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The murine model of Leishmania major infection has been an invaluable tool in under-
standing T helper differentiation in vivo. The initial evidence for a role of distinct CD4+
T helper subsets in the outcome of infection was first obtained with this experimental
model. The development of CD4+ Th1 cells was associated with resolution of the lesion,
control of parasite replication, and resistance to re-infection in most of the mouse strains
investigated (i.e., C57BL/6). In contrast, differentiation of CD4+ Th2 cells correlated with
the development of unhealing lesions, and failure to control parasite load in a few strains
(i.e., BALB/c). Since these first reports, an incredible amount of effort has been devoted
to understanding the various parameters involved in the differentiation of these, and more
recently discovered T helper subsets such as Th17 and T regulatory cells. The discovery of
cross-talk between T helper subsets, as well as their plasticity force us to reevaluate the
events driving a protective/deleterious T helper immune response following infection with
L. major in mice. In this review, we describe the individual contributions of each of these
CD4+ T helper subsets following L. major inoculation, emphasizing recent advances in the
field, such as the impact of different substrains of L. major on the pathogenesis of disease.
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INTRODUCTION
The first description of the existence of two subsets of CD4+ T
cells secreting distinct cytokines was made already 25 years ago
(Mosmann et al., 1986). Two CD4+ T helper subsets named Th1
and Th2, first described in vitro, were shown to produce distinct
cytokines with Th1 cells secreting IFNγ, and Th2 cells secreting IL-
4, IL-13, and IL-5. The first evidence for a functional role of these
CD4+ T helper subsets in vivo was obtained with the experimental
model of cutaneous leishmaniasis, where Leishmania major pro-
mastigotes were inoculated subcutaneously in mice (Scott et al.,
1988; Heinzel et al., 1989). Initially, resistance and susceptibility
were shown to be correlated with the development of a CD4+
Th1 or Th2 response, respectively. Recently, several other T helper
subsets have been identified first in vitro, and then in vivo. Among
these, Th17 as well as the T regulatory (Treg) cells were shown to
influence the pathogenesis of disease in L. major-infected mice.

Among the factors driving the differentiation of specific T
helper subsets, cytokines present at the site of parasite inoculation
and in the draining lymph node (dLN) were shown to be critical.
In addition, the dose of antigen, the strength of T cell receptor sig-
naling, and the recognition of pathogen-associated molecular pat-
terns were also shown to influence the differentiation of T helper
subsets in several experimental models of infection. Furthermore,
the plasticity of some of the CD4+ T helper subsets, reviewed
in O’Shea and Paul (2010) complicates our understanding of the

factors involved in susceptibility or resistance to infection. Follow-
ing inoculation of L. major, other parameters such as the size of
the parasite inoculum, the mode (needle versus sand fly), and site
of parasite inoculation, as well as the substrain of L. major further
influence T helper differentiation and the outcome of the disease
in this experimental model.

In this review we will focus on experimental leishmaniasis
caused by L. major, one of the most extensively studied models
of cutaneous leishmaniasis. We will (1) review experimental evi-
dence revealing that the Th1/Th2 paradigm and its relevance to
susceptibility or resistance to infection with L. major is not as
strict as previously thought, and (2) discuss the impact that differ-
ent L. major substrains (Table 1) have on the differentiation of T
helper cells and susceptibility to infection.

THE FACTORS INVOLVED IN THE DIFFERENTIATION OF Th1
CELLS AND CONTROL OF LESION DEVELOPMENT
FOLLOWING L. MAJOR INOCULATION
Several parameters are involved in the differentiation of naïve
CD4+ T cells into CD4+ Th1 cells. Most laboratory mouse
strains (C3H/He, CBA, C57BL/6, 129Sv/Ev) infected with L. major
develop a small lesion that heals spontaneously, and these mice
are resistant to re-infection. The healing phenotype has been
correlated with the development of a CD4+ Th1 response, charac-
terized by the generation of CD4+ T cells secreting IFNγ, a critical
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Table 1 | Origins of the L. major substrains discussed in this review.

