
nutrients

Article

Ingestion of High β-Glucan Barley Flour Enhances the
Intestinal Immune System of Diet-Induced Obese Mice by
Prebiotic Effects

Kento Mio 1,2, Nami Otake 1, Satoko Nakashima 2, Tsubasa Matsuoka 2 and Seiichiro Aoe 1,*

����������
�������

Citation: Mio, K.; Otake, N.;

Nakashima, S.; Matsuoka, T.; Aoe, S.

Ingestion of High β-Glucan Barley

Flour Enhances the Intestinal

Immune System of Diet-Induced

Obese Mice by Prebiotic Effects.

Nutrients 2021, 13, 907. https://

doi.org/10.3390/nu13030907

Academic Editor: Michael Conlon

Received: 29 December 2020

Accepted: 9 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Studies in Human Life Sciences, Graduate School of Studies in Human Culture, Otsuma Women’s University,
Chiyoda-ku, Tokyo 102-8357, Japan; mio.kento@hakubaku.co.jp (K.M.); otake.nami@gmail.com (N.O.)

2 Research and Development Department, Hakubaku Co. Ltd., Chuo-City, Yamanashi 409-3843, Japan;
nakashima.satoko@hakubaku.co.jp (S.N.); matsuoka.tsubasa@hakubaku.co.jp (T.M.)

* Correspondence: s-aoe@otsuma.ac.jp; Tel.: +81-3-5275-6048

Abstract: The prebiotic effect of high β-glucan barley (HGB) flour on the innate immune system of
high-fat model mice was investigated. C57BL/6J male mice were fed a high-fat diet supplemented
with HGB flour for 90 days. Secretory immunoglobulin A (sIgA) in the cecum and serum were
analyzed by enzyme-linked immunosorbent assays (ELISA). Real-time PCR was used to determine
mRNA expression levels of pro- and anti-inflammatory cytokines such as interleukin (IL)-10 and IL-6
in the ileum as well as the composition of the microbiota in the cecum. Concentrations of short-chain
fatty acids (SCFAs) and organic acids were analyzed by GC/MS. Concentrations of sIgA in the cecum
and serum were increased in the HGB group compared to the control. Gene expression levels of IL-10
and polymeric immunoglobulin receptor (pIgR) significantly increased in the HGB group. HGB intake
increased the bacterial count of microbiota, such as Bifidobacterium and Lactobacillus. Concentrations
of propionate and lactate in the cecum were increased in the HGB group, and a positive correlation
was found between these organic acids and the IL-10 expression level. Our findings showed that HGB
flour enhanced immune function such as IgA secretion and IL-10 expression, even when the immune
system was deteriorated by a high-fat diet. Moreover, we found that HGB flour modulated the gut
microbiota, which increased the concentration of SCFAs, thereby stimulating the immune system.
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1. Introduction

The gastrointestinal tract has to tolerate the presence of the luminal microbiota, but
the immune system must protect the intestinal mucosa against potentially harmful dietary
antigens and pathogenic agents [1]. Immunoglobulin A (IgA) is an important antibody
of this system, which eliminates pathogens and neutralizes toxins. It is known that this
system is aggravated by stress, obesity, and disordered eating habits [2]. In particular, foods
and food ingredients have the potential to affect the intestinal immune system. Previous
studies showed that several food components, such as lactic acid bacteria and vitamin
A, promote IgA secretion by different mechanisms [3–5]. Additionally, it is reported that
functional foods stimulate IgA secretion by inducing changes in the gut microbiota [6,7].
Indeed, homeostasis of gut microbiota has been shown to be regulated by T cell-dependent
IgA [8]. Moreover, a human study indicated that IgA-deficient subjects have different
microbiota profiles compared with healthy subjects [9]. Therefore, it is important to identify
foods that enhance intestinal immune functions, such as IgA production, by improving
gut microbiota.

