously match are doing so because one or two abundant fragments overlap but the characteristic paracetamol mercapturate pattern
is clearly absent from those beer fragmentation spectra. (D−F) Acetyl loss Mass2Motif in beer and urine samples with (D) metabolites displayed in
m/z vs RT plot, (E) αf, and (F) degrees. Note that we observe many molecules from beer, many from urine, and many that appear in both that
contain the acetyl loss Mass2Motif.
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■ RESULTS

MS2LDA+ Exposes Biochemical Differences between
Samples. To validate the extent to which MS2LDA+ generates
biochemically relevant knowledge from untargeted metabolo-
mics experiments and the extent to which αf provides a
biochemical summary of each sample, sets of 19 beer and 22
urine samples were combined in one analysis to discover 300
Mass2Motifs. Using biological samples from two distinct
origins will highlight the high-level differences that MS2LDA
+ can extract from large experiments. The prevalence of two
discovered Mass2Motifs across all the 41 samples is displayed
in Figure 2. Figure 2A−C displays the paracetamol
mercapturate with Figure 2A displaying the fragmented ions
that contain the paracetamol mercapturate Mass2Motif, Figure
2B displaying the αf across all samples, and Figure 2C showing
the number of metabolites that passed a threshold of 0.01 on
their molecule-Mass2Motif probability. As can be seen, the
trend of the two histograms is very similar. The Mass2Motif is
clearly prevalent in 5 of the urine samples and present in a
couple more and virtually absent in the beer samples (those
that are grouped from beer are incidentally mass-matched
metabolites sharing only one or two abundant mass fragments),
as expected since it is a human drug related Mass2Motif.
Inspection revealed that the characteristic fragmentation
pattern of paracetamol mercapturate consisting of 5 recurring
fragments is absent from those beer fragmentation spectra.
Higher threshold values on document-Mass2Motif probabilities
and overlap scores would reduce the number of such spurious
hits. The acetyl loss Mass2Motif (Figure 2D−F) displays a
completely different picture of a fairly constant number of
metabolites that contain this Mass2Motif in both beer and
urine samples with some of them present in both sample sets
(see Figure 2D).
Substructure-Based Principal Component Analysis.

To visualize the results at a higher level, principal component
analysis (PCA) was performed to project the 41 (total number
of samples) αf vectors from their original 300-dimensional
space (one dimension per Mass2Motif) into two dimensions.
Figure 3 shows clear separation of the two sample groups with
the Mass2Motif loadings indicated as gray lines, highlighting
the ability of MS2LDA+ to characterize complex mixtures. We
subsequently explored the Mass2Motifs with high loadings
(those that contribute most to the separation of beer and urine

samples) and found, among Mass2Motifs more prevalent in
beer, choline, aminohexose, and hexose conjugation sub-
structures (also highlighted in Figure 3), and among those
more prevalent in urine, creatinine, trimethylamine, and
acylcarnitine substructures. The relevance of these metabolite
groups to beer and urine highlights the interpretability of the
MS2LDA+ analysis; we are able to rapidly observe biochemical
differences between the sample groups without relying on the
identification of individual molecules. In particular, beer derives
partly from plant-based metabolomes rich in glycosylated
products. During brewing, sugars are released that can react
with other parts of the beer metabolite pool, resulting in many
glycosylated products. Creatinine, a byproduct of muscle
metabolism cleared from serum by the kidneys, is typically
found in urine and not in beer, as expected.

Differential Prevalence of Mass2Motifs. To further
explore the differences highlighted by MS2LDA+, we
performed a differential prevalence analysis for each Mass2Mo-
tif between the two sample sets. The 20 Mass2Motifs showing
the most consistent differential prevalence (based on a t test)
for each sample were examined (box plots in Figure 4A,B). Of
these, we found many Mass2Motifs to which we could assign a
substructure or structural feature. Many Mass2Motifs prevalent
in beer were based on sugars (hexoses) and typical plant-based
structural motifs like cinnamic acid. Likewise, urine prevalent
Mass2Motifs include those structurally characterized as proline
betaine and trimethylamine substructures. It is also informative
to examine the Mass2Motifs that were unchanged between the
two sample groups. These included structural families related to
the loss of CHOOH (indicative for a free carboxyl group,
present in both amino acids and organic acids) and the
nucleotide cytosine. Both urine and beer contain similar
numbers of molecules related to those structural families.
Indeed, both urine and beer contain amino acids and organic
acids which both contribute to the carboxyl loss structural
family. Note that within this analysis we are making use of
information from spectra that would not be identified by
classical existing methods. Alternatively, one could look at
differences in prevalence of particular molecular families based
on the families of identified metabolites. However, such an
analysis risks heavy bias: analysis of spectral database contents
reveal substantial overlap to a relatively small set of widely
abundant metabolites.21 Quantifying such bias would be near-