L. major

substrain

WHO code name Origin of isolate Country

LV39 MRHO/SU/59/P Gerbil Russia

Friedlin MHOM/IL/80/Friedlin Human Israel

IR173 MHOM/IR/-173 Human Iran

FEBNI MHOM/IL/81/FEBNI Human Israel

Sda MHOM/SN/74/Seidman Human Senegal

aIsolated from a patient with a chronic lesion refractory to chemotherapy.

cytokine triggering macrophage activation that leads to parasite
killing.

The critical role of IFNγ in the control of the infection was first
determined in mice treated with anti-IFNγ antibodies, and later
using mice deficient in IFNγ. These mice were unable to control
lesion size and parasite growth, developing a CD4+ Th2 response
(Belosevic et al., 1989; Scott, 1991). Mice lacking the IFNγ receptor
also failed to control lesion size and parasite growth confirming
that IFNγ signaling is required in the healing process (Wang et al.,
1994; Swihart et al., 1995). However, despite the development of
unhealing lesions, C57BL/6 IFNγR−/− mice infected with the L.
major LV39 substrain developed a CD4+ Th1 response (Swihart
et al., 1995), while 129/Sv/Ev IFNγR−/− mice infected with the
L. major IR173 substrain developed a Th2 immune response.
Different substrains of L. major have been shown to induce dis-
tinct immune responses (Table 2), suggesting that the differences
measured in these two studies initially attributed to the differ-
ent genetic backgrounds of the infected mice, may result from
the use of distinct L. major substrains. Further support in the
importance of IFNγ in the control of L. major infection, was
demonstrated using mice deficient in T-bet, the master transcrip-
tion factor of Th1 cells, that also renders otherwise resistant mouse
strains susceptible to infection (Szabo et al., 2002).

Following infection with L. major, IFNγ is mainly secreted by
CD4+ Th1 cells and NK cells. The role of NK cell-derived IFNγ in
CD4+ Th1 differentiation following L. major infection is currently
controversial and may also depend on the L. major substrain. Neu-
tralization of IL-12 in C57BL/6 mice prevents the early production
of IFNγ by NK cells, abrogating the development of Th1 cells and
leads to susceptibility to L. major Friedlin, Sd, and FEBNI strains
(Laskay et al., 1993; Sypek et al., 1993; Scharton-Kersten and Scott,
1995). However, mice deficient in both T cells and IFNγ recon-
stituted with wild type (WT) CD4+ T cells as the sole source
of IFNγ could differentiate functional Th1 cells upon challenge
with L. major IR173 (Wakil et al., 1998), demonstrating that the
IFNγ derived from NK cells is dispensable for Th1 differentiation
using this L. major substrain. Furthermore, NK cells appeared to
be dispensable for the development of CD4+ Th1 cells follow-
ing infection with L. major LV39 substrain (Satoskar et al., 1999).
It remains to be investigated if different substrains of L. major
parasites induce distinct NK cell functions.

Th1 development subsequent to L. major infection has been
associated with lesion healing. The IFNγ secreted by CD4+ Th1
cells synergizes with TNF to activate macrophage leishmanicidal

activity. In absence of TNF or TNFR, L. major-infected mice on the
C57BL/6 genetic background develop functional CD4+ Th1 cells,
are able control parasite load with some variations depending on
the L. major substrain inoculated (Vieira et al., 1996; Nashleanas
et al., 1998; Kanaly et al., 1999; Wilhelm et al., 2001; Chakour et al.,
2003; Ritter et al., 2004). However, these mice were unable to
heal their lesions, revealing that TNF, and particularly the trans-
membrane form of TNF (Allenbach et al., 2008) is critical in the
resolution of the inflammatory lesion, a process distinct from the
development of CD4+ Th1 cells.

Lack of correlation between Th1 differentiation and control of
lesion size in C57BL/6 mice was also observed following inocula-
tion of the L. major Seidman (Sd) strain. C57BL/6 mice inoculated
with the Sd strain developed unhealing lesions despite the develop-
ment of a strong Th1 immune response (Anderson et al., 2005). In
this case, a population of Th1 cells secreting both IFNγ and IL-10,
as well as regulatory T cells were later shown to prevent the heal-
ing potential in this infection (Anderson et al., 2009). Collectively,
these experiments reveal that the control of the inflammatory
lesion involves several factors not always linked to the development
of CD4+ Th1 cells.