In recent years, there is increasing interest in utilizing indigestible carbohydrates, to
modulate the metabolic function of the microbiota, which are known as prebiotics [10,11].
Grains such as barley contain substantial amounts of dietary fiber and mediate several
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physiological functions. Beta-glucan in barley and oats is a water-soluble dietary fiber
comprising β-glycosidic bonds (β-1-3,1-4 bonds). This fiber is fermented by gut bacteria,
potentially leading to health benefits, and thereby acting as a prebiotic [12,13]. A previous
study showed that a mixture of barley β-glucan and probiotic microorganisms modulate
the transcriptional levels of immune-related genes in vitro [14]. Additionally, whole-grain
barley pasta containing barley β-glucan was found to be effective in modulating the
composition and metabolism of the gut microbiota in 26 healthy subjects [15]. Another
clinical study showed that intake of 60 g/day of whole barley for four weeks increased
microbial diversity and the abundance of many genera of gut bacteria [16]. Moreover,
β-glucan from oats and barley contribute to the production of intestinal metabolites, such
as short-chain fatty acids (SCFAs), via fermentation mediated by gut microbiota [17].
SCFAs are thought to stimulate the immune system and orchestrate an anti-inflammatory
effect [18,19]. Park et al. suggested that SCFAs, such as butyrate, propionate, and acetate,
activate the naive T cell polarization to regulatory T cells (Tregs) [20]. Another in vitro
study showed that butyrate suppressed the induction of T cell apoptosis and interferon
gamma (IFN-γ)-mediated inflammation in colonic epithelial cells [21]. Therefore, changes
in the gut microbiota and levels of SCFAs following intake of barley are expected to enhance
the immune system in the lower gut.

We speculated that barley β-glucan may have an effect on the innate immune function
via intestinal fermentation. To date, few studies have focused on changes to the immune
system following barley intake. One such study involved patients who had previously
undergone a proctocolectomy with ileostomy [22]. The subjects were fed oat β-glucan,
and then, digestive waste was collected, freeze-dried, and dissolved in PBS. The resulting
solution was incubated with different intestinal cell lines and found to increase parameters
related to immune modulation in vitro. Volman et al. suggested that mice fed oat β-glucan
activated the gut leukocytes and enterocytes compared to placebo mice [23]. However,
most of the studies were conducted using β-glucan extracts, and there have been no studies
evaluating barley as a food. Furthermore, there are no reports that have clarified the effects
of barley on models of impaired immune function due to poor dietary habits such as
obesity. Diet-induced obesity generally causes a low-grade inflammatory state. Several
lines of evidence indicate that altered immune function is associated with the etiology of
obesity [24–26]. For example, intake of a high-fat diet causes excess lipids and secreted bile
acids to flow into the digestive tract, which adversely affects the intestinal environment and
immune function. A recent study showed that serum IgA levels were decreased in mice
fed a high-fat diet, which was mediated via high-fat-induced changes to the composition
of microbiota and gut metabolite production [27]. Therefore, it is important to investigate
the effect of food containing prebiotics, such as barley, on inflammation in the intestinal
tract caused by obesity.

Here, we focused on the gut fermentability of barley flour and confirmed its effect
on the innate immune response under high-fat conditions. Firstly, we investigated gene
expression to clarify whether the intake of barley affects the immune system in the ileum
using previously published DNA microarray data [28]. Next, as the main aim of this study,
we investigated whether or not IgA secretion and mRNA expression levels of cytokines
change following the ingestion of high β-glucan barley (HGB) flour in diet-induced obese
mice. We also investigated the relationship between gut microbiota and the production
of SCFAs.

