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Recognition of regions on the surface of one protein, that are similar to a
binding site of another is crucial for the prediction of molecular inter-
actions and for functional classifications. We first describe a novel method,
SiteEngine, that assumes no sequence or fold similarities and is able to
recognize proteins that have similar binding sites and may perform
similar functions. We achieve high efficiency and speed by introducing a
low-resolution surface representation via chemically important surface
points, by hashing triangles of physico-chemical properties and by appli-
cation of hierarchical scoring schemes for a thorough exploration of global
and local similarities. We proceed to rigorously apply this method to
functional site recognition in three possible ways: first, we search a given
functional site on a large set of complete protein structures. Second, a
potential functional site on a protein of interest is compared with known
binding sites, to recognize similar features. Third, a complete protein
structure is searched for the presence of an a priori unknown functional
site, similar to known sites. Our method is robust and efficient enough to
allow computationally demanding applications such as the first and the
third. From the biological standpoint, the first application may identify
secondary binding sites of drugs that may lead to side-effects. The third
application finds new potential sites on the protein that may provide
targets for drug design. Each of the three applications may aid in assign-
ing a function and in classification of binding patterns. We highlight the
advantages and disadvantages of each type of search, provide examples
of large-scale searches of the entire Protein Data Base and make functional
predictions.
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Introduction

Molecular recognition is one of the central
processes in molecular biology. Comparison and
detection of binding sites is a key step in the
prediction of potential interactions. Since proteins
function by interacting with other molecules,
similarity in the binding patterns of proteins is
closely related to similarity in their biological

functions. There are two potential ways to infer
the function of a novel protein. The first is to
recognize a sequence or fold similarity with a
protein(s) whose function is known. However, a
similar fold does not necessarily imply a similar
function. For example, proteins with the same
fold, like TIM barrels, can have multiple functions.1

On the other hand, proteins with different folds,
like subtilisin and trypsin, can share the same
function. The alternative approach, implemented in
our method, is to investigate the physico-chemical
patterns and shape of the protein molecular surface.
Proteins are assumed to perform similar functions if
they share similar binding patterns and recognize
similar binding partners, even if they have different
sequences and (overall) fold homology.

Identification of regions on the surface of one
protein that resemble a specific binding site of
another is especially important for the following
three applications.
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(1) Functional analysis and classification: recog-
nition of similarity in binding pattern to a
well known protein may help in gaining a
better understanding of its function and
activation mechanism. These are crucial for
the development of targeted drug leads like
inhibitors. Functional annotation of newly
determined structures can be a significant
contribution to the Structural Genomics
initiative.

(2) Potential ligands and ligand fragments:
analysis of ligands bound to proteins with
similar binding sites may provide hints of
chemical groups that can be used to develop
a drug for the protein target. The method
can be used for lead generation and optimiz-
ation as well as for de novo drug design.

(3) Prediction of side-effects: proteins with simi-
lar binding sites may bind the same drug
and therefore may potentially cause side-
effects. Thorough investigation of such
proteins during the drug design process is
important for the development of more
specific drug leads.

Other methods that are commonly used for sug-
gestion of new ligands or ligand fragments and
for predictions of side-effects are alignment of
small molecules2,3 and docking.4 – 9 These tech-
niques model the interactions of the receptor with
specific ligands and therefore do not analyze all
potential interactions that a specific binding site
may form. This is particularly important, since a
single protein-binding site may have several bind-
ing patterns. Not only can the same binding site
bind different ligands with different functional
groups, but there is also evidence that at least in
some enzymes a single compound can bind in
different ways.10 – 12 A wide variety of methods
have been developed for protein structural
alignment.13 Most existing methods describe a pro-
tein structure by its Ca atoms and seek to maximize
the overall similarity of the structures. However,
when there is no fold similarity between the
aligned structures, these methods usually do not
provide a biologically significant alignment.
Analysis of the similarities between binding sites
can complement these techniques, ensuring full
exploration of available structural data.

Several methods have been developed to
identify specific three-dimensional patterns of
amino acid side-chains. Artymiuk et al.14

represented each side-chain by pseudo-atoms and
used a subgraph-isomorphism algorithm15 to
identify the spatially conserved patterns. This
algorithm (ASSAM) was recently enhanced to
include additional constraints such as: the second-
ary structures, the solvent accessibility and the
disulfide bridges.16 Wallace et al.17,18 have intro-
duced “coordinate templates”. These allow
recognition of the “catalytic triads” that are typical
for some of the protein families, like serine
proteases, triacylglycerol lipases, ribonucleases

and lysozymes. Using atomic representation, the
geometric hashing technique19 – 21 was applied to
efficiently compare a query protein to the template
of the catalytic triad. This algorithm (TESS) has
been recently updated by JESS,22 which is flexible
and unconstrained by the template syntax.
Binkowski et al.23 have recently presented an
elegant approach to assess the similarity of
sequence patterns of surface pockets and voids,
which are conveniently organized in CASTp.24

Jones et al.25 have reviewed the methods for recog-
nition of functional sites.

However, methods that recognize patterns of
residues that are conserved in their 3D positions
and in their amino acid identities are not always
applicable. There are biological examples of
proteins that can bind the same binding partners
without sharing any conserved patterns of amino
acid residues.26,27 Rosen et al.28 searched for a site
on the protein surface that resembles a specific,
known active site. The molecular surface was rep-
resented using sparse critical points defined by
Lin et al.29,30 The translation and rotation invariant
characteristics of pairs of critical points were used
as a key for the geometric hashing procedure. In
addition, the reliability of surface comparisons in
searches for active sites was examined. It was con-
cluded that although pure geometric surface
matching is capable of finding biologically correct
solutions, utilizing additional chemical “labeling”
information is required to correctly rank and
analyze the obtained solutions.

Kinoshita et al.31,32 performed clique detection33

on the vertices of the triangulated solvent-
accessible surface.34 They constructed a database
of binding sites, eF-site,31 and used a structure of a
complete protein structure to search it. However,
the number of vertices in their surface repre-
sentation is too large and it is too sensitive to
conformational flexibilities. One of their con-
clusions was that other representative surface
points may be more effective for robust and
accurate comparisons.

An important contribution was recently pub-
lished by Schmitt et al.35 They have defined generic
pseudocenters that efficiently encode the physico-
chemical properties important for molecular
interaction. Each amino acid residue of a protein
is represented as a set of such centers. Assuming
that small molecule binding sites are detected in
cavities, they constructed a database of binding
sites Cavebase, which is integrated with
Relibase.36 The clique detection algorithm was
used to retrieve cavities that are similar to a
specific query cavity. The solutions were ranked
according to the similarity of property-based
surface patches.

Here, we present a novel method, SiteEngine,
that is capable of handling large protein structures
in a matter of seconds. Unlike other methods that
use the computationally expensive clique detection
algorithm (NP-hard),37,38 our heuristic algorithm is
based on efficient hashing and matching of
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triangles of centers of physico-chemical properties.
It introduces a low-resolution representation by
chemically important surface points and performs
fast scoring of all possible solutions, while
retaining the correct ones. Successive scoring
schemes, which are applied to smaller numbers of
candidate solutions, perform a thorough
exploration of the overall similarity of the surfaces
as well as of local shapes of the chemically similar
regions. We apply SiteEngine to a set of biological
applications. First, we introduce a benchmark
dataset, which is used to construct two surface
description databases: one of complete protein
structures and the other of binding sites. We
compare between various searching applications
that can be performed for recognition of functional
sites. Each application is illustrated by examples of
successful recognition of specific types of protein
binding sites such as estradiol binding, adenine
and ATP binding. For each example, we further
make some specific predictions by providing a list
of proteins recognized to share functional simi-
larities with the query. We provide examples of
classification of fatty acid-binding proteins and
serine proteases and show the capability of the
method to recognize the known similarity of the
binding sites as well as of the catalytic residues.
At the next stage, we apply SiteEngine to search a
non-redundant dataset of all known protein
structures. We describe the binding sites that are
recognized to be the most similar to our query
binding sites and discuss the quality of the predic-
tions obtained. Since SiteEngine searches a com-
plete structure of each protein in a matter of
seconds, we find it to be well suited for such
large-scale applications.

Functional Sites Recognition Algorithm

The method is developed toward the following
three search applications: (1) searching a given
functional site on the surfaces of different proteins
stored in a database; (2) comparing a given func-
tional site to a dataset of binding sites; (3) search-
ing a complete protein structure for the presence
of an a priori unknown functional site, similar to
known sites.

These applications involve two types of compari-
sons: (i) searching a surface of a complete protein
for a given functional site; (ii) comparison between
two functional sites. However, from the algorith-
mic standpoint, the second type of comparison is
essentially the same as searching for a given bind-
ing site on a protein surface, which is limited to a
certain region of interest. Therefore, here we
describe the algorithmic approach of SiteEngine
for searching a complete protein structure for a
region similar to a given binding site. The input to
the algorithm consists of a binding site of one pro-
tein and of a complete structure of another, where
the binding sites are defined by the surface
description of the relevant regions. The structure
of the complete molecule is searched for the pre-
sence of a region, which is similar to the input-
binding site. The output is a transformation that
superimposes the input-binding site on the recog-
nized region and a score that measures the simi-
larity between them. The main stages of the
algorithm are summarized in Figure 1(a).