IL-12 is a key cytokine leading to the generation of a protec-
tive CD4+ Th1 immune response following L. major infection.
IL-12p70 is a heterodimeric molecule primarily secreted by anti-
gen presenting cells (APCs), formed by the IL-12p40 and IL-12
p35 subunits (Trinchieri et al., 2003). Mice deficient in either
IL-12p40 or IL-12p35 are unable to control infection (Mattner
et al., 1996, 1997; Park et al., 2002) and mice deficient in the
IL-12 signaling molecule STAT4 developed non-healing lesions
following L. major infection (Jacobson et al., 1995; Stamm et al.,
1999). Conversely, susceptible BALB/c mice treated with exoge-
nous IL-12 developed a Th1 response leading to parasite control
(Heinzel et al., 1993; Sypek et al., 1993; Sakai et al., 2000). IL-
12 not only initiates the development of a Th1 response to L.
major infection but it is also required to maintain Th1 cells dur-
ing infection (Park et al., 2000, 2002; Stobie et al., 2000), and
continued production of IL-12 during L. major infection is nec-
essary for the development of IFNγ-producing Th1 effector cells
from a plastic central memory CD4+ T cell pool (Pakpour et al.,
2008).

In addition to IL-12, several other cytokines such as IL-18 and
IL-27 can also contribute to CD4+ Th1 differentiation. IL-18, a
member of the IL-1 cytokine family, is primarily produced by
macrophages and dendritic cells (DCs) and serves as a cofactor
during IL-12-mediated Th1 responses by optimizing IFNγ pro-
duction from effector Th1 cells and activating NK cells. IL-12
upregulates the IL-18 receptor preferentially on Th1 cells suggest-
ing a synergistic effect of IL-12 and IL-18 on the development of
a Th1 response, reviewed in Nakanishi et al. (2001). Even though
IL-18 is dispensable during L. major infection in C57BL/6 mice
(Monteforte et al., 2000), the role of IL-18 in mediating protec-
tion appears to depend on the genetic background of the mouse
strain (Xu et al., 2000; Wei et al., 2004). Administration of rIL-
18 alone in BALB/c mice exacerbated the disease (Ohkusu et al.,
2000; Li et al., 2004), revealing that IL-18 is not sufficient to induce
Th1 differentiation in these Th2-prone mice. While IL-18 may not
be required for the induction of a Th1 response after L. major
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Table 2 | Differential immune responses to Leishmania major substrains.

L. major

substrain

Control of

infection

IL-4 IL-10 IL-17 References

LV39 C57BL/6 (R)a Over-expression of IL-4 (S) n.d. IL-17−/− (NA) Leal et al. (1993), Noben-

Trauth et al. (1996, 1999,

2003), Radwanska et al.

(2007)

BALB/c (S)b IL-4−/− and IL-4Rα−/− (S);

CD4+ specific IL-4Rα−/− (R)

IL-10−/− or IL-10R blockade (R) IL-17−/− (NA) Tacchini-Cottier and Launois

(unpublished data)

Friedlin C57BL/6 (R) Transient IL-4 in low dose inf

but lesion resolution

IL-10−/− or IL-10R blockade (R);

prevent parasite elimination from

skin

IL-17−/− or rIL-17 (NA) Belkaid et al. (2001), Kane

and Mosser (2001), Belkaid

et al. (2002), Noben-Trauth

et al. (2003), Uzonna et al.

(2004), Wu et al. (2010),

Lopez Kostka et al. (2009)

BALB/c (S) IL-4Rα−/− (S) IL-10−/− (R) IL-17−/− partially con-

trol parasitemia but

no lesion resolution

IR173 C57BL/6 (R) rIL-4 injection (NA) n.d. n.d. Sadick et al. (1991), Heinzel

and Maier (1999), Noben-

Trauth et al. (1999, 2003)

BALB/c (S) IL-4−/− partially control inf

but IL-4Rα−/− fully (R)

IL-10−/− or IL-10R blockade par-

tially (R)

n.d.

FEBNI C57BL/6 (R) n.d. n.d. n.d. Kopf et al. (1996), Kropf et al.

(2003), Radwanska et al.

(2007)

BALB/c (S) IL-4−/− and IL-4Rα−/− partial

control of inf but (S); CD4+
specific IL-4Rα−/− (R)

n.d. n.d.