2. Materials and Methods
2.1. Animals and Study Design

The animal protocol used in this study was approved by the Otsuma Women’s Uni-
versity Animal Research Committee (Tokyo, Japan, No.19013, 13 December 2019) and
implemented in accordance with animal experimentation according to their regulations.
The flowchart of the study design in this animal experiment is shown in Figure S1. Male
four-week-old C57BL/6J mice were purchased from Charles River Laboratories Japan,
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Inc. (Yokohama, Japan). Each mouse was individually housed in a polycarbonate cage
kept in a holding room maintained on a 12 h light/dark cycle (light on at 07:30 h) at a
temperature of 22 ± 1 ◦C and humidity of 50 ± 5%. After the mice had acclimatized for
11 days on commercial chow (NMF, Oriental Yeast Co., Ltd., Shiga, Japan), they were
randomized into 2 groups according to body weight (n = 8 per group). Mice were given the
experimental diet (powdered diet) over a 90-day period. The experimental diet was a 50%
fat energy diet supplemented with cellulose (Control (C) group) or flour of waxy hulled
barley “White Fiber” (high β-glucan barley (HGB) group). The total dietary fiber of each
diet was adjusted to 5% (Table S1). “White Fiber” refers to barley flour rich in β-glucan
(Table S1). “White Fiber” flour which was pearled to 70% and powdered was obtained
from the Hakubaku Co. Ltd. (Yamanashi, Japan). Food intake and body weights were
monitored 2 or 3 times per week throughout the study period. Feces were collected for
5 days in the 11th week. At the end of the study, mice were fasted for 8 h and sacrificed
by isoflurane/CO2 anesthesia. Then, the cecum with digesta, adipose tissues (epididymal,
retroperitoneal, mesenteric fats), and liver were dissected and weighed. Blood samples
were collected from the postcaval vein and centrifuged to obtain serum, which was stored
at −30 ◦C until enzyme-linked immunosorbent assay. Cecum with digesta was stored at
−30 ◦C until analysis of SCFAs, microbiota, and secretory immunoglobulin A (sIgA). Ileum
tissue was soaked in RNA® protect Tissue Reagent (Qiagen, Hilden, Germany) and stored
at −30 ◦C until extraction of total RNA.

2.2. Gene Expression Analysis of the Immune System Using DNA Microarray Data

The microarray data used in this study have been registered at the National Center for
Biotechnology Information (NCBI) for Gene Expression Omnibus (GEO) and GEO series
with accession number GSE157828. Male mice were fed a high-fat diet (fat energy ratio of
50%) supplemented with β-glucan rich barley flour before extracting total RNA from the
ileum, liver, and adipose tissue and performing DNA microarray analysis. The procedure
was also performed for mice fed a diet not supplemented with β-glucan rich barley flour
as a control (supplemented with cellulose). We identified differentially expressed genes
(DEGs) using cut-off criteria (Log-ratio > 1.3 fold and < 0.77 fold in the barley group
compared with the control group) based on our previous study [28]. Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed using
the DAVID database (accessed on 12 December 2020). False discovery rate (FDR) was
calculated using the Benjamini–Hochberg algorithm. Pathways were extracted with FDR
where p < 0.05.

2.3. The Levels of Secretory Immunoglobulin A, IL-6, and IL-10 Determined by Enzyme-Linked
Immunosorbent Assays

The levels of sIgA in the cecum and serum were determined using an enzyme-linked
immunosorbent assay kit for secretory immunoglobulin A (Cloud-Clone Corp., Katy,
TX, USA). Serum was analyzed according to the manufacturer’s instructions. Cecum
was lyophilized, and 10 mg samples were added to 100 µL phosphate buffered saline
(PBS) (10 mM, pH 7.0) and then homogenized. After centrifugation (8000 rpm × 20 min,
4 ◦C), the supernatant was diluted 500 times in PBS and then used for measurement. The
concentrations of interleukin (IL)-6 and IL-10 in serum were analyzed using Mouse IL-6
ELISA Kit (RayBiotech, Inc., Norcross, GA, USA) and Mouse IL-10 ELISA Kit (Proteintech
Group, Inc., Chicago, IL, USA), respectively.

2.4. Analysis of Short-Chain Fatty Acids in the Cecum and Feces

The concentration of cecum and feces SCFAs was determined as described in a previ-
ous report using gas chromatography-mass spectrometry (GC/MS) [29]. First, 10–20 mg of
cecum digesta was added to 100 µL of internal standard (100 µM crotonic acid), 300 µL of
diethyl ether, and 50 µL of HCl, and then homogenized (Tissue Lyser II; Qiagen) twice at
2000× g rpm for 2 min each. After centrifugation (3000 rpm, at 24 ◦C, for 10 min), 80 µL of
supernatant was added to 16 µL of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide
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in a vial, and derivatization was performed at 80 ◦C for 20 min. Samples were stored
at room temperature for 48 h and then analyzed for SCFAs by GC/MS (7890B GC sys-
tem equipped with a 5977A MSD; Agilent, Tokyo, Japan). A DB-5MS capillary column
(30 m × 0.53 mm) (Agilent) was used to separate the SCFAs. The oven temperature was
initially kept at 60 ◦C and then ramped up to 120 ◦C at a rate of 5 ◦C/min. Then, the
oven was ramped up to 300 ◦C at a rate of 20 ◦C/min and finally maintained at 300 ◦C for
2 min. Helium was used as the carrier gas at a flow rate of 1.2 mL/min. The temperature
of the front inlet, transfer line, and electron impact ion source were set at 250, 260, and
230 ◦C, respectively. Mass spectral data were collected in selective ion monitoring mode.
The concentration of SCFAs was calculated by comparing their peak areas with that of the
internal standard.