Structure representation

Given the atomic coordinates of a protein struc-

Figure 1. An overview of the algorithm. (a) The general flow. (b) A more detailed presentation of the hierarchical
scoring stage.
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ture, the first step is to calculate the physico-chemi-
cal properties of its residues. Each amino acid is
assigned a set of 3D points, which are denoted as
pseudocenters.35 Each pseudocenter represents an
interaction center of one of the following physico-
chemical properties: hydrogen-bond donor,
hydrogen-bond acceptor, mixed donor/acceptor,
hydrophobic aliphatic and aromatic(pi) contacts.
The rules for the representation of each amino
acid as a set of such centers follow Schmitt et al.35

However, unlike their definition, we do not con-
sider a peptide bond as an aromatic property and
we do not estimate the directionality of the

H-bonding property. Figure 2(a) shows an example
of a representation of cavity-flanking residues. In
addition, we consider the pseudocenters of
H-bonding properties of the side-chains of Arg,
Lys and His to be positively charged, and those of
Asp and Glu to be negatively charged. We have
observed that these modifications lead to a slight
improvement in experimental results. From the
algorithmic standpoint, the similarity of charges is
not a prerequisite for matching and is considered
only at the scoring stage.

A representation by pseudocenters is very
efficient and suitable for algorithms like the

Figure 2. Physico-chemical representation of a molecule and of its surface. (a) The pseudocenters extracted from the
cavity-flanking residues. Hydrogen-bond donors are colored in blue, acceptors in red, donors/acceptors in green,
hydrophobic aliphatic in orange and aromatic in white. The surface points are colored according to the physico-
chemical property of their corresponding atoms. (b) The low-resolution representation by centers of physico-chemical
patches (patch centers), which are depicted as spheres. (c) The calculation of the shape function, measured in a sphere
located at the patch center. The Figure shows the cross-section of an active site binding an adenine molecule. (d) The
process of hashing and matching of triangles of pseudocenters.
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geometric hashing.20 However, it is not sufficient
for accurate representation and prediction of
receptor–ligand interactions, especially in the case
of hydrophobic aliphatic and aromatic contacts.
Therefore, for each pseudocenter, we consider the
surface region created by the atoms that contribute
to the pseudocenter property. This provides
physico-chemical labeling of the surface regions,
so that only surface patches with similar properties
will be matched. We use a smooth molecular
surface as implemented by Connolly34,39 and a
Distance Transform grid, as implemented by
Duhovny et al.40

For each chemically labeled surface patch we
estimate the patch center by a surface point nearest
to its center of gravity (see Figure 2(b) and (c)).
Each patch center is used to estimate the average
curvature of its surface patch by calculation of the
solid angle shape function.40 – 42 In this calculation,
a sphere of a certain radius is placed at the patch
center. The average curvature is approximated by
the fraction of the sphere inside the solvent-
excluded volume of the protein. The radius of the
sphere determines the region in which the curva-
ture is approximated. We perform two calculations
with different definitions of the radius of the
sphere. In the first calculation, we consider a mini-
mum radius sphere bounding the surface patch
represented by the patch center. In the second
calculation, the radius is user defined (by default,
6.0 Å for hydrophobic regions and 3 Å for others).
An average of the two values is used to represent
the shape of each surface patch.

Matching

At this stage, we calculate all possible transform-
ations that will superimpose the input-binding site
to a similar region of the surface of the other
molecule. The algorithm is based on the matching
of almost congruent triangles defined by triplets
of pseudocenters. Figure 2(d) shows the hashing
and matching procedures.

Each triplet of non-ordered non-colinear pseudo-
centers of the complete molecule is considered.
Triplets that form triangles with side lengths
within a predefined range are stored in a hash
table. A key to the hash table consists of the three
parameters of side lengths of a triangle and of an
additional physico-chemical index, which encodes
the properties of the triangle nodes (see
Figure 2(d)). The physico-chemical index is
represented by six bits, two for the encoding of
the property of each node. This encoding is not
unique due to the existence of centers with mixed
donor/acceptor property. These can function both
as hydrogen-bond donors and acceptors. To over-
come this problem, we encode each such node
twice, once as a donor and once as an acceptor.

Each triplet of ordered non-colinear pseudo-
centers of the query site is considered. Triplets
that form triangles with side lengths within a pre-
defined range are used to construct a hash key.

This key is used to access the hash table and
retrieve all congruent triangles of the complete
molecule. The construction of the hash table
ensures that we will match only triangles with
nodes at similar spatial locations and with similar
physico-chemical properties. In addition, we
require that the values of the shape function of the
corresponding nodes of the triangles will be simi-
lar up to a user-defined threshold. Each pair of
matched triangles defines a transformation, which
represents a potential solution (superimposition).
Each candidate transformation is immediately
scored by the low-resolution score and only trans-
formations that received a relatively high score are
retained.

The matching stage of our algorithm performs
hashing of geometrical entities in a way similar to
well known algorithms such as Geometric
Hashing43 and Pose Clustering.44 These methods
select transformations which have received the
highest number of votes, e.g. in Pose Clustering a
transformation that was identified by the highest
number of matching triangles. The hashing stage
of SiteEngine is extremely efficient, due to the con-
sideration of the physico-chemical properties of
the pseudocenters in addition to the geometrical
constraints. As a result, we create less false-positive
transformations and therefore greatly reduce the
overall number of candidate solutions. We can
score each candidate transformation and avoid
any loss of competitive solutions due to the low
number of votes. This approach allows identifi-
cation of all candidate transformations that consist
of at least three matching pseudocenters. The later
stages of our scoring scheme will favor solutions
with the highest number of matching pseudo-
centers (see 1 : 1 correspondence score).

Scoring

We implement a hierarchical scoring scheme,
detailed in Figure 1(b). The first scheme, which is
applied to all potential solutions, is calculated
based on a low-resolution representation of the
molecules and is therefore highly efficient. As the
number of potential solutions is reduced to a
smaller subset, the resolution of the molecular
representation is increased leading to more precise
calculations. The details of the implementation
and the default parameters are provided in the
Supplementary Material.

Fast low-resolution scoring

The goal of this scoring scheme is to provide the
initial ranking of candidate transformations and to
filter out biologically unreasonable ones. The main
idea is to select a small, chemically meaningful
representative set of surface points and use them
to efficiently estimate the potential surface
similarity of the aligned surface patches. We select
these points to be a set of patch centers, i.e.
centers of physico-chemical surface patches of the
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input-binding site. We apply the candidate trans-
formation and consider the local environment to
which each patch center is transformed. First, we
check whether the given patch centers are trans-
formed to surface regions in the other molecule.
Second, we check whether the physico-chemical
environment to which it is transformed is similar
to the one in the original molecule. Third, we com-
pare the shape of the region to which it is trans-
formed with the shape measured at the given
patch center. Similarity in each of these attributes
will increase the calculated score.

We found it sufficient to consider only the 5000
highest-ranking solutions. Transformations which
superimpose the pseudocenters of the input-bind-
ing site so that the root-mean-square deviation
(RMSD)45 between them is lower than a predefined
threshold (3 Å), are considered to belong to the
same cluster. For each cluster the best scoring
transformation is selected.

Overall surface scoring

This scoring scheme is applied to a smaller
number of the retained candidate transformations.
It can therefore examine them more thoroughly
using a higher level of resolution of molecular
representation. Each candidate transformation is
applied to each surface point. Then, as in the low-
resolution score, we compare the properties of
each surface point with the properties of the
environment in the other molecule to which this
point is transformed. Here too, similarity of both
chemical and geometrical properties is scored
higher than the similarity of only one of these.
Since the number of considered surface points is
much higher, they are divided into different
categories by an approach similar to the one
described by Duhovny et al.40,42 The surface points
of the input-binding site are divided into three
categories according to their distance from the sur-
face of the molecule on which it is superimposed.
Each category counts the number of surface points
within distance thresholds of 1 Å, 2 Å and 3 Å,
respectively. In addition, in each category we cal-
culate the number of points with the same phy-
sico-chemical property and charge, and add them
to the counter of that category. We calculated a
weighted sum of the counters of the three
categories. The closer the category is to the surface
the higher the weight that it receives.

The 1:1 correspondence score

As described in Figure 1(b), for each retained
candidate transformation, we determine a 1:1
correspondence (match list) between the sets of
pseudocenters of the two molecules. The obtained
1:1 correspondence is used for two purposes, to
improve each candidate transformation by the
least-squares fitting method46 and to score the simi-
larity of the environments of the corresponding
pseudocenters.

The match list is defined by calculating the maxi-
mum weight matching in a bipartite graph.38,47 The
bipartite graph is constructed in the following way.
(1) The nodes of the graph are the pseudocenters of
the two molecules. (2) An edge is added between
each pair of pseudocenters that have similar (up
to a threshold) spatial locations, physico-chemical
properties and shape functions. (3) Each edge is
assigned a weight that represents the similarity
between the corresponding pseudocenters together
with their local environments. It measures the dis-
tance, the charge compatibility of the H-bonding
properties and the similarity of the local shapes of
hydrophobic aliphatic regions. The maximum
weight match47 in this graph provides a 1:1 corre-
spondence between subsets of pseudocenters of
the two molecules. The obtained match represents
a set of pairs of pseudocenters of the two
molecules, so that the points of each pair are the
most similar in their geometrical and physico-
chemical properties.