Sd C57BL/6 (S) IL-4−/− and IL-4R blocked

(S); undetectable IL-4 in WT

IL-10R blockade (R); IL-10 pro-

duction by T cells controls Th1

response and pathology; IL-10

associated with unhealing lesions

Weak IL-17 produc-

tion modulated by IL-

27

Kropf et al. (1999, 2003),

Sacks and Noben-Trauth

(2002), Anderson et al.

(2005, 2009)

BALB/c (S) IL-4−/− (NA) IL-10R blockade partially (R) n.d.

aR: mice develop self-healing lesion, control parasite load, and are resistant to re-infection; bS: susceptible, unhealing lesion, uncontrolled parasite load.

NA: disease phenotype not altered; n.d., not determined.

inoculation, these data collectively suggest that this cytokine can
increase IFNγ production and thus potentiate the effects of IL-12
in the development of a CD4+ Th1 response.

IL-27 is a cytokine closely related to IL-12 which is produced
by phagocytes. It can also induce the differentiation of naïve T
cells toward Th1 cells through the early induction of IFNγ pro-
duction by T cells and NK cells (Pflanz et al., 2002). During L.
major infection, C57BL/6 mice deficient in the IL-27R (WSX-
1−/−) showed early impaired IFNγ response and increased IL-4
secretion and were transiently more susceptible than WT controls
(Yoshida et al., 2001); however, these mice eventually developed
a L. major-specific robust IFNγ response and healed their lesions
in the absence of IL-4 (Artis et al., 2004). Further studies con-
firmed a transient role for IL-27 in Th1 differentiation in C57BL/6
mice, which is probably linked to its control of early IL-4 secre-
tion (Anderson et al., 2009). A role for IL-27 in the control of
Th17 differentiation was also described, linking Th1 and Th17
differentiation (Anderson et al., 2009).

THE FACTORS INVOLVED IN THE DIFFERENTIATION OF Th2
CELLS AND SUSCEPTIBILITY FOLLOWING L. MAJOR
INOCULATION IN BALB/c MICE
The murine model of infection with L. major provided the first
association between expansion of CD4+ Th2 cells and progressive
disease (Scott et al., 1988; Heinzel et al., 1989). Given that mRNA
levels or the production of IFNγ were similar early in infection in
resistant and susceptible mice (Morris et al., 1993), the strict cor-
relation between susceptibility to infection and failure to mount
a Th1 response was put into question. These experiments sug-
gested that the development of pathology observed in BALB/c
mice inoculated with L. major does not result from a defective
Th1 development.

Thereafter, an important role for the IL-4 cytokine in mediating
Th2 cell differentiation and susceptibility to infection with L. major
was established. It was first observed that administration of neu-
tralizing antibodies against IL-4 reversed the disease phenotype in
BALB/c mice, rendering them resistant to infection (Sadick et al.,
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1990). Conversely, IL-4 transgenic C57BL/6 mice expressing IL-4
failed to clear the infection (Leal et al., 1993). Furthermore, several
studies established that the IL-4 produced during the early phases
of infection is important for the development of CD4+ Th2 cells,
but the cellular source of this early IL-4 production remains a mat-
ter of debate. CD4+ T cells with the Vβ4Vα8 T cell receptor were
shown to be the source of this early IL-4 secretion in response to
the immunodominant epitope from Leishmania activated C kinase
(LACK; Julia et al., 1996; Launois et al., 1997a,b, 2002; Himmel-
rich et al., 2000). However, subsequent studies questioned the role
of LACK-specific CD4+ T cells as the sole source of IL-4 needed
for the development of a Th2 response and thus the susceptibility
of BALB/c mice. First, precursor frequency expansion and IL-4
mRNA expression of LACK-specific Vβ4Vα8 CD4+ T cells were
shown to be comparable in both L. major susceptible and resistant
strains of mice (Scott et al., 1996; Stetson et al., 2002). In addi-
tion, whereas inoculation of LACK-mutated L. major parasites,
that are not able to activate the Vβ4Vα8 CD4+ T cells, resulted
in reduced expansion of these cells in vivo, the frequency of IL-
4-producing cells in infected mice was similar to those obtained
following injection of WT L. major parasites (Kelly and Locksley,
2004). Collectively, these results demonstrated that the early IL-4
production by CD4+ T cells was important but not the only signal
required for Th2 differentiation in BALB/c mice.