2.5. Analysis of Counts of Predominant Bacterial Groups in the Cecum Digesta

The gut microbiota in the cecum was analyzed by real-time PCR according to previous
studies [30,31]. DNA of cecum digesta was extracted using QIAamp® Fast DNA Stool Mini
kit (Qiagen) according to the manufacturer’s protocol. DNA was mixed with PowerUp
SYBR Green Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) and oligonucleotide
primers for predominant bacterial groups (Table S2). Amplification of the DNA was
performed using an Applied Biosystems Quant3 Real-Time PCR System (Thermo Fisher
Scientific). From the obtained threshold cycle (Ct) values, colony-forming units (CFU) in
the cecum were determined from a calibration curve prepared using Ct values after serially
diluting a DNA solution extracted from each standard bacterial strain (Table S2).

2.6. Expression Analysis of mRNA Related to Immunity in the Ileum

Total RNAs in the ileum were extracted using an RNeasy Mini Kit (Qiagen). mRNA
expression related to intestinal immunity and cytokines was analyzed by real-time PCR
using an Applied Biosystems Quant3 Real-Time PCR System and PowerUp SYBR Green
Master Mix (Thermo Fisher Scientific) with cDNA synthesized from RNA. Primer sequences
are given in Table S3. The 2−∆∆CT method was used for mRNA expression analysis. We
used 36B4 as a reference gene and calculated ∆CT compared to the 36B4. Next, we
calculated ∆∆CT as the difference between ∆CT for the C group and HGB group in terms
of cDNA solution added to each primer. Relative expression levels are presented as fold
changes to the C group (arbitrary units).

2.7. Statistical Analysis

All statistical analyses were performed using R Studio (ver. 1.3.1093, R-Tools Technol-
ogy Inc., Richmond Hill, ON, Canada). Data are presented as mean ± standard error (SE)
of the mean. For each parameter, Student’s t-test was used when the data were based on
a normal distribution. If a normal distribution was not confirmed, the Wilcoxon test was
used. Significant differences were appraised using a two-side test with an α level of 0.05.
The relationships between the sIgA and parameters related to intestinal immunity were
analyzed by Spearman’s rank correlation coefficient.

3. Results
3.1. KEGG Enrichment Analyses of DEGs by Using DNA Microarray Data

We performed KEGG enrichment analysis of DEGs using DNA microarray data of
the ileum of mice fed a high-fat diet containing barley flour. The expression levels of 3065
genes were determined as DEGs. The DEGs up-regulated in the barley group showed
an enrichment in pathways related to intestinal immunity, such as “Cytokine–cytokine
receptor interaction (mmu04060)” and “B cell receptor signaling pathway (mmu04662)”
(Table S4, Figure S2). By contrast, only one pathway (mmu04740: Olfactory transduction)
was identified from DEGs down-regulated in the barley group (data not shown).
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3.2. Food Intake, Body Weight, and Organ Weight

In the animal study, intake of the experimental diet showed no significant differences
with the control group. Therefore, mice in both groups were determined to have been
fed a similar level of energy during the study period (Table S5). However, body weight
gain and final weight in the HGB group were significantly lower than the control group
(p < 0.05). As a result, food efficiency ratio in the HGB group was lower than the C group
(p < 0.05). The organ weight of liver, retroperitoneal, and mesenteric fats were lower in the
HGB group than the C group (p < 0.05), while the cecum digesta was significantly higher
(p < 0.05).