At the next stage, we calculate the score of the
obtained 1:1 correspondence. This score consists of
two parts: first, we calculate a score, which
estimates the goodness-of-fit between the
corresponding pseudocenters of the two
molecules. Second, for each pair of centers with
hydrophobic aliphatic or aromatic properties we
perform a more thorough comparison of the
corresponding surface patches. There are two
factors that we consider to be important in this
context: (1) the size of the overlap region between
the patches superimposed by the candidate
transformation; and (2) the shape of the common
overlap region.

Final scoring and ranking

For each potential solution the final score is the
combination of all the scores calculated by the
algorithm. When performing extensive database
searches it is difficult to consider more than one
solution for each comparison. In these applications,
we select only one solution with the highest value
of the final score that maximizes the similarity
with the searched pattern. We ignore the other
solutions obtained for the same comparison. How-
ever, in other applications the number of output
solutions is user defined and can be much larger.

Complexity and running times

The overall complexity of our algorithm is
dominated by the complexity of the matching and
low-resolution scoring stage. The worst case
theoretical complexity of an algorithm is Oðn3m4Þ.
In practice, this bound is much lower, since there
is a limited number of congruent triangles with
similar physico-chemical properties. In addition,
since we are interested only in triangles that rep-
resent potential binding patterns, we limit the side
lengths of the considered triangles to be within a
limited predefined range. Therefore, the practical
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running times of the method are proportional to
Oðnm2Þ. A sample of the algorithm running times
is given in Tables 1–4. The time measurements are
done on a standard PC workstation (3.0 GHz Xeon
processors, 4 GB memory) and do not include the
time required for the construction of surfaces and
grids, since these can be done in a preprocessing
stage.

Results

In the section below, we show the experimental
results obtained by applying the method to two
datasets. First, we introduce a benchmark dataset
that is used for a thorough evaluation of the
method. We show the usefulness of the method
for three types of searching applications as well as
for biological classifications. Then, we proceed to
apply the method to large-scale database searches
of the non-redundant dataset constructed from the
entire Protein Data Bank (PDB). We analyze and
compare the results obtained on the two datasets.

Benchmark data set

A representative protein data set that was
constructed to evaluate the performance of the
algorithm is detailed in Table 5. Two main criteria

have motivated the selection of the proteins for
the data set. First, we desired to include many
structurally diverse proteins that can bind the
same ligand. We have selected the adenine-binding
proteins as a classical example of such a case.27,48

We included in our data set the proteins used in
the study by Kuttner et al.48 Thirty-three of these
proteins are complexed with ATP and 11 with
other adenine-containing ligands. Other functional
families that were included are structurally diverse
proteins that can bind estradiol, equilin and retinoic
acid. Second, our motivation was to include repre-
sentatives of important and well-studied structural
families so that we will be able to check the classifi-
cation capabilities and the consistency of our
method. We have selected seven different protein
families: HIV-1/HIV-2, HIV protease, anhydrase,
antibiotics, fatty acid-binding proteins, chorismate
mutases and serine proteases. In order to verify the
tolerance of the method to local binding site flexi-
bility, we have intentionally included several struc-
tures of homologous proteins, that are unbound or
complexed with different ligands.

Database architecture

The proteins of the data set, listed in Table 5,
were preprocessed to construct two types of
databases:

Table 1. Recognition of adenine-binding sites by searching the database of whole proteins

Rank PDB Protein Fold

Sequence
similarity

(%)
Match
score Ligand RMSD

Run time
(seconds)

1 1atp cAMP-dependent PK,
catalytic subunit

Protein kinase-like 100 100 ATPp 0.01 7.6

2 1csn Casein kinase-1, CK1 Protein kinase-like 18 64 ATPp 0.03 7.5
3 1phk g-Subunit of glycogen

phosphorylase kinase (Phk)
Protein kinase-like 24 59 ATPp 0.3 7.2

4 1hck Cyclin-dependent PK Protein kinase-like 23 53 ATPp 0.7 7.9
5 2src c-src Tyrosine kinase Protein kinase-like 13 49 ATPp 0.9 10.2
6 1mu2 HIV-1 reverse transcriptase DNA/RNA polymerases 8 47 None N/A 17.3
7 1mjh “Hypothetical” protein

MJ0577
Adenine nucleotide alpha

hydrolase-like
11 44 ATPp N/A 5.7

8 1nsf Hexamerization domain of
N-ethylmalemide-sensitive
fusion (NSF) protein

P-loop containing
nucleotide triphosphate
hydrolases

15 43 ATPp N/A 7

9 1g5y Retinoid-X receptor alpha
(RXR-alpha)

Nuclear receptor ligand-
binding domain

13 43 REA N/A 7

10 1jd0 Carbonic anhydrase Caxbonic anhydrase 13 43 AZM N/A 6.8
11 1b4v Cholesterol oxidase of GMC

family
FAD/NAD(P)-binding

domain
14 43 FADp N/A 9.1

12 1mbm NSP4 proteinase Trypsin-like serine
proteases

11 55 None N/A 13

13 le6w 3-Hydroxyacyl-CoA
dehydrogenase

NAD(P)-binding
Rossmann-fold domains,

8 43 NADp N/A 12.9

14 3ert Estrogen receptor alpha Nuclear receptor ligand-
binding domain

14 42 OHT N/A 10

15 la27 Human estrogenic 17beta-
hydroxysteroid
dehydrogenase

NAD(P)-binding
Rossmann-fold domains

13 42 EST N/A 11

A list of proteins whose binding sites were recognized to be similar to an adenine-binding site of a cAMP-dependent protein kinase
(1atp) is presented. The proteins are listed in the order of decreasing similarity to the query-binding site. The name of the ligand pre-
sent in the located binding site is provided. Marked by p are the entries that are known to bind adenine.
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Table 2. Recognition of estradiol-binding sites by searching the database of whole proteins

Rank PDB Protein Fold

Sequence
similarity

(%)
Match
score Ligand

Run time
(seconds)

1 1lhu Sex hormone-binding globulin Concanavalin A-like lectins/
glucanases

100 100 ESTp 7

2 1qkt Estrogen receptor alpha Nuclear receptor ligand-
binding domain

16 45 ESTp 8.6

3 1e8x Phoshoinositide 3-kinase (P13K)
helical domain

Alpha–alpha superhelix 6 43 ATP 16.5

4 1gx9 b-Lactoglobulin Lipocalins 17 43 REA 7.6
5 1ere Estrogen receptor alpha Nuclear receptor ligand-

binding domain
16 42 ESTp 8

6 1l2i Estrogen receptor alpha Nuclear receptor ligand-
binding domain

16 42 ETCp 8.3

7 1a52 Estrogen receptor alpha Nuclear receptor ligand-
binding domain

18 42 ESTp 8

8 1fby Retinoid-X receptor alpha (RXR-
alpha)

Nuclear receptor ligand-
binding domain

16 41 REA 8.2

9 1b4v Cholesterol oxidase of GMC
family

FAD/NAD(P)-binding
domain

8 41 FAD 9.9

10 3ert Estrogen receptor alpha Nuclear receptor ligand-
binding domain

16 40 OHTp 8.3

11 1equ Estrogen receptor alpha Nuclear receptor ligand-
binding domain

12 40 EQUp 8.9

12 le6w 3-Hydroxyacyl-CoA dehydro-
genase

NAD(P)-binding Rossmann-
fold domains

4 40 ESTp 14.3

13 1atp cAMP-dependent PK, catalytic
subunit

Protein kinase-like 11 39 ATP 9.3

14 1err Estrogen receptor alpha Nuclear receptor ligand-
binding domain

17 39 RALp 8.3

15 1ftp Fatty acid-binding protein Lipocalins 14 39 None 7

A list of proteins whose binding sites were recognized to be similar to that of a sex hormone-binding globulin (1lhu) is presented.
The proteins are listed in the order of decreasing similarity to the query binding site. In all cases, the program has successfully located
the bindings sites. The name of the ligand present in the located binding site is provided. Marked by p are the entries that are known
to bind estradiol.

Table 3. Recognition of ATP-binding sites by searching the database of active sites

Rank PDB Protein Fold

Sequence
similarity

(%)
Match
score Ligand

Run time
(seconds)

1 1mjh Hypothetical protein MJ0577 Adenine nucleotide alpha
hydrolase-like

100 100 ATP 4

2 9ldt Lactate dehydrogenase NAD(P)-binding Rossman-fold
domain

6 36 NAD 7.8

3 1atp cAMP-dependent PK, catalytic
subunit

Protein kinase-like (PK-like) 8 35 ATP 6.4

4 1b4v Cholesterol oxidase of GMC
family

FAD/NAD(P)-binding domain 11 34 FAD 6.8

5 1a27 Human estrogenic 17beta-
hydroxysteroid dehydrogenase

NAD(P)-binding Rossman-fold
domain

12 34 FAD 9.6

6 1nsf Hexamerization domain of
N-ethylmalemide-sensitive
fusion (NSF) protein

P-loop containing nucleotide
triphosphate hydrolases

10 34 ATP 5.8

7 1a82 Dethiobiotin synthetase P-loop containing nucleotide
triphosphate hydrolases

5 34 ATP 6.3

8 1hsh HIV-1 protease Acid proteases 6 33 MK1 8.3
9 1e8x Phoshoinositide 3-kinase (P13K)

helical domain
Alpha–alpha superhelix 6 33 ATP 7

10 1a49 Pyruvate kinase PIK beta-barrel domain-like 10 32 ATP 6.4
11 2src c-src Tyrosine kinase Protein kinase-like 10 32 ATP 7.5
12 1csn Casein kinase-1, CK1 Protein kinase-like 14 32 ATP 6
13 1hck Cyclin-dependent PK Protein kinase-like 10 31 ATP 6.1
14 1zin Adenylate kinase P-loop containing nucleotide

triphosphate hydrolases
6 31 ATP 6.8

15 1bx4 Adenosine kinase Ribokinase-like 5 31 ATP 5.6

A list of proteins whose binding sites were recognized to be similar to an ATP-binding site of “hypothetical” protein MJ0577 (1mjh)
is presented. The proteins are listed in the order of decreasing similarity to the query binding site. The name of the ligand present in
the located binding site is provided.
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(1) Database of complete protein structures: this
database contains the complete protein struc-
tures with pre-calculated surfaces. Since in
many cases the binding site is located between
different peptide chains of a protein (e.g. HIV),
for each structure we stored all chains whose
coordinates appear in the PDB file.