In parallel with these data, further experiments performed in
IL-4 deficient mice strengthened the importance of other fac-
tors in driving Th2 responses during L. major infection. IL-4
deficient BALB/c mice infected with the L. major LV39 strain
remained susceptible to infection (Noben-Trauth et al., 1996)
while those infected with two other L. major substrains (FEBNI
or IR173), were able to control the infection (Kopf et al., 1996;
Noben-Trauth et al., 1999). Interestingly, these studies revealed
not only that other factors than IL-4 contribute to susceptibility to
L. major, but that different substrains of L. major can induce dis-
tinct immune responses in BALB/c mice. These data demonstrated
that other Th2 cytokines such as IL-13 and IL-10 also contribute
to susceptibility to infection.

A role for IL-13 in susceptibility to infection with L. major was
demonstrated in IL-4Rα deficient BALB/c mice. IL-4Rα is a com-
ponent of both the IL-4R and the IL-13R thus both IL-4 and IL-13
are inactive in these mice. Comparing the outcome of infection in
these and IL-4−/− mice allowed the determination of the role of
IL-4 and IL-13 in the development of a Th2 response. Although
IL-4−/− BALB/c mice infected with L. major IR73 strain partially
controlled the infection, IL-4Rα−/− mice inoculated with the same
strain of L. major were fully resistant (Noben-Trauth et al., 1999),
demonstrating the importance of IL-13 in the susceptibility of
mice infected with L. major IR173. These results were corrobo-
rated by other studies showing that IL-13 deficient BALB/c mice
became resistant to infection and that over-expression of IL-13
in resistant C57BL/6 rendered these mice susceptible to infec-
tion with L. major LV39 (Matthews et al., 2000). However, since
injection of IL-13Rα2 fusion protein, which blocks the biological
activity of IL-13 in IL-4−/− BALB/c mice infected with L. major
LV39 did not modify the course of infection and parasite bur-
den (Kropf et al., 1999) and since both IL-4−/− and IL-4Rα−/−
BALB/c mice infected with L. major LV39 remained susceptible

to infection (Noben-Trauth et al., 1999), mechanisms/cytokines
other than IL-4 and IL-13 are likely to be involved in the suscepti-
bility to infection. In contrast, a protective role for an IL-4/IL-13
responsive non-T cell in the development of a healing phenotype
following infection with L. major LV39 was reported in BALB/c
mice with the abrogation of IL-4 and IL-13 signaling selectively in
CD4+ T cells (Radwanska et al., 2007).

In addition to IL-4 and IL-13, a crucial role for IL-10 in suscep-
tibility was shown in BALB/c mice doubly deficient for the IL-4Rα

and IL-10, as these mice were resistant to infection with L. major
LV39 (Noben-Trauth et al., 2003). Interestingly, IL-10−/− BALB/c
mice were more resistant to infection with L. major Friedlin than
WT mice (Kane and Mosser, 2001). The cellular source of IL-10
production is another factor influencing the effect of IL-10 on sus-
ceptibility to infection with L. major. C57BL/6 mice expressing an
IL-10 transgene under the IL-2 promoter, directing IL-10 secre-
tion in T cells, remained resistant to L. major (Hagenbaugh et al.,
1997). In contrast, C57BL/6 mice that express an IL-10 transgene
under the control of the MHC promoter, directing IL-10 expres-
sion mainly in APCs, were susceptible to infection with L. major
(Groux et al., 1999). In this context, we have recently demonstrated
that a subset of L. major-specific B cells expressing the CD1B and
CD5 antigens are necessary for the development of a Th2 cell
response in BALB/c mice infected with the L. major LV39 strain
through the production of IL-10 (Ronet et al., 2010).

Altogether these studies showed that several cytokines are
involved in the development and maintenance of susceptibility
to infection in response to L. major in susceptible BALB/c mice,
and that the requirement of IL-4 and/or IL-13 and/or IL-10 for
the development of a Th2 response is linked with several fac-
tors including the particular substrain of L. major inoculated
(Table 2). Since these three cytokines have powerful inhibiting
effects on macrophage activation and on IFNγ-mediated parasite
killing (Bogdan et al., 1996), a small production of any of these
cytokines could be sufficient to have an impact on parasite control.