Figure 3. Principal component analysis (PCA) of 19 beer and 22 urine samples. The largest variance (42.7%) is explained by the differences between
the beer and urine groups. Motifs are indicated with lines and several structurally characterized Mass2Motifs are highlighted.
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impossible. MS2LDA+ sidesteps the problem by considering all
spectra that contain a particular Mass2Motif.
These results show that MS2LDA+ can highlight biochemi-

cally relevant differences between sample groups in complex
metabolomics data. Moreover, we can rank the Mass2Motifs by
their variance across the samples and extract the Mass2Motifs
that display high variance among the samples. We hypothesize
that, within urine samples, those Mass2Motifs that exhibit high
variance are likely to represent exogenous metabolites including
drugs and food-related metabolites (xenobiotics), while those
displaying lower variance are more likely to represent
endogenous metabolite families. In the following section we
test this hypothesis.
Mass2Motif Variance within Urines Exposes Xeno-

biotic-Derived Substructures. MS2LDA+ was used to
discover 300 Mass2Motifs in the 22 urine samples and the αf

values were used to determine the variance for each
Mass2Motif (note that to compute the variance we normalized
each αf so that they summed to one over the samples to remove

the effect of globally high and low prevalence Mass2Motifs).
The 30 most and least variable Mass2Motifs were extracted
and, where possible, structurally characterized. Table S6-1 in
the Supporting Information, section S6, shows the 30 most
variable Mass2Motifs, 23 of which were structurally charac-
terized as containing a biochemically relevant substructure.
Nearly all (22) of those substructures can be described as
xenobiotic (drug, food-related, or otherwise not naturally
occurring in humans). For example among the top 10 most
variable Mass2Motifs, we found substructures related to
paracetamol mercapturates (a group of metabolites derived
from paracetamol, a pain killer (see also Figure 2A−C) for
which the Mass2Motif mass fragments matched with the
characteristic fragments previously determined from a Molec-
ular Networking cluster,13 amlodipine (an antihypertensive
diuretic), and dimethylated pyrogallol (a marker of polyphenol
intake22). At the low variance end, 21 out of the 30 least
variable Mass2Motifs were structurally characterized as
containing a biochemically relevant substructure (Table S6-2
in the Supporting Information, section S6). In the top 10, acetyl
loss, cytosine related, and the loss of CHOOH were found,
indicating that a constant number of metabolites contain those
substructures across the 22 different urines. An additional 57
Mass2Motifs were structurally characterized with biochemically
relevant substructures or with related ion products including
isotope variants (Table S6-3 in the Supporting Information,
section S6). Lysine, carnitine (acylcarnitine), and methylade-
nine are among those motifs. A total of 101 Mass2Motifs could
be structurally characterized, covering on average ∼1600
molecules in a urine sample which represents 86% of the
total molecules for which MS/MS data were collected.
Mass2Motifs also show variation across the retention time

axis of the mass/charge versus retention time plots (Figure 5).
Mass2Motifs like the loss of a pentose (Figure 5B) occur
throughout the entire chromatographic window, whereas
metabolites containing the sartan-based Mass2Motif elute in a
narrow band (Figure 5D). This can further assist in the
structural characterization of Mass2Motifs.