(2) Database of protein-binding sites: this data-
base stores only the binding sites extracted
from the protein–ligand complexes. Each
binding site is represented by a surface region
around the ligand (surface points of a protein
which are closer than 4.0 Å to the surface of a
ligand). Binding sites of ligands that con-
tained less than seven non-hydrogen atoms
were not considered. Proteins from the data
set that have no ligand were not represented
in this type of database. The only exception
are four proteins from the fatty acid-binding
family, for which the binding sites are
extracted by comparing to corresponding
homologous structures of the dataset.

We present three types of searching applications
that can be performed on these databases:

(1) Application I: searching the database of
complete protein structures with a binding
site. A query that is used to search the
database is a binding site of a specific protein

of interest. The search will provide a list of
regions from different proteins, that are
similar to the query site.

(2) Application II: searching the database of
binding sites with a binding site. A known
binding site of a protein of interest can be
used to search for other binding sites that
share the same structural and physico-
chemical features.

(3) Application III: searching the database of
binding sites with a complete protein
structure. The query protein structure is
searched for regions on its surface that can
be similar to known binding sites.

Whether a certain binding site is used as a
query or stored in the database, it is defined
exactly in the same manner as described in the
previous section. Below, we present results
obtained by applying our method to each type of
application.

Evaluation of the results

For each search example, we present a list of
solutions that are ranked highest according to the
value of the match score (detailed below). These
solutions represent the proteins that are recognized
to be most similar to the query. Below, we describe
the calculation of the RMSD, which provides some

Table 4. Searching the database of binding sites with a complete protein structure of a fatty acid-binding protein (1lib)

Rank PDB Protein Fold

Sequence
similarity

(%)
Match
score Ligand RMSD

Run time
(seconds)

1 1lib Adipocyte lipid-binding
protein (ALBP)

Lipocalins 100 100 Nonep N/A 7

2 1lid Adipocyte lipid-binding
protein (ALBP)

Lipocalins 100 72 OLAp 0.2 14.2

3 1lie Adipocyte lipid-binding
protein (ALBP)

Lipocalins 100 70 PLMp 0.07 10.4

4 1hms Heart muscle fatty acid-
binding protein (HFABP)

Lipocalins 64 63 OLAp 0.3 13

5 1b56 Epidermal fatty acid-binding
protein (EFABP)

Lipocalins 51 62 PLMp 0.3 6.4

6 1pmp Myelin P2 (P2) Lipocalins 64 61 OLIp 0.1 12
7 1qjg Ketosteroid isomerase Cystatin-like 18 59 EQU N/A 2.2
8 1hwr HIV-1 protease Acid proteases 15 47 216 N/A 12.5
9 2lbd Retinoic acid receptor gamma

(RAR-gamma)
Nuclear receptor ligand-

binding domain
11 46 REAp N/A 1.6

10 1com Chorismate mutase Bacillus chorismate
mutase-like

14 46 PRE N/A 5.9

11 1flj Rat (Rattus norvegicus),
isozyme II

Carbonic anhydrase 10 45 GTT N/A 5.7

12 1cqq Human rhinovirus type 2 Trypsin-like serine
proteases

14 43 AG7 N/A 17.9

13 1ftp Locus muscle fatty acid-
binding protein (L-MFABP)

Lipocalins 42 42 Nonep N/A 18.9

14 1opa Cellular retinol-binding
protein II (CRBPII)

Lipocalins 37 40 Nonep N/A 13.3

15 1ecm Chorismate mutase domain of
P-protein

Chorismate mutase 11 9 40 TSA N/A 6.1

16 2cbr Cellular retinoic-acid binding
protein II (CRABP-II)

Lipocalins 37 37 A80p 1.3 14.2

Marked by p are ligands/binding sites known to bind/be similar to the query protein.
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measurement for the quality of the results
obtained.

Match score

This score represents a portion of the binding
pattern of interest found to match during the
search. The score is presented as a percentage. We
define Native_ScoreðB;PBÞ as the final score calcu-
lated by SiteEngine when a binding site ðBÞ is
searched in its native protein ðPBÞ. Since in this
case all of the query features are matched, the
score represents the maximal possible match
(100%). When a binding site ðBÞ is searched in a
protein/binding site ðMÞ, the obtained final score
of its best solution will be referred to as the
Search_ScoreðM;BÞ. This score will never exceed
the Native_ScoreðB;PBÞ of the same binding site.
Calculations of the Match_Score differ according
to the type of the search application. In Appli-
cations I and II the Match_Score represents the
portion of the query-binding site matched during
the search. Therefore, it is calculated as a simple
normalization of each comparison to a database
protein/binding site ðMÞ by the Native_Score of
the query ðBÞ:

Match_ScoreðMÞ ¼
Search_ScoreðM;BÞ

Native_ScoreðB;PBÞ
£ 100

As a result, this score provides a ranking of the
database proteins/binding sites according to the
percentage of the query pattern that they match.
When the database is searched with a complete
protein structure (Application III) the Match_Score
represents how much of the database binding site
(B) matches the query protein (M):

Match_ScoreðBÞ ¼
Search_ScoreðB;MÞ

Native_ScoreðB;PBÞ
£ 100

In this application, this score provides a ranking of
the database binding sites, according to the percen-
tage of their features recognized in the query.

RMSD

When the compared proteins share an overall
fold, we calculate the RMSD45 in a manner which
is commonly used in unbound docking
algorithms.4 Although SiteEngine aligns binding
sites and no ligand information is used, the RMSD
deviation calculated between the ligands can
provide some insight regarding the results
obtained. The RMSD is calculated between the
locations of the ligand present in the binding site
of the query. It is calculated between two possible
locations for this ligand, one obtained when the
query-binding site is superimposed by SiteEngine
on the database molecule and the other obtained
by aligning the Ca atoms9 of the two molecules.
However, when the compared molecules do not
have the same overall fold, this calculation cannot
be performed. In addition, when the proteins do
share the same fold, but manifest high structural
variabilities, the alignment between the Ca atoms
is not straightforward and can be misleading.
Therefore, this measure is not always applicable
and in many cases, instead of providing this value
we state ”N/A”.

Searching the benchmark dataset

Recognition of adenine-binding sites by searching
the database of complete protein structures

An adenine-binding site extracted from a cAMP-
dependent protein kinase (1atp) was used to search
the database of complete protein structures. The
query-binding site was defined by protein surface
points whose distance from an adenine ring of an

Table 5. The data set

Functional family Total Number of folds PDB codes

Adenine-binding proteins 34 18 1a49 1a82 1ads 1atp 1ayl 1b4v 1b8a 1bx4 1byq 1csc 1csn
1e2q 1e8x 1f9a 1fmw 1g5t 1gn8 1hck 1hpl 1j7k 1jjv 1kay
1kp2 1kpf 1mjh 1mmg 1nhk 1nsf 1phk 1qmm 1yag 1zin
2src 9ldt48

Serine proteases 24 4 1abi 1acb 1arb 1cho 1cse 1ela 1elc 1hah 1hne 1pek 1ppf
1sbn 1sga 1sgc 1tgs 1whs 1ysc 2alp 2lpr 3prk 3sga 3tec
4sgb 4tgl18,28

Fatty acid-binding proteins 15 1 1b56 1cbs 1ftp 1hms 1ifc 1kqw 1lib 1lid 1lie 1mdc 1opa
1opb 1pmp 2cbr 2ifb

Estradiol-binding proteins 11 4 1a27 1a52 1e6w 1ere 1err 1fds 1jgl 1l2i 1lhu 1qkt 3ert
Chorismate mutases 7 1 1com 1csm 1dbf 1ecm 1fnj 1fnk 4csm28

Retinoic acid-binding protein-like 6 3 1fby 1fem 1g5y 1gx9 1tyr 2lbd
Anhydrases 6 1 1azm 1flj 1jd0 1keq 1kop 1znc
Antibiotics 6 1 1alq 1bt5 1dcs 1exm 1ghp 1rxf
HIV-1 protease 6 1 1b60 1hsg 1hsh 1hwr 1kzk 1pro
HIV-1/HIV-2 4 1 1har 1mml 1mu2 1vrt
Viral proteinase 4 1 1cqq 1lvo 1mbm 1q2w
Equilin binding proteins 3 3 1equ 1oh0 1qjg

Total 126

The list of the protein structures used for the method verification.
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ATP ligand is under 4.0 Å. Table 1 presents the
highest ranking solutions. The dataset contained
five proteins which share the same “protein
kinase-like” fold as the query. As expected, all five
are recognized as top ranking solutions and the
query-binding site is correctly aligned to the bind-
ing sites of these proteins. Due to the similarity of
the fold, we are able to calculate the RMSD
between the locations of the ligands obtained by
these solutions. As can be seen, in all cases the
RMSD is less than 1.0 Å. The running times
measured in this test case emphasize the ability of
the method to handle large protein structures. For
example, the longest running time (17.3 seconds)
was observed for a 980 residue molecule (1mu2)
represented by 1714 pseudocenters. The ability to
search the complete surface of a molecule of this
size highlights the speed of our method. Ranked 7
was a “hypothetical” protein MJ0577.49 Its ATP-
binding site was correctly recognized when
searching for an adenine-binding site. Figure 3
presents the alignment obtained between the
molecules. As depicted in Figure 3(a) there is no
fold similarity between the proteins, however, our
method correctly recognizes the similarity
between the binding sites. The ATP molecules and
the complete structure of the cAMP-dependent
protein kinase (1atp) is depicted for illustration
only and were not used in the search. Figure 3(b)

presents the pseudocenters that are identified to
be similar.