In this line, different substrains of L. major were shown to
influence macrophage activation and the ability to kill Leishmania
parasites. For instance, killing of L. major LV39 requires greater
levels of IFNγ than killing of the IR173 substrain (Noben-Trauth
et al., 2003). Thus, although resistance to infection with L. major
IR173 can be induced by the removal of IL-4, rendering BALB/c
mice resistant to infection with L. major LV39 requires the inac-
tivation of not only IL-4 but also of IL-13 and IL-10 in order for
IFNγ to reach the threshold activity needed for parasite killing.

Altogether, the murine model has been crucial in the under-
standing of the multiple factors involved in susceptibility to L.
major infection. Numerous evidences point to IL-4 as a criti-
cal cytokine leading to development of susceptibility to L. major
in BALB/c mice, however additional factors including IL-10 and
IL-13 also contribute to the pathology of the disease. It is likely
that other factors yet to be described, some of them upstream of
cytokines, will likely contribute to susceptibility to infection.

THE DEVELOPMENT OF Th17 CELLS FOLLOWING L. MAJOR
INOCULATION
Th17 cells are a recently described T helper cell subset produc-
ing primarily IL-17A, IL-17F, and IL-22 as well as many other
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cytokines including TNF, IL-21, and GM-CSF. RORγt and RORα

are the two master transcription factors involved in Th17 differ-
entiation, but other transcription factors including STAT3, IRF4,
and BATF also contribute to this process (reviewed in Hirota
et al., 2010). The development of Th17 cells in mice and then
in humans was initially described as requiring TGFβ and IL-6,
and to be inhibited by IL-4 and IFNγ (reviewed in Korn et al.,
2009). Recently Th17 cells were also shown to differentiate from
naïve CD4+ T cells in absence of TGFβ, when exposed to IL-6, IL-
23, and IL-1β (Ghoreschi et al., 2010). Subsequently, two distinct
Th17 subsets were identified, conventional Th17 cells [obtained
in vitro in response to TGFβ and IL-6 (Th17β)], and inflamma-
tory Th17 cells, obtained in response to IL-6 and IL-23, Th17(23).
Different function and transcriptional profiles were ascribed to
these subsets, with Th17β cells expressing more IL-9, IL-10, and
CCL10, while Th17(23) cells express higher levels of Tbx21, IL33,
and CXCR3 (Ghoreschi et al., 2010).

Leishmania major susceptible mouse strains such as BALB/c
mice develop unhealing lesions that are characterized by the pres-
ence of parasites and a persistent neutrophil infiltration at the
lesion site (Beil et al., 1992; Tacchini-Cottier et al., 2000; Ribeiro-
Gomes et al., 2004). One of the hallmarks of Th17 cells is the
induction of the secretion of chemokines attracting neutrophils
by various cell types, so it was of interest to investigate if Th17 cells
played a role in the persistence of neutrophils observed in lesions
of mice susceptible to L. major. The group of von Stebut measured
higher levels of IL-17 and IL-23 in dLNs of BALB/c mice than in
C57BL/6 mice inoculated with the L. major Friedlin substrain, sug-
gesting the presence of inflammatory Th17 cells in dLN of BALB/c
mice. DC-derived IL-23 was thought to induce and maintain Th17
cells in these mice. In addition to Th17-derived IL-17, secretion of
IL-17 by recruited neutrophils appeared to also be important in
mediating the persistence of an inflammatory lesion. IL-17A−/−
BALB/c mice inoculated with a high dose (2 × 105) or low dose
(103) of L. major Friedlin developed smaller lesion volume and
parasite load (Lopez Kostka et al., 2009). However, the Th2 profile
measured in dLNs of L. major-infected IL-17A−/− mice was simi-
lar to that of control mice, once more separating the Th2 response
from the development of unhealing lesions. Of interest, we did
not see any difference in lesion size or parasite control when IL-
17−/− BALB/c mice were inoculated with a high dose of L. major
LV39 (Launois and Tacchini-Cottier, unpublished data); in addi-
tion, IL-23−/− mice on a C57BL/6 genetic background infected
with L. major LV39 did not show any difference in the control of
inflammatory lesions nor the differentiation of Th1 cells (Launois
and Tacchini-Cottier, unpublished data). Collectively, these data
reveal that different substrains of L. major may also impact the
levels of IL-17 and/or Th17 cells in susceptibility to infection.