■ BIOCHEMICALLY RELATED SUBSTRUCTURES
CLUSTER BASED ON PREVALENCE ACROSS
SAMPLES

(Bio)chemically related substructures (i.e., those created by
different pathways derived from the same core metabolite)
would likely result in similar αf profiles across the samples. The
most variable Mass2Motif was related to paracetamol
mercapturates, containing a variety of mercapturates. Pearson
correlation between the αf vectors for each sample was used to
visualize the similarity between the Mass2Motifs profiles with
edges between Mass2Motifs where their correlation exceeded a
threshold (Supporting Information, section S7). Many xeno-
biotic Mass2Motifs were found in isolation in the alpha
correlation network, indicating their unique prevalence across
the urine samples. Conversely, endogenous Mass2Motifs were
more densely connected. Interestingly, however, the para-
cetamol mercapturates Mass2Motif was clustered not only to a
Mass2Motif characterized as a paracetamol substructure but
also to a Mass2Motif that was subsequently characterized as a
group of fragments belonging to methoxyparacetamol. Hence
similarities between profiles for individual Mass2Motifs across
the samples allow us to prioritize Mass2Motifs to characterize
and can assist in the structural elucidation process.

Figure 4. Boxplots of high variance alphas abundantly present in beer
(A) and urine (B): the top 20 most differential Mass2Motifs are
displayed and labeled with their structural characterizations.
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Both paracetamol and methoxyparacetamol were found in
urines with two metabolites, namely, the glucuronidated and
sulfated form. In our data, these metabolites were characterized
by a large number of ion products. In fact, the more
paracetamol present in a urine samples, the larger the number
of observed ion products. The α values for this Mass2Motif
could so be used as a proxy for abundance of those two
metabolite families in urine.
In summary, ranking Mass2Motifs by their variance in α

guided the extraction of xenobiotic substructures and their
associated metabolites in an unsupervised manner. Further-
more, the Mass2Motif α distributions can be used to find
biochemically related substructures that can aid in their
structural characterization.

■ CORE AND RARE METABOLITES GROUPED BY
MS2LDA+

A variety of structural families were discovered by MS2LDA+
across the urine profiles in positive mode experiments,
including trimethylamine, indole, loss of pentose, loss of
glucuronide, glycine, carnitine, and glutamine related Mass2-
Motifs. We investigated the carnitine and glutamine families in
more details to validate the grouping performed by MS2LDA+.
After aligning the MS1 features across the samples, the sample
and metabolite normalized MS1 intensities were examined to
divide the grouped metabolites into “core” (here defined as
present in >80% of urine samples) and “rare” (here defined as
present in <80% of urine samples) metabolites. In total, 59
acylcarnitine species were annotated, 47 of which were core
acylcarnitines (Supporting Information, section S8). HMDB23

entries were found for 30% of the annotated core acylcarnitines,
whereas none were found for the 12 annotated rare
acylcarnitines Supporting Information, section S9). Many of
the discovered acylcarnitines were also annotated in previous
studies that required more laborious manual annotation.13,24

This demonstrates a key advantage of working with metabolite
families represented by Mass2Motifs, the ability to make use of
data that cannot be identified through traditional means.

The acylglutamine family resulted in 23 annotated core
acylglutamines (Supporting Information, section S10), of which
3 had hits in HMDB. In total, four nonpeptide glutamine
related metabolites are present in HMDB. During annotation of
the grouped features, 5 acylglutamine-related ion products were
found (isotopes and fragments) and 3 occurrences of
cofragmentation of nonacylglutamines. None of the 12
annotated rare acylglutamines (Supporting Information, section
S11) had a match in HMDB. An earlier study13 using Molecular
Networking revealed a number of acylglutamine species;
however, MS2LDA+ was able to find a larger variety of these
species.
Thus, MS2LDA+ allows for mapping of structural families

across samples, grouping both features present across all
samples as well as those present in just a subset of samples (that
would often be discarded in traditional analysis). Performing
statistical analysis based on metabolite families allows the use of
all related molecules, not just the handful that can be identified
by database matching. Only a few acylglutamine species found a
match in HMDB, indicating how the grouping by MS2LDA+
aids in structural annotation of features found in untargeted
metabolomics experiments. Additionally, the (sample and
metabolite) normalized MS1 intensities give insight into
abundance and presence/absence patterns within metabolite
families which can be grouped within Mass2Motifs using
biclusters (Supporting Information, section S12).