Recognition of estradiol-binding sites by searching
the database of complete protein structures

The constructed dataset contains 11 proteins
that are known to bind estradiol. These proteins
belong to four different folds: concanavalin A-like
lectins/glucanases (1), immunoglobulin-like beta-
sandwich (2), NAD(P)-binding Rossmann-fold
domain (4), nuclear receptor ligand-binding
domain (5). The dataset contains a total of seven
structures that were complexed with estradiol,
while the rest were crystallized with other small
molecules.

A binding site of a sex hormone-binding
globulin (1lhu) was used to search the data set.
All 11 data set proteins that are known to bind
estradiol are recognized within the 30 best
solutions. Table 2 presents the 15 highest-ranking
solutions. As expected, the top-ranking solution is
the correctly recognized binding site of the protein
of the sex hormone-binding globulin. Figure 4
presents two of the estradiol-binding sites correctly
recognized by the algorithm. Figure 4(a) presents
an estrogen alpha receptor whose binding site is
ranked second and is recognized to be the most
similar to the binding site of a sex hormone-binding

Figure 3. Recognition of similarity between the binding sites of cAMP-dependent protein kinase (1atp) and
hypothetical protein MJ0577 (1mjh). (a) The proteins of a cAMP-dependent protein kinase (blue) and hypothetical
protein MJ0577 (pink) are superimposed using the transformation of the solution. The ATP molecules from 1atp are
colored blue and from 1mjh are colored red. The structures of the whole cAMP-dependent protein kinase (1atp) and
of the ATP ligands are depicted for illustration only and were not used during the search. (b) A closer view of the
active sites of the molecules. The surfaces of the active sites are represented as small dots and are colored red for
1mjh and blue for 1atp. The recognized centers of interaction (pseudocenters) are represented as spheres and are
colored according to their physico-chemical properties as in Figure 2. The pseudocenters of 1atp are larger. The ATP
molecules are colored as in (a).
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globulin. Figure 4(b) presents a 17beta-hydro-
steroid dehydrogenase that is ranked 29th. Its
binding site is successfully located and is correctly
recognized as estradiol binding, but it is identified

to be less similar to that of a sex hormone-binding
globulin.

Ranked third and fourth are the binding sites of
two proteins which are not known to bind estradiol

Figure 4. Highest and lowest-ranking solutions obtained in searching the data set for estradiol binding sites. (a) An
estrogen alpha receptor (1qkt), colored cyan, was successfully recognized as estradiol-binding. Its binding site,
depicted by blue dots, was identified as the most similar to that of a sex hormone-binding globulin (1lhu), depicted
by red dots. The ligands from the complexes 1qkt and 1lhu are depicted for verification only and are colored in blue
and red, respectively. (b) The binding site of a 17beta hydrosteroid dehydrogenase (1fds), colored cyan, was success-
fully recognized as estradiol-binding. Its binding sites, depicted by blue dots, was ranked 29 and identified as the
less similar to that of a sex hormone-binding globulin (1lhu), depicted by red dots. The ligands from the complexes
1fds and 1lhu are depicted for verification only and are colored in blue and red, respectively.

Figure 5. Binding site of phoshoinositide 3-kinase (PI3K): recognition of similarity to an estradiol-binding site of sex
hormone-binding globulin. The binding site of phoshoinositide 3-kinase (PI3K) was ranked third when compared to an
estradiol-binding site of sex hormone-binding globulin. (a) Estradiol molecule (Cl8H24O2) from a complex with 1lhu.
Carbon atoms are colored gray and oxygen atoms are red. (b) Wortmannin molecule (C23H24O8) from a complex with
PI3K in 1e7u. The atom coloring is as in (a). (c) The superimposition between the estradiol from 1lhu and wortmannin
from 1e7u obtained by the superimposition of binding sites. (d) The superimposition between the surfaces of the bind-
ing sites of 1lhu (red dots) and 1e8x (blue dots). The alignment of ligands is the same as in (c), estradiol is depicted in
red and wortmannin in green.
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and are considered to be “false-positive” solutions.
Figure 5 represents an analysis of a binding site of
phoshoinositide 3-kinase (1e8x) that is ranked
third. The protein that was used for the alignment
is in a complex with ATP. However, there is
another structure of the same protein in a complex
with wortmannin (PDB code 1e7u), which has
structural similarity to estradiol. Figure 5(a)–(c)
show the similarity between wortmannin
(C23H24O8) and estradiol (C18H24O2). Figure 5(d)
presents the alignment between the surfaces of the
binding sites of phoshoinositide 3-kinase (1e8x)
and a sex hormone-binding globulin (1lhu).
Ranked fourth is a binding site of a beta-lacto-
globulin complexed with retinoic acid. As in the
previous case, the alignment obtained between the
binding sites provides a good superimposition
between the hydrophobic ligands of estradiol and
retinoic acid and places the retinoic acid in the
estradiol-binding pocket as would be done with a
docking program.4,5,9

It is important to note that the binding sites of all
estradiol-binding proteins are correctly recognized
in spite of the fact that five of them were not com-
plexed with estradiol. Some of these ligands are
very different from estradiol both in their size and
in chemical structure. However, these differences
in binding partners as well as the local flexibility
that is required to accommodate them did not pre-
vent the successful recognition of the functional
similarities made by SiteEngine.

Searching the database of binding sites to predict
the function of a hypothetical protein

A hypothetical protein MJ0577 from a hyper-
thermophile Methanococcus jannaschii was crystal-
lized as part of a Structural Genomics project with
the goal of functional recognition.49 We have
extracted its ATP-binding site and searched the
database of binding sites to recognize those that
are most similar to it. Table 3 lists the highest-
ranking solutions of this search. All highest-
ranking solutions bind ligands similar to ATP. The
only exception is an HIV-1 protease, which was
also recognized by Schmitt et al.35 to have a binding
niche similar to an ATP-binding site of cAMP-
dependent protein kinase. The measured running
times in all comparisons, are less than ten seconds,
showing the ability of the method to perform
efficient, large-scale database searches.

Classification of protein-binding sites

Wallace et al.18 derived 3D coordinate templates
representing the Ser-His-Asp “catalytic triads”
that are typical for some of the protein families,
like serine proteases, lipases and lysozymes. These
templates were used to classify a representative
set of 225 enzymes into four structural groups, up
to three subgroups each. Rosen et al.28 selected 24
enzymes to represent this classification. In order
to test our ability to recognize the catalytic triads

and to classify the protein-binding sites, we have
included these 24 protein structures in our data.
We have randomly selected three proteins from
the three most populated subgroups and used
their binding sites to search the data set of com-
plete protein structures. The selected structures
were alpha-chymotrypsin (1acb), thermitase (3tec)
and serine protease B (4sgb). The protein–protein
interfaces of these proteins were defined by the
surface points of a protein which are closer than
4.0 Å to the surface of their protein binding
partner. These were used to search the database of
complete protein structures (Application I). The
results are fully consistent with the classification
defined by Wallace et al. and members of the same
subgroup as the query is always top-ranking.

Recognition of catalytic residues

Subtilisin-like and trypsin-like folds are the most
common examples of proteins with different fold
that can perform the same function. Proteins of
these two folds share the same Ser-His-Asp
catalytic triad and are included in the 24
proteins that represent the classification made by
Wallace et al. Our data set contained 16 proteins of
the trypsin-like fold and five proteins of the sub-
tilisin-like. When the database of complete protein
structures was searched with the protein–protein
interface of thermitase (3tec) the first member of
trypsin-like fold (1ela) was ranked 8. When it was
searched with the interface of serine protease B
(4sgb) the first member of the subtilisin-like fold
(3tec) was ranked 11. The catalytic residues of histi-
dine and serine, common to the proteins of these
different folds, are correctly superimposed by our
method with an alignment quite similar to the one
presented by Schmitt et al.35 Similar to them, the
catalytic aspartate residue was not considered in
the calculations, since it is not surface exposed.
However, the alignment calculated by SiteEngine,
provides a good superimposition of all three
residues of the catalytic triad, including the
aspartate. Figure 6(a) presents the alignment of
two protein–protein complexes obtained during
the search with an interface of thermitase (3tec),
which is a member of the subtilisin-like fold.
Ranked 10, is a member of the trypsin-like fold,
b-trypsin (2ptc) complexed with a pancreatic
trypsin inhibitor. In spite of the fold differences
between these proteins, the similarity in the histi-
dine and serine catalytic residues was correctly
recognized. The binding partners of these proteins,
although not considered by SiteEngine, were
correctly superimposed by the transformation of
the solution.