3.3. Secretory Immunoglobulin A (sIgA) Concentration in the Cecum and Serum

The concentrations of sIgA in the cecum and serum are shown in Figure 1. Cecum
(Figure 1a) and serum (Figure 1b) sIgA levels in the HGB group were significantly higher
than in the C group (p < 0.05). The concentrations of serum IL-10 and IL-6 were not
statistically different between the two groups (Figure S3).
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3.4. SCFA and Organic Acid Concentration in the Cecum Digesta and Feces

The concentration of SCFAs and organic acids in the cecum digesta are shown in
Figure 2. The total level of SCFAs, propionate, isobutyrate, isovalerate, lactate, and succi-
nate concentrations in the HGB group were significantly higher than the C group (p < 0.05).
The level of acetate also displayed a slight increase in the HGB group compared with the
C group, although this was not statistically significant. The concentration of butyrate, propi-
onate, isobutyrate, valerate, isovalerate, lactate, and succinate in the feces were significantly
higher in the HGB group than the C group (p < 0.05) (Figure S4).

3.5. Counts of Predominant Bacterial Groups in the Cecum Digesta

Bacterial counts of microbiota at the phylum and genus levels in the cecum digesta
are shown in Table 1. At the phylum level, the bacterial count of Bacteroidetes, Firmicutes,
and total bacteria were significantly higher in the HGB group than the C group (p < 0.05).
At the genus level, the bacterial counts of the Bacteroides, Bifidobacterium, Lactobacillus, and
Atopobium cluster were significantly higher in the HGB group than the C group (p < 0.05).
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Table 1. Counts of the predominant bacterial groups in the cecum digesta between the control and
HGB groups.

LogCFU/g (Cecum Digesta) Control HGB

Phylum

Total bacteria 13.3 ± 0.3 14.9 ± 0.4 *
Bacteroidetes 10.0 ± 0.2 11.2 ± 0.2 *
Firmicutes 12.7 ± 0.1 12.9 ± 0.1 *
Actinobacteria 9.6 ± 0.4 10.1 ± 0.1

Genus

Bacteroides fragilis group 9.7 ± 0.1 10.3 ± 0.2 *
Bifidobacterium 10.3 ± 0.3 11.1 ± 0.1 *
Lactobacillus 10.2 ± 0.2 11.3 ± 0.1 *
Prevotella 7.4 ± 0.1 7.6 ± 0.1
Clostridium coccoides group 9.8 ± 0.2 10.3 ± 0.1
Clostridium leptum subgroup 11.2 ± 0.2 11.7 ± 0.1
Atopobium cluster 7.8 ± 0.2 9.1 ± 0.2 *

* p < 0.05 significantly different between the control and HGB group. Values are means ± SE (n = 8). HGB: High
β-glucan barley group.
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3.6. Expression of mRNA Related to the Immune System in the Ileum

Ileum mRNA expression levels related to the immune system are shown in Figure 3.
In the HGB group, mRNA expression levels of IL-10 were significantly higher than the
C group (p < 0.05). mRNA expression levels of other cytokines (IFN-γ, IL-12, IL-1β, IL-4,
IL-5, IL-6, IL-33, transforming growth factor beta (TGF-β), tumor necrosis factor-α (TNF-α),
and IL-17 were not statistically different between the two groups. mRNA expression level
of the polymeric immunoglobulin receptor (pIgR) in the HGB group was significantly
higher than the C group (p < 0.05).
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indicates a significant difference between each group, “NS” is not significant. C: control group, HGB:
high β-glucan barley group. IFN-γ, interferon gamma; IL-10, interleukin 10; IL-12, interleukin 12;
IL-17, interleukin 17; IL-1β, interleukin 1 beta; IL-33, interleukin 33; IL-4, interleukin 4; IL-5, inter-
leukin 5; IL-6, interleukin 6; pIgR, polymeric immunoglobulin receptor; TGFβ, transforming growth
factor beta; TNF-α, tumor necrosis factor-α.