Interestingly, neutrophil recruitment was different in L. major-
infected IL-17−/− and control mice from 2 to 3 weeks post parasite
inoculation, but did not differ significantly during the first week
of infection (Lopez Kostka et al., 2009). IL-17 contributes to the
early recruitment of neutrophils after L. major LV39 inoculation
(Tacchini-Cottier and Launois, unpublished data), suggesting that
compensatory mechanisms may induce early neutrophil recruit-
ment in IL-17−/− mice. These data support the current hypothesis
that the recruitment of neutrophils during the first days following

L. major inoculation involves multiple factors including CXCL6
(GCP-2; Uyttenhove et al., 2011), and possibly CXCL1 (KC),
CXCL2 (MIP-2), as well as parasite-derived factors, reviewed in
Charmoy et al. (2010).

A detrimental role for Th17 cells on lesion development was
also revealed following inoculation of the L. major Sd substrain
which causes non-healing lesions in otherwise L. major resistant
C57BL/6 mice. Following parasite injection, IL-27R-deficient mice
(WSX.1−/− mice) developed more severe lesions associated with
the appearance of Th17 cells, showing that IL-27 is controlling
the development of Th17 cells in L. major Sd susceptible mice
(Anderson et al., 2009).

In contrast to the above studies, IL-17 was shown to correlate
with protection against infection in C57BL/6 mice vaccinated with
live L. major Friedlin and CpG (Wu et al., 2010). First, vaccination
enhanced the development of Th17 cells, and second, vaccinated
IL-17R−/− mice developed higher lesion sizes and parasite bur-
dens at early but not later time points after infection. Despite the
induction of an inflammatory response, no IL-23 was detectable
at the site of parasite inoculation or in the dLN of vaccinated
mice. These data suggest that the type of Th17 cells measured in
this study resemble classical Th17 cells (Th17β), which is different
from those measured in the other studies that appear more sim-
ilar to inflammatory Th17(23) cells (Lopez Kostka et al., 2009),
although definitive confirmation of the existence of these Th17
subpopulations remains to be established in these experimental
models. Similar vaccinations in BALB/c mice did not induce the
development of Th17 cells (Wu et al., 2010).

Collectively these studies show that IL-17, whether produced
by Th17 cells or another cell type, is a modulator of L. major
infection. Furthermore, the impact of Th17 cells appears to differ
significantly in response to distinct strains of L. major parasites
and lesion development also varies depending strain, and thus the
type of immune response.

THE DEVELOPMENT OF Treg CELLS FOLLOWING L. MAJOR
INOCULATION
CD4+Foxp3+ Treg cell functions involve the maintenance of
immune tolerance, as well as the prevention of inflammatory dis-
eases. In addition, these cells are critical in regulating the T helper
immune response generated in response to infection, reviewed
in Campbell and Koch (2011). The balance of various cytokines
including IL-6, IL-1, IL-23, and retinoic acid links the develop-
ment of Tregs to that of Th17 cells (Lochner et al., 2008; Yang et al.,
2008; Zhou, 2008).

The role of CD4+Foxp3+ Tregs in the development of Th1 cells
during L. major infection was elegantly demonstrated by Belkaid
and colleagues. They first described the accumulation of Tregs

at the site of parasite inoculation (skin) in C57BL/6 mice. The
presence of Tregs suppressed the ability of effector Th1 cells to
totally eliminate L. major, allowing the maintenance of concomi-
tant immunity after clinical cure (Belkaid et al., 2002). Depletion
of Tregs in C57BL/6 mice enhanced the development of Th1 cells,
rendering L. major resistant strains of mice more resistant to the
primary infection (based on smaller lesion size and increased Th1
cytokine production, and decreased parasite load) but susceptible
to a challenge secondary infection (Belkaid et al., 2002). It was
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further demonstrated that the IL-10 secreted by CD4+Foxp3+
Tregs was critical in preventing total elimination of the parasites in
the skin (Suffia et al., 2005).