Another interesting result, which was obtained
by these searches, is the striking similarity of the
catalytic histidine residues that was recognized
between these proteins and SARS-coronavirus
main protease. Our dataset contained a recently
determined structure of SARS-coronavirus main
protease (1q2w), which is related to the severe
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acute respiratory syndrome (SARS) disease. SARS-
coronavirus main protease, which cleaves the
polyproteins of SARS-coronavirus, is responsible
for the virus replication and therefore for the
disease.50,51 The protein of SARS-coronavirus main
protease (1q2w) was ranked 11 when the dataset
was searched with the protein–protein interface of
thermitase (3tec) and 17th when searched with
serine protease B (4sgb). In contrast to serine
proteases which have a Ser-His-Asp catalytic
triad, SARS-coronavirus main protease functions
through a catalytic dyad, Cys-His. Our method has
successfully detected the spatial similarity between
the histidine residues common to all these proteins.
Figure 6(b) presents a superimposition of the com-
plexes of 3tec and 4sgb on the structure of lq2w
by the transformation calculated by SiteEngine. As
can be seen, the solution obtained provides a good
alignment of the catalytic histidine residues of the
three proteins. In addition, the binding partners of
these proteins (eglin C from 3tec and potato inhibi-

tor PCI-1 from 4sgb) are placed in the catalytic-
binding site of the SARS-coronavirus main
protease.

Searching the database of binding sites with a
complete protein structure of a fatty acid-
binding protein

The goal of this type of database search is to
locate potential binding sites of a protein, for
which this information is still unavailable. In
order to verify our method, we have searched the
database of binding sites with a complete structure
of a fatty acid-binding protein (1lib). The location
of the binding site in this protein is well known
and the database of binding sites contained six
binding sites that are very similar to it. SiteEngine
was able to correctly select them from the database
of binding sites. Table 4 presents the highest-
ranking solutions. As can be seen, the six highest-
ranking solutions are the binding sites that are

Figure 6. Recognition of catalytic residues. (a) When the dataset of complete protein structures was searched with
the protein–protein interface of thermitase (3tec, colored green), which has a subtilisin-like fold, ranked 10 was
b-trypsin (2ptc, colored orange), which has a trypsin-like fold. The catalytic residues (ordered from right to left)
Ser225, His71, Asp38 of 3tec (colored blue) and Ser195, His57, Asp102 of 2ptc (colored red) are displayed in ball-and-
stick. SiteEngine has recognized the similarity between the residues of serine (right) and histidine (middle). The
binding partners pancreatic trypsin inhibitor from 2ptc and eglin C from 3tec are colored in red and blue, respectively.
No information regarding these binding partners was considered by SiteEngine. (b) When the dataset of complete
protein structures was searched with the protein–protein interfaces of thermitase (3tec) and of serine protease B
(4sgb) the structure of SARS-coronavirus main protease (1q2w), colored blue, was ranked 11th and 17th, respectively.
The Figure presents the catalytic histidine residues (in ball-and-stick) of these proteins, when they are superimposed
on 1q2w by the transformation calculated by SiteEngine. The catalytic His41 of 1q2w is colored blue, His71 of 3tec is
green and His57 of 2ptc is red. The recognized alignment places the binding partners eglin c of 3tec (green) and potato
inhibitor PCI-1 of 4sgb (red) in the catalytic site of SARS-coronavirus main protease.
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known to be similar to the query protein. We have
calculated the RMSD45 between the ligands of
these proteins when they are superimposed by
two transformations: one defined by the superim-
position of the Ca atoms and the other defined by
SiteEngine. As can be seen, the RMSD in all cases
is very low and even existing techniques like
docking4,5 consider such transformations to be a
success. As detailed below, binding sites of fatty
acid-binding proteins that did not receive a high
rank are known to exhibit a different binding pat-
tern than the query protein. However, all database
binding sites that were extracted from fatty acid-
binding proteins were correctly superimposed on
the region of the query protein known as its bind-
ing site. To visualize these results, Figure 7(a) pre-
sents the superimposition of the ligands from
these binding sites on the query protein. No ligand
information was used during the search and each
ligand is superimposed onto the structure of the
query protein using the transformation obtained
by the alignment between the database-binding
site and the query protein. As can be seen, in all
cases the ligands are successfully placed in the
actual binding site of the query protein.

Classification of fatty acid-binding proteins

Motivated by the previous example, we have
applied our program to analyze the function and

classify the fatty acid-binding proteins.52,53 For this
study, we took all the crystal structures classified
by SCOP54 as members of the “fatty acid-binding
protein-like” family. Table 6 lists the PDB codes of
these 43 structures and their classification to
domains as defined by SCOP. Figure 7(b) presents
the structural alignment between the 43 structures
as performed by MultiProt.9,55,56 As can be seen,
the structures and the ligands are very similar;
however, the ligand conformations and the binding
patterns are very different. We have tested the abil-
ity of our program to classify members of this
family according to the binding site motifs. We
have selected four representative proteins that
form the four most highly populated domains of
this family: an adipocyte lipid-binding protein
(1lid), an intestinal fatty acid-binding protein (2ifb),
a cellular retinoic acid-binding protein (1cbs) and a
cellular retinol-binding protein II (1opb). The results
of all four searches are summarized in Table 7,
where each column ranks the 43 members of the
family in decreasing order of similarity to the query-
binding sites.

The first test was to search the data set with a
binding site extracted from the adipocyte lipid-
binding protein. According to Banaszak et al.53 adi-
pocyte lipid-binding protein (ALBP) as well as
myelin P2 (P2), heart muscle fatty acid-binding
protein (HFABP) and Manduca sexta fatty acid-
binding protein (MFB2) interact with their bound

Figure 7. (a) Searching the database of binding sites with a complete structure of a fatty acid-binding protein (1lib).
The Figure presents the ligands from all the fatty acid-binding proteins which were included in the data set listed in
Table 5. Each ligand is superimposed onto the structure of the query protein using the transformation obtained by
the alignment between the database binding site and the query protein. (b) Classification of fatty acid-binding proteins.
The Figure presents the structural alignment via MultiProt55,56 between 42 fatty acid-binding proteins used in the study.
Some examples of ligands are depicted to represent the diversity of the binding modes. In green is the palmitic acid
molecule from a complex with an IFABP protein (2ifb). In blue is the oleic acid molecule from a complex with the
ALBP (1lid). In red is a retinol molecule from a complex with CRABP-II (1cbs) and in orange is a retinoic acid molecule
from a complex with CRBPII protein (1opb). In purple is a palmitic acid molecule from MFB2 protein (1mdc), that has
the same binding motif as ALBP, but exhibits a very high degree of flexibility of the binding site region.
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fatty acid using the P2 motif. As observed in
Table 7, all 12 members of the ALBP family and
the only structure of myelin P2 (P2) are top
ranking. They are followed by the members of the
heart muscle fatty acid-binding protein (HFABP)
that have the same binding motif as the query-
binding site. Members of the brain fatty acid-
binding protein (BFABP), share the same
“U-shape” fatty acid-binding mode as ALBP and
HFABP57 and therefore were correctly recognized
to be similar to the query. The only member of
M. sexta fatty acid-binding protein (MFB2) was
ranked 34. Figure 7 depicts the flexibility of the
ligands of ALBP and MFB2 and provides an
explanation for such a low rank.

When the data set was searched with the binding
sites of the intestinal fatty acid-binding protein

(2ifb), the cellular retinol-binding protein (1cbs)
and the cellular retinol-binding protein II (1opb)
the results were the same. The proteins were
correctly classified and the top-ranking solutions
were all the members of the same domain as the
query.

In this test case the surfaces of complete protein
structures were searched for the presence of the
binding site of interest. In order to show that the
query site was successfully located on the surface
of each protein, we present the values of the
RMSD which were calculated between the
locations of the ligands oleic acid, palmitic acid,
retinol and retinoic acid present in the query-bind-
ing sites extracted from 1lid, 2ifb, lopb, and lcbs,
respectively. For each pairwise alignment the
RMSD is calculated between the location of the

Table 6. The data set of fatty acid-binding proteins

Domain name and abbreviation Total PDB codes

Adipocyte lipid-binding protein (ALBP) 12 1a18 1a2d 1ab0 1acd 1adl 1alb 1lib 1lic 1lid 1lie 1lif 2ans
Brain fatty acid-binding protein (BFABP) 2 1fdq 1fe3
Cellular retinoic acid-binding protein I (CRABP-I) 3 1cbi 1cbr 2cbr
Cellular retinoic acid-binding protein II (CRABP-II) 4 1cbq 1cbs 2cbs 3cbs
Cellular retinol-binding protein II (CRBPII) 5 1crb 1kqw 1kqx 1opa 1opb
Cellular retinol-binding protein III (CRBPIII) 1 1ggl
Cellular retinol-binding protein IV (CRBPIV) 1 1lpj
Epidermal fatty acid-binding protein (EFABP) 1 1b56
Intestinal fatty acid-binding protein (IFABP) 6 1dc9 1icm 1icn 1ifb 1ifc 2ifb
Liver fatty acid-binding protein (LFABP) 1 1lfo
Heart muscle fatty acid-binding protein (HFABP) 4 1hmr 1hms 1hmt 2hmb
Locus muscle fatty acid-binding protein (L-MFABP) 1 1ftp
Manduca sexta fatty acid-binding protein (MFB2) 1 1mdc
Myelin P2 (P2) 1 1pmp

PDB codes and domain name abbreviations of high-resolution crystal structures of proteins classified by SCOP54 as members of
“fatty acid-binding protein-like” family.