3.7. Correlation Analysis between sIgA Concentration and Parameters Related to the Immune
System in the Ileum and Cecum

The correlation coefficients between the concentration of sIgA and parameters related
to immunity response are shown in Figure 4. Parameters that were significantly different in
the HGB group compared to the C group were used in the analysis. A positive correlation
was identified between sIgA in the cecum and isobutyrate, lactate, succinate, Lactobacillus,
and pIgR (p < 0.05). A strong positive correlation was identified between sIgA in the serum
and most gut bacteria (p < 0.05).
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4. Discussion

In this study, we investigated the effect of HGB flour on the immune system in diet-
induced obese mice. Intake of HGB flour with a high-fat diet increased the concentration of
sIgA in the cecum and serum. A positive correlation was confirmed between the intestinal
flora and intestinal fermentation metabolites, which are related to an increase in the level
of IgA. In addition, the increase in mRNA expression of IL-10 by HGB intake suggests that
SCFAs and lactic acid may regulate the Tregs response and affect the immune response.

First, we used previously determined DNA microarray data of the ileum [28] to
establish how HGB flour intake affects gene expression related to the immune system in the
high-fat diets. KEGG enrichment analysis of DEGs suggested that HGB flour altered gene
expression involved in several metabolic pathways of the ileum. Specifically, the B cell
receptor signaling pathway (mmu04662) was up-regulated in mice fed the HGB diet. The
B cell receptor is connected with the function and regulation of B cells differentiated into
IgA plasma cells. The IgA antigen contributes an important role in the immune response
in mucous membranes, such as the digestive tract, and is the most abundant antigen on
the mucosal surface [32]. In a recent study, IgA was shown to mediate the modulation
of microbiota in the digestive tract [33]. A previous study revealed that the microbiota
composition differed significantly between immunodeficient mice and wild-type mice [34].
Thus, our findings suggest that barley affects the immune system, such as IgA secretion,
via regulation of gut microbiota.

Next, we investigated changes to the immune system and microbiota using high-fat
model mice. A previous study indicated that C57BL/6J mice fed a high-fat diet (60 kcal%fat)
for 14 weeks had reduced IgA-producing cells in the gut-associated immune system and
sIgA in the colon compared to mice fed a normal diet (16 kcal%fat) [35]. Nonetheless, we
found an increase in the concentration of sIgA in the cecum and serum of the HGB group
compared to the C group. Additionally, these results were also supported by the increase
in the mRNA expression of pIgR, which binds to IgA and transports sIgA to the intestinal
lumen side. Moreover, a positive correlation was found between the concentration of sIgA
in the serum or cecum with the increased number of gut microbiota in mice from the HGB
group. Thus, this observation may be the result of a prebiotic effect. Several studies have
reported the effects of cereal dietary fiber on gut microbiota and the immune response. Yuri
et al. showed that C57BL/6J mice fed oat-derived β-glucan formulations had higher levels
of total serum immunoglobulins, which increased their resistance to the murine pathogen
Eimeria vermiformis [36]. Another study indicated that a long-term intake of wheat bran
significantly increased fecal sIgA and IgA bacteria in male BALB/c mice via modulation of
the gut microbiota [37]. These reports back up our present findings. Moreover, our results
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show that ingestion of HGB flour up-regulates immune function, especially the secretion
of IgA under a high-fat diet.

The concentration of total SCFAs and propionate in the cecum digesta were signif-
icantly higher in the HBG group compared to the C group. Smith et al. reported that
acetate and propionate activated the migratory properties of Tregs through mediated
G protein-coupled receptor 43 (GPR43) [38]. Several studies have addressed how Tregs
regulate the IgA secretion of germinal center B cells [39,40]. Moreover, IL-10 secreted by
Tregs suppresses the production of inflammatory cytokines by acting on macrophages
and dendritic cells. Our results showed that HGB flour increased mRNA expression of
IL-10 in the ileum, and a positive correlation was confirmed between propionate and IL-10.
Thus, intake of barley flour may affect the migration of Tregs and secretion of IL-10 via
propionate. Indeed, a previous study showed that gut microbiota-derived SCFAs promote
IL-10 production [41]. However, no significant difference was found in other inflammatory
cytokines in the ileum and IL-6 and IL-10 level in serum. Although other studies reported
that a long-term intake of oat β-glucan lowered the levels of inflammatory cytokines in
the colon [42], we found no convincing evidence of an anti-inflammatory effect. Further
studies are needed to investigate the anti-inflammatory effect of HGB flour.