■ STOOL SAMPLE ANALYSIS OF CHILDREN WITH
CROHN’S DISEASE DURING NUTRITIONAL
THERAPY

Fecal extracts represent a challenging matrix influenced by
many factors such as diet, drug administration, gut microbiota,
and the host metabolome. Crohn’s disease is a chronic
inflammatory condition of the gut for which no curable
treatment is available. To study metabolic differences during
disease induction treatment with exclusive enteral nutrition
(EEN),14,15 samples from children with Crohn’s disease and
healthy controls were analyzed with MS2LDA+ (see the
Supporting Information, section S13). The substructure-based

Figure 5. Retention time (RT) versus mass/charge (m/z) plots for fragmented MS1 ions containing Mass2Motifs annotated as (A) loss of
glucuronide, (B) loss of pentose, (C) C10 or longer acylcarnitines, and (D) sartan related drug metabolites. A clear difference in occurrence
throughout the chromatogram can be observed with pentose loss occurring throughout the complete RT window while the hydrophobic sartan
related drugs are confined to a narrow RT band.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b01391
Anal. Chem. 2017, 89, 7569−7577

7575

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.7b01391


PCA showed separation of samples taken during treatment
versus samples taken after treatment and from healthy controls
(Supporting Information, Figure S13A), indicating common-
alities between gut substructure contents of healthy controls
and patients that had completed treatment. Differential
prevalence analysis showed adenine and guanine substructures
being depleted in the during-treatment samples, as is also
shown in the topic prevalence plots for selected Mass2Motifs
(Figure S13B−D).

■ DISCUSSION
State-of-the-art mass spectrometers can measure the concen-
trations and fragmention spectra of small molecules with
increasing resolution and coverage, thus improving our chances
of discovering biomarkers for the onset of disease and food or
drug intake. However, mass spectrometers generate data sets
that are very complex and currently tools for analysis use only a
small part of the available data.
Unsupervised discovery of substructures in metabolomics

data represents a significant step forward in analysis of MS/MS-
based metabolomics data.10 However, armed with that
information, the researcher is still tasked with numerous mass
fragmental patterns to analyze. Relevant or informative
Mass2Motifs are not always present in many metabolites,
while small structural families can play crucial roles in biological
experiments. Motivated by the observation that Mass2Motifs
were similarly defined across different samples, we extended the
MS2LDA model to MS2LDA+. MS2LDA+ decomposes
multiple samples using a shared set of Mass2Motifs. As well
as decomposing each individual molecule into its constituent
Mass2Motifs, MS2LDA+ exposes higher level biochemical
variability across samples through extracting the sample-specific
Mass2Motif prevalence. Differential prevalence and variability
of this prevalence can also guide exploration of relevant
structural families in metabolomics experiments.
When performing a MS2LDA+ analysis of a collection of

beer and urine samples, Mass2Motif prevalence clearly
separated the two sample types, demonstrating its ability to
extract high-level biochemical changes. Mass2Motifs with high
differential prevalence between sample groups made sense in
the context of the known biochemical makeup of these complex
mixtures. When analyzing the urine samples alone, ranking
Mass2Motifs by their variance highlighted xenobiotic Mass2-
Motifs whereas low variance Mass2Motifs tended to represent
endogenous substructures. For example, the most variable
Mass2Motif was related to paracetamol mercapturates, human
metabolites of paracetamol (APAP). This highlighted the utility
of the MS2LDA+ approach in the extraction of xenobiotic (e.g.,
drug) substructures (and hence metabolites) from untargeted
experiments. Furthermore, MS2LDA+ separated stool samples
from children with Crohn’s disease during ENN treatment with
those after treatment and healthy controls. Substructure
analysis revealed significant differential prevalence for a few
Mass2Motifs, with adenine and guanine substructures being
depleted during treatment. Interestingly, there is evidence that
small molecules related to adenine and guanine may play roles
in gut microbiota homeostasis and inflammatory response.25,26

In future, with time-series LC−MS/MS data available for more
volunteers, multivariate substructure analysis (explicitly ac-
counting for changes over time) is a promising route to explore.
In total, 101 Mass2Motifs were structurally annotated with
biochemically relevant substructures. These Mass2Motifs were
present in 86% of fragmented molecules (at a cutoff of 0.1

probability score, dropping to 49% at a more stringent cutoff of
0.3), demonstrating the wide coverage that can be obtained in
untargeted experiments via the characterization of far fewer
Mass2Motifs than original molecules. We are currently
considering how to store this structural information in such a
way that it can be easily transferred to new experiments and
how to make it searchable for the scientific community, for
example, by converting them into MassBank records.27

The acylcarnitine and acylglutamine metabolite families were
investigated in detail and their members partitioned into “core”
and “rare” metabolites (Supporting Information sections S8−
S11). The grouping of those core metabolites could also allow
prioritization of Mass2Motif characterization to those which
display large variation in their core metabolite MS1 intensities,
as those which are much more likely to produce potential
markers than low-variant metabolites or metabolites that are
only present in a subset of samples due to limitations of
currently used statistical approaches. Biclusters aid in assess-
ment of structural family membership and highlight presence/
absence patterns across different samples (Supporting
Information, section S12).