Table 7. Classification of fatty acid-binding proteins

Similarity to 1lid Similarity to 2ifb Similarity to 1opb Similarity to 1cbs

Rank PDB Domain RMSD PDB Domain RMSD PDB Domain RMSD PDB Domain RMSD

1 1lid ALBP 0.1 2ifb IFABP 0.1 1opb CRBPII 0.4 1cbs CRABP-II 0.0
2 11if ALBP 0.1 1ifb IFABP 0.2 1kqw CRBPII 0.2 2cbs CRABP-II 0.1
3 1lic ALBP 0.2 1icm IFABP 0.2 1opa CRBPII 0.8 3cbs CRABP-II 0.2
4 1adl ALBP 0.1 1icn IFABP 0.1 1crb CRBPII 0.8 1cbq CRABP-II 0.2
5 1lie ALBP 0.1 1dc9 IFABP 0.2 1kqx CRBPII 1.4 2cbr CRABP-I 0.2
6 1pmp P2 0.2 1ifc IFABP 0.2 1lpj CRBPIV 0.6 1cbr CRABP-I 0.1
7 1ab0 ALBP 0.2 1opb CRBPII 1.9 2hmb HFABP 3.0 2hmb HFABP 0.8
8 1lib ALBP 0.2 1a2d ALBP 0.9 1hmt HFABP 1.4 1opa CRBPII 0.5
9 1a2d ALBP 0.04 1opa CRBPII 2.3 1hmr HFABP 3.6 1lie ALBP 1.3
10 1alb ALBP 0.2 2ans ALBP 0.6 1pmp P2 2.6 1hms HFABP 1.2
11 2ans ALBP 0.2 1mdc MFB2 1.1 1hms HFABP 3.1 1hmt HFABP 0.8
12 1a18 ALBP 0.1 1pmp P2 1.9 1cbq CRABP-II 2.0 1adl ALBP 1.5
13 1acd ALBP 0.2 2hmb HFABP 2.2 1ab0 ALBP 2.2 1hmr HFABP 1.1
14 1hmt HFABP 0.04 1a18 CRABP-II 0.6 1lic ALBP 2.2 1lic ALBP 1.2
15 1fdq BFABP 0.4 1fe3 BFABP 1.6 1adl ALBP 4.0 1dc9 IFABP 2.1
16 1hms HFABP 0.1 1lie ALBP 6.6 1lie ALBP 3.1 1ftp L-MFABP 2.3
17 2hmr HFABP 0.2 1crb CRBPII 4.6 3cbs CRABP-II 6.5 1crb CRBPII 3.0
18 1fe3 BFABP 0.3 1fdq BFABP 1.4 1lif ALBP 2.4 1ifc IFABP 1.6
19 2hmb HFABP 0.4 1lfo LFABP 11 1cbs CRABP-II 3.2 1lif ALBP 2.0
20 1crb CRABP 0.5 1cbs CRABP-II 5.9 2cbs CRABP-II 6.8 1a18 ALBP 0.9

The ranking of the 43 proteins listed in Table 6 in the decreasing order of similarity to four different query-binding sites is presented.
Each entry lists the PDB code and the SCOP domain and the RMSD between the ligands present in the query-binding sites. The query-
binding sites (from 1lid, 2ifb, 1opb and 1cbs) represent four different binding motifs exhibited by the members of this family.
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ligand obtained by SiteEngine and the location of
the same ligand obtained by the alignment of the
backbones (Ca atoms) of the complete structures.
Although no ligand information was used by
SiteEngine, it can be seen that the RMSD values
in most of the cases are very low. The extreme
exception is the alignment of the binding site of
2ifb to the structure of 1lfo. The structure of the
liver fatty acid-binding protein is very different
from the rest of the family members due to the
fact that more than one fatty acid is bound.58 The
structural alignment by Ca atoms leads to
an RMSD of 8.2 Å between the oleate ligand of
1lfo and palmitic acid of 2ifb. SiteEngine aligns
these ligands with an RMSD of only 5.5 Å and it
correctly detects the primary-binding site of 1lfo.
It must be noted that these results were achieved
in spite of the fact that only one best solution was
considered for each pairwise alignment.

Analysis of the results obtained

In the absence of an overall fold or sequence
similarity between the proteins, assessing the
correctness of the obtained results is not straight-
forward. In these cases, there is no exact definition
for the similarity between two binding sites.

A query-binding region may contain features that
are not essential for the binding, which may differ
in proteins with exactly the same function. The
absence of an exact definition of the pattern we
are looking for makes the evaluation of such partial
solutions even more complicated. Considering the
superimposition between the ligands obtained by
an alignment between unrelated proteins can also
be misleading. Similar binding sites may accom-
modate ligands that differ in their size and shape
and it is not clear what should be the correct super-
imposition between them. Figure 8(a) presents an
alignment between the ATP ligands of the
hexamerization domain of N-ethylmaleimide
sensitive factor (1nsf) and cAMP-dependent
protein kinase (1atp) obtained by the alignment of
the corresponding binding sites. As can be seen in
the Figure, the superimposition of the ligand mol-
ecules achieves a good alignment between the
ribose parts of the ATP molecules while the
orientation of the adenine moieties is different.
However, when the binding sites are artificially
superimposed using the transformation that
aligns the adenine moieties, the distance between
the phosphate tails of the ATP molecules is
approximately 20 Å and only six pseudocenters
are identified to be similar (as opposed to nine

Figure 8. Alignment between the ligands induced by the alignment of the binding sites. (a) Alignment between the
ATP ligands of hexamerization domain of N-ethylmaleimide sensitive factor (1nsf) and cAMP-dependent protein
kinase (1atp) obtained by the alignment of the corresponding binding sites. The colored spheres represent the centers
of interaction recognized by the program. The coloring of the spheres is as in Figure 2. The spheres of 1nsf are smaller.
It can be seen that the solution provides a good alignment between the ribose parts of the two ATP molecules at the
expense of the alignment between the adenine moieties. (b) Alignment between the NAD and ATP ligands of lactate
dehydrogenase (9ldt) and hypothetical protein MJ0577 (1mjh) obtained by the alignment of the corresponding binding
sites. The solution provides a good alignment between the ribose parts of the NAD and ATP ligand molecules. How-
ever, the adenine ring of ATP is aligned to a nicotinamide ring of NAD, and not to its adenine ring as expected. As
can be seen, the resulting alignment provides a superimposition of 13 functional groups, that are depicted as balls.
Moreover, it provides an alignment of two conserved residues His40 and Val142 of 1mjh (colored cyan) and His195,
Val32 of 9ldt (colored blue) that are located in similar spatial locations.
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pseudocenters identified by SiteEngine). Therefore,
it is not straightforward to identify which solution
is the correct one, especially due to the fact that
the adenine moiety is known to exhibit two differ-
ent binding modes.10 Figure 8(b) presents an align-
ment between the NAD and ATP ligands of
lactate dehydrogenase (9ldt) and the hypothetical
protein MJ0577(1mjh) obtained by the alignment
of the corresponding binding sites. Once again,
the alignment between the binding sites of the
proteins provides an alignment between the ribose
parts of the NAD and ATP ligand molecules. How-
ever, the adenine ring of the ATP is aligned to the
nicotinamide ring of NAD (and not to an adenine
ring as expected). This solution provides the align-
ment of 13 similar centers of interaction shared by
these binding regions. Moreover, there are two
residues (1mjh, His40, Val142; 9ldt, His195, Val32)
that are present in both binding sites and have the
same spatial locations as well as identity of the
amino acid. Since SiteEngine is a software tool it
recognizes regions that maximize the similarity;
however, it cannot assess the biological significance
of the obtained predictions. These need to be
further verified by physical experiments and
human expertise.

Evaluation of Applications

We have applied SiteEngine to three types of
applications. Below, we discuss the main
advantages and disadvantages of each type (see
Table 8).

Application I: searching the database of
complete protein structures with a binding site

This type of database search is the most

general and reliable. All of the available infor-
mation is utilized and we can recognize totally
new regions that can function as binding sites. It
can be used to suggest a list of proteins that may
bind ligands similar to the ligands of the protein
of interest and may lead to side-effects. We have
illustrated this application by two searches per-
formed with the estradiol-binding site of the sex
hormone-binding globulin and with the adenine-
binding site of the cAMP-dependent protein
kinase. In both cases, the highest-ranking solutions
contained a list of unrelated proteins that can per-
form the same function as the query site. An
additional application of this type of search is the
classification of binding patterns. This was
illustrated by the examples of serine proteases and
fatty acid-binding proteins.