A previous study indicated that butyrate strongly induces the differentiation of T regs
in the colon through activation of the forkhead box protein P3 (Foxp3) gene [43]. Foxp3
plays an essential role in Tregs differentiation, functional expression, and maintenance of
differentiation state [44]. However, our results showed no significant difference between
the experimental diets in terms of the concentration of butyrate or butyrate-producing
bacteria, such as Clostridium leptum group and the Clostridium coccoides subgroup. Moreover,
there was no significant difference in the gene expression level of Foxp3 (data not shown).
Therefore, we concluded that the observed increase in sIgA is due to HGB intake promoting
Tregs migration rather than the differentiation of Tregs.

In this study, a positive correlation was observed between the concentration of sIgA
in the serum or cecum and Lactobacillus or lactate. Moreover, the bacterial count of the
Atopobium cluster was significantly higher in the HGB group. Since the Atopobium cluster
produces lactate as major metabolite, we proposed that these bacteria contributed to
the observed increase in the concentration of lactate [45]. There are numerous reports
on the antigenic effect of some Lactobacillus species on the gut immune system [46,47].
In particular, in vitro studies have shown that Lactobacillus reuteri and Lactobacillus casei
increase the expression of IL-10 [48]. Therefore, the correlation coefficient observed in this
study suggests that increased levels of lactic acid-producing bacteria brought about by an
intake of HGB flour may have enhanced the concentration of sIgA through the intestinal
immune response. Our previous investigations have shown that the ingestion of HGB flour
increases the levels of lactic acid-producing bacteria [49], but this is the first such study to
report an effect on immune function. Further research is needed to clarify the species of
lactic acid bacteria increased by the intake of HGB flour and to investigate their functions.

The β-(1-3), (1-6) glucan derived from yeast and mushrooms bind to the dectin-1
and Toll-like receptors present in immune cells, such as monocytes and dendritic cells,
and influence the adaptive immune response, such as the production of cytokines and
chemokines [50,51]. These effects had been attributed to the β-(1-3) linkage and structure of
the β-(1-6) branching at a certain site that enhances interaction with specific receptors [52].
Results from a previous in vitro study suggested that barley-derived β-glucan may, at least
in part, also affect the immune system via dectin-1 mediated changes [53]. However, it
was shown that the affinity for barley β-glucan was weaker than for the continuous β-(1-3)
glucan (sizofiran) [54]. Furthermore, because β-(1-3), (1-4) glucans of cereals do not contain
β-(1-6) branches, β-glucans of cereals and yeast/mushrooms differ considerably in terms
of solubility, molecular weight, and branching structure. Therefore, we propose that the
increased level of sIgA observed in the HGB group was influenced by SCFAs and gut
microbiota rather than dectin-1 signaling. Further studies are required to clarify the affinity
and function for dectin-1 binding of β-(1-3), (1-4) glucan.
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5. Conclusions

Our results indicated that an intake of HGB flour increases the concentration of sIgA
in the serum and cecum under high-fat diet conditions. These findings suggest that this
effect is mediated by an alternation in the gut microbiota and a subsequent increase in the
levels of organic acids, including SCFAs, generated by intestinal fermentation of barley
β-glucan. Since the mRNA expression level of IL-10 was elevated in the ileum, it may be
affected by Tregs, which are IL-10-producing cells. These findings will help to explain
how the prebiotic effects of barley flour can improve the immune system or alleviate a
weakened immune system deteriorated by a poor diet.
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PCR, Table S4: KEGG enrichment analysis with up-regulated DEGs in the ileum of barley group by
using DAVID database, Table S5: Final weight, body weight gain, food intake, and organ weight in
mice fed the control and HGB diets, Figure S1: Flow chart showing the study design of the animal
studies, Figure S2: DEGs up-regulated by barley group involved in B cell receptor signaling pathway
(extracted from Kyoto Encyclopedia of Genes and Genomes pathway), Figure S3: The concentrations
of IL-10 and IL-6 in serum, Figure S4: The concentrations of SCFAs and organic acids in feces.
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