■ CONCLUSIONS AND OUTLOOK

We introduce MS2LDA+ that provides a platform to guide
interpretation of comparative untargeted metabolomics experi-
ments and prioritize structural characterization of Mass2Motifs
across large sample sets. We believe that the unsupervised
discovery of substructures has particular utility for the detection
of unknown unknowns (molecules not previously encountered in
chemical databases). Moreover, by finding the biochemical
relationships between metabolites, we can deal with the gaps in
the MS1 data matrix that classical statistical approaches cannot
currently do without data imputation strategies.
With beer and urine samples as two distinct groups, we

validated that biochemically relevant information is discovered
by MS2LDA+, allowing for prioritization of compound classes
and groups that contribute to substantial variation in the data.
This approach can find relevant substructures and/or
substructures of both endogenous and exogeneous origin in
urine cohort samples where intragroup variance was suspected
to arise from differential drug and/or food administration. In
total, we structurally characterized 101 Mass2Motifs discovered
in urine. We found that the most variable urinary substructures
were xenobiotic-derived.
Substructure-based metabolomics captures most structural

information present in fragmentation-enriched untargeted
metabolomics experiments. The discovery of structural families
in this way will impact many different fields of science. For
example, it will be useful in relating lifestyle factors (diet,
medicinal use, other exposures) to urinary markers, for
monitoring production of natural products in bacteria and
plants and monitoring toxic degradation products in waste-
water. Moreover, where biochemical pathways are characterized
by shared substructures, perturbations in those pathways upon
treatments are also likely to be discovered by MS2LDA+ using
Mass2Motif differential prevalence analysis. To fulfill the
promise of untargeted metabolomics, unsupervised inclusive
methods like MS2LDA+ are needed that make use of the
biochemical relationships of metabolites and group metabolites
per functional group or substructure.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b01391
Anal. Chem. 2017, 89, 7569−7577

7576

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b01391/suppl_file/ac7b01391_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.7b01391


■ ETHICAL APPROVAL
All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. Informed consent was obtained
from all individual participants included in the study.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.7b01391.

Urine samples; beer sample specifications; data acquis-
ition and processing, feature extraction; MS2LDA+
model; overlap score; tables of characterized Mass2Mo-
tifs; Pearson correlation between the vectors; table of
core acylcarnitine metabolites found across 22 urines;
table of rare acylcarnitine metabolites found in subsets of
22 urines; table of core acylglutamine metabolites found
across 22 urines; table of rare acylglutamine metabolites
found in subsets of 22 urines; normalized MS1 intensities
give insight in abundance and presence/absence patterns
within metabolite families; stool sample analysis; and
references (PDF)
Urine sample data (XLSX)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: justin.vanderhooft@glasgow.ac.uk.
*E-mail: simon.rogers@glasgow.ac.uk.
Notes
The authors declare no competing financial interest.
All data, processed data, and codes used for this paper will be
available for download from the university repository (DOI:
10.5525/gla.researchdata.402). In addition, data is available
through GNPS/MassIVE: MassIVE data set MSV000081118
contains the urine sample data, MSV000081119 the beer
sample data, and MSV000081120 the stool (fecal) sample data.
All codes can be found in GitHub (https://github.com/
sdrogers/lda).

■ ACKNOWLEDGMENTS
J.J.J.v.d.H. was supported by the Wellcome Trust (Grant No.
105614/Z/14/Z). M.P.B. was funded by the Wellcome Trust
core grant to the Wellcome Centre for Molecular Parasitology
(Grant No. 104111/Z/14/Z). J.W. was supported by a SICSA
Ph.D. studentship. K.G. acknowledges support from the
Wellcome Trust ISSF funding scheme. S.R. was supported by
BBSRC (Grant No. BB/L018616/1).