Unlike reports in C57BL/6 mice, the susceptibility to L. major in
BALB/c IL-4Rα−/− mice was not caused by the secretion of IL-10
by Tregs (Nagase et al.,2007). Furthermore, inoculation of C57BL/6
mice with the L. major Sd substrain showed that the susceptibility
is dependent on the secretion of IL-10 by IFNγ-secreting CD4+ T
cells and not by Tregs (Anderson et al., 2005, 2009).

We and others have shown that CD4+Foxp3+ Tregs also mod-
ulate the extent of L. major-specific Th2 immune responses. Tregs

controlled the magnitude of infection in L. major-infected BALB/c
mice. Depletion of Treg cells prior to parasite inoculation enhanced
parasite loads, Th2 responses, and lesion size rendering suscep-
tible mice more susceptible to infection (Aseffa et al., 2002).
Experimental reconstitution of SCID mice with T cells was fur-
ther used to investigate the suppressive properties of Treg cells.
Transfer of 107 naïve BALB/c spleen cells prior to infection led
to resistance to L. major, associated with the development of a
Th1 response, while the transfer of 108 cells rendered the mice
highly susceptible to infection, associated with the development
of a Th2 immune response (Mitchell et al., 1981). Transfer of
107 cells depleted of CD4+Foxp3+ Tregs suppressed the develop-
ment of a protective Th1 response in reconstituted SCID mice
infected with L. major (Aseffa et al., 2002; Liu et al., 2003; Xu
et al., 2003), allowing the progressive development of an unheal-
ing lesion linked to a Th2 response. The effect of CD4+Foxp3+
Tregs on the outcome of disease in these reconstituted SCID mice
varied with the timing of CD4+Foxp3+ Treg reconstitution with a
major effect on the inflammatory lesion appearing late in infection
(Aseffa et al., 2002; Liu et al., 2003; Xu et al., 2003). Altogether,
the suppressive activity of CD4+Foxp3+ Tregs modulates both
Th1 and Th2 L. major-driven immune responses. However, the
relative importance of the IL-10 secreted by Tregs appears to dif-
fer in mice susceptible or resistant to infection, with a critical
role in resistance to infection, but no suppressive role in unheal-
ing lesions. A role for other types of regulatory T cells such as
inducible Tregs in the control of L. major infection remains to be
determined.

CONCLUSION
The Th1/Th2 paradigm is still considered as the basis of vaccine
development and is used in pre-clinical trials. Indeed antigens
that induce a Th1 response are considered as potential protective
antigens and those inducing a Th2 response are associated with

pathology. Based on the observations (1) that the ablation of Th2
cytokines such as IL-4, IL-13, and IL-10 also confers resistance to
infection and (2) that antigens such as LACK or cysteine protease
antigens that strongly induce Th2 responses early after infection
with Leishmania are protective when administered with appro-
priate adjuvants (Mougneau et al., 1995; Pollock et al., 2003); it
appears that in addition to promoting a Th1 response, vaccina-
tion should also abolish the Th2 response induced by infection
with Leishmania parasites. Additional work will be needed to
understand if plasticity of the different T helper subsets occurs
during Leishmania infection, before extrapolating results obtained
in experimental cutaneous leishmaniasis for the design of new
immuno-intervention tools or prophylactic approaches. Such
work will also be important in defining surrogate markers of pro-
tection that may be used for diagnostics. IFNγ has been widely
used as a marker of protection, however, as discussed here and
shown in a recent study (Nylen et al., 2006), it may not always be
the best marker for resistance.

The experimental model of L. major infection has and will
continue to provide invaluable information on the mechanisms
involved in T helper differentiation, with applications in leishma-
niasis and other diseases where T helper subsets are contributing
to pathology. It is becoming increasingly apparent that differ-
ent strains of parasites causing cutaneous lesions, from the Old
and New World, induce distinct types of immune responses
with non-healing lesions often associated with the failure to
develop a Th1 response rather than the induction of a CD4+
Th2 response, reviewed in Alexander and Bryson (2005). In order
to apply the informations gained by studying the mechanisms
of protection analyzed in experimental murine cutaneous leish-
maniasis to humans, one should be careful to also take into
account the diversity of immune responses induced by differ-
ent substrains of parasites, as seen for L. major, as well as by
other Leishmania species and strains causing cutaneous lesions
in different parts of the world. Sequencing of the different
substrains should provide important clues on the understand-
ing of the parasite specific features leading to distinct immune
responses.
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