■ REFERENCES
(1) Chaleckis, R.; Murakami, I.; Takada, J.; Kondoh, H.; Yanagida, M.
Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 4252−4259.
(2) Bouslimani, A.; Melnik, A. V.; Xu, Z.; Amir, A.; da Silva, R. R.;
Wang, M.; Bandeira, N.; Alexandrov, T.; Knight, R.; Dorrestein, P. C.
Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E7645−E7654.
(3) Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B. S.; Yang, J. Y.;
Kersten, R. D.; van der Voort, M.; Pogliano, K.; Gross, H.;
Raaijmakers, J. M.; Moore, B. S.; Laskin, J.; Bandeira, N.;
Dorrestein, P. C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E1743−
E1752.

(4) Dunn, W. B.; Erban, A.; Weber, R. M.; Creek, D.; Brown, M.;
Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.;
Viant, M. Metabolomics 2013, 9, 44−66.
(5) da Silva, R. R.; Dorrestein, P. C.; Quinn, R. A. Proc. Natl. Acad.
Sci. U. S. A. 2015, 112, 12549−12550.
(6) Ma, Y.; Kind, T.; Yang, D.; Leon, C.; Fiehn, O. Anal. Chem. 2014,
86, 10724−10731.
(7) Yang, J. Y.; Sanchez, L. M.; Rath, C. M.; Liu, X.; Boudreau, P. D.;
Bruns, N.; Glukhov, E.; Wodtke, A.; de Felicio, R.; Fenner, A.; Wong,
W. R.; Linington, R. G.; Zhang, L.; Debonsi, H. M.; Gerwick, W. H.;
Dorrestein, P. C. J. Nat. Prod. 2013, 76, 1686−1699.
(8) Treutler, H.; Tsugawa, H.; Porzel, A.; Gorzolka, K.; Tissier, A.;
Neumann, S.; Balcke, G. U. Anal. Chem. 2016, 88, 8082−8090.
(9) Misra, B. B.; van der Hooft, J. J. J. Electrophoresis 2016, 37, 86−
110.
(10) van der Hooft, J. J. J.; Wandy, J.; Barrett, M. P.; Burgess, K. E.
V.; Rogers, S. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 13738−13743.
(11) Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.;
Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan,
T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W.-T.;
Crusemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderon,
M.; Kersten, R. D.; et al. Nat. Biotechnol. 2016, 34, 828−837.
(12) Blei, D. M.; Ng, A. Y.; Jordan, M. I. J. Mach. Learn. Res. 2003, 3,
993−1022.
(13) van der Hooft, J. J. J.; Padmanabhan, S.; Burgess, K. E. V.;
Barrett, M. P. Metabolomics 2016, 12, 1−15.
(14) Quince, C.; Ijaz, U. Z.; Loman, N.; Eren, A. M.; Saulnier, D.;
Russell, J.; Haig, S. J.; Calus, S. T.; Quick, J.; Barclay, A.; Bertz, M.;
Blaut, M.; Hansen, R.; McGrogan, P.; Russell, R. K.; Edwards, C. A.;
Gerasimidis, K. Am. J. Gastroenterol. 2015, 110, 1718−1729.
(15) Gerasimidis, K.; Bertz, M.; Hanske, L.; Junick, J.; Biskou, O.;
Aguilera, M.; Garrick, V.; Russell, R. K.; Blaut, M.; McGrogan, P.;
Edwards, C. A. Inflammatory Bowel Diseases 2014, 20, 861−871.
(16) Creek, D. J.; Jankevics, A.; Breitling, R.; Watson, D. G.; Barrett,
M. P.; Burgess, K. E. V. Anal. Chem. 2011, 83, 8703−8710.
(17) Smith, C. A.; Want, E. J.; O’Maille, G.; Abagyan, R.; Siuzdak, G.
Anal. Chem. 2006, 78, 779−787.
(18) Scheltema, R. A.; Jankevics, A.; Jansen, R. C.; Swertz, M. A.;
Breitling, R. Anal. Chem. 2011, 83, 2786−2793.
(19) Stravs, M. A.; Schymanski, E. L.; Singer, H. P.; Hollender, J. J.
Mass Spectrom. 2013, 48, 89−99.
(20) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.;
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