Application II: searching the database of
binding sites with a binding site

Constructing a database of binding sites may
significantly reduce the time and space required to
perform large-scale searches. Searches of this type
are more focused, since they consider regions that
are already known to function as binding sites.
Less potential solutions are considered, which
allows a more careful examination of each. This
type of application is limited to the comparison of
regions that are already known to serve as binding
sites. However, it may be useful in suggesting
ligands or ligand fragments for applications such
as structure-based drug design. Searching with the
ATP-binding site of the hypothetical protein
MJ0577 (1mjh) provides an example of how this
type of search can assist in the recognition of func-
tion and can contribute to structural genomics
projects.

Table 8. Types of searching applications

Application I: searching a database of
complete protein structures with a
binding site

Application II: searching a database of
binding sites with a binding site

Application III: searching a database of
binding sites with a complete protein
structure

A. Advantages
1. Can recognize new regions that can

function as binding sites
1. Reduced run time and storage space 1. Can be used to recognize an unknown

binding site of a protein of interest
2. The database structures can be

unbound. No information is missed
2. Less false positives, since we compare

only known binding sites
3. All of the solutions are relevant, due to

their similarity to a specific region of
interest

B. Disadvantages
1. The binding site of a protein of interest

must be known
1. The binding site of a protein of interest

must be known
1. Large amount of information may be

missed
2. Some solutions may align regions

which are not binding sites
2. Large amount of information may be

missed
2. The query is not focused. Some solutions

may align regions which are not binding
sites

3. Development of a reliable ranking
scheme is not straightforward

Advantages and disadvantages of three types of applications for recognition of functional sites.
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Application III: searching the database of
bindings sites with a complete
protein structure

The advantage of such an approach is in the
recognition of new a priori unknown regions in a
protein of interest that can function as binding
sites. However, this makes the search extremely
unfocused and some of the solutions may align
surface regions that have no functional signifi-
cance. When looking for binding sites which are
located in cavities, an alternative strategy may be
to extract potential binding pockets, using existing
cavity detection methods40,59 – 64 and use them to
perform a more focused search. We have illus-
trated this application by searching the database
with a complete structure of a fatty acid-binding
protein. SiteEngine has successfully selected from
the database of binding sites those that are known
to be similar to the query and suggested a good
alignment between them. However, the ranking of
binding sites of different size according to their
similarity to different regions on the surface of the
complete protein is not straightforward. In this
work, the ranking was done according to how
much of the database-binding site was matched
during the search. However, some binding sites
received a high rank due to their small size and
the fact that some surface patterns have a high
probability of appearance on the surface of any
protein structure. These considerations must be
taken into account when developing more reliable
searches of this type.

Searches of the first type are advantageous over
applications II and III, since they explore the whole
surfaces of complete protein structures. This appli-
cation is not limited to the set of known binding
sites and it can recognize new regions that can func-
tion as such. In addition, the construction of a data-
base of binding sites is not straightforward and the
results of applications II and III are influenced by the
selected definition of a binding site. Since SiteEngine
is robust enough to search complete protein struc-
tures with speed almost equal to comparisons
between binding sites, we conclude that, whenever
possible, application I is the preferred option.

Searching the entire PDB

Following the successful performance of the
SiteEngine method on our benchmark dataset, we
applied it to large-scale searches against a non-
redundant dataset constructed from the entire
PDB.65 The evaluation described in the previous sec-
tion showed that application I is the most general
and reliable of all applications. This application
searches a database of complete proteins and utilizes
all the available information of the proteins struc-
tures stored in the PDB. Below, we repeat the
searches of the previous sections on the non-redun-
dant ASTRAL66–68 dataset. This dataset consists of
all known protein structures that have less than 40%
sequence identity. Following removal of some low-

resolution structures that contain only the coordi-
nates of the Ca atoms, a total of 4375 protein
structures were searched by our method. The details
regarding the top ranking solutions of all the searches
are provided in the Supplementary Material.

Recognition of adenine-binding sites by
searching the entire PDB

The adenine-binding site extracted from cAMP-
dependent protein kinase (1atp) was used to search
the ASTRAL database of complete protein
structures. As expected, most of the top-ranking
solutions are the catalytic sites of other protein
kinases. Although these proteins have different
sequences, they share the same “protein kinase-
like” fold. The 13 best solutions are the adenine
binding sites of these proteins. In total, there are
17 such sites among the 30 top-ranking solutions.
These binding sites were correctly located on the
surfaces of these proteins and the performance of
SiteEngine in these cases was similar to the five
top-ranking solutions presented in Table 1. It is
interesting to note that only five of the recognized
adenine-binding sites are complexed with adenine,
while the rest are unbound or accommodate other
ligands. Ranked 19 is the correctly recognized
binding site of a replication factor C (1iqp) that
accommodates an ADP molecule. Figure 9(a)
shows the correct recognition of this site and
Figure 9(b) presents an additional binding site of
D-Ala-D-Ala ligase (1iow) that accommodates an
ADP molecule and is ranked 31. As can be seen
the transformation calculated by SiteEngine
provides a perfect alignment between the ATP sub-
strate of the query site to the ADP of the recog-
nized region. In spite of the difference between
the overall structures, these proteins were recog-
nized to have similar shapes of the binding sites
and share 12 functional groups located in similar
spatial locations. However, the biological “correct-
ness” of many other of top-ranking solutions can-
not be verified. Some of these were regions of
such proteins as photosynthetic reaction centre
(1dxr, ranked 14), pyruvate phosphate dikinase
(1kbl, ranked 15) and the gamma subunit of DNA
polymerase (1jr3, ranked 18). Figure 9(e) presents
one of these solutions that we consider to be a
false-positive. The region that is recognized on the
surface of photosynthetic reaction centre (1dxr)
received a high rank due to the similarity of its
hydrophobic patches to the query. Some of such
false-positive solutions might be filtered out by an
additional requirement of the presence of certain
features that are required to bind adenine. However,
currently there is no automatic way to define such a
set of features based on the protein structure alone.

Recognition of estradiol-binding sites by
searching the entire PDB

The estradiol-binding site of a sex hormone-
binding globulin (1lhu) was used to search the
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Figure 9. (a) Recognized similarity (ranked 19) of an ADP-binding site of a replication factor C (1iqp, colored purple)
to the adenine-binding site of cAMP-dependent protein kinase (1atp, colored cyan). The Figure presents the obtained
superimposition of the ligand molecules as well as of the functional groups. The functional groups that are shared by
these sites are represented as spheres colored according to their physico-chemical properties as in Figure 2 (the spheres
of 1atp are larger). (b) Recognized similarity (ranked 31) of functional groups and the alignment of ligands of an ADP-
binding site of D-Ala-D-Ala ligase (1iow) to the adenine-binding site of cAMP-dependent protein kinase (1atp).
(c) Recognized similarity (ranked 38) of the estradiol-binding sites of estrogen sulfotransferase (1aqu, blue) and sex
hormone-binding globulin (1lhu, yellow). The estradiol ligand of 1lhu is cyan and that of 1aqu is purple. (d) Recog-
nized similarity (ranked 43) of a binding site of a tropinone reductase (2ae2) to an estradiol-binding site of sex
hormone-binding globulin (1lhu, depicted as cyan dots). The estradiol ligand of 1lhu is purple and an estradiol
molecule that is placed in the binding site of 2ae2 according to its structural homologue (1fds) is shown in green. The
two binding sites are recognized to share three residues that have the same spatial location and identity of the amino
acid. The residues of 2ae2 are blue and those of 1lhu are red. (e) A false-positive solution that recognizes a similarity
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ASTRAL database of complete protein structures.
The two top-ranking solutions are trivial and are
the estradiol-binding sites of the query protein
(ranked 1) and of another sex hormone-binding
globulin (1d2s, ranked 2). In contrast to our bench-
mark dataset, the non-redundant ASTRAL dataset
contains almost no proteins complexed with
estradiol. Although most of the top-ranking
regions are indeed binding sites, we do not have
the information regarding their ability to bind
estradiol. One such case is the CXE (pentaethylene
glycol monodecyl ether) binding site of an outer
membrane protein NspA (1p4t) that is ranked 3
and is illustrated in Figure 9(f). As can be seen,
these binding sites have similar surfaces and
physico-chemical environments. In total, there are
six regions of membrane proteins within the 20
top-ranking solutions. Since we do not have the
biological expertise to evaluate these results, we
consider them to be false-positives.

The only dataset protein that is complexed with
estradiol is the estrogen sulfotransferase (1aqu),
which has a different fold than the query and is
ranked 39. Figure 9(c) presents the obtained super-
imposition of the estradiol molecules as well as the
correctly recognized similarity of the protein
regions that accommodate them. Ranked 44 is a
tropinone reductase (2ae2) that belongs to the
same family of tyrosine-dependent oxido-
reductases as 17beta hydrosteroid dehydrogenase
(1fds), which is complexed with estradiol (depicted
in Figure 4(b)). The structural alignment of the Ca

atoms of proteins 2ae2 and 1fds (performed by
MultiProt9,55,56), provides a superimposition of the
estradiol molecule of 1fds upon the structure of
2ae2. Remarkably, the estradiol molecule is
placed on the same region that was recognized by
SiteEngine as the potential estradiol-binding site.
Figure 9(d) shows the three residues (1lhu Ser42,
Val112, Leu131, and 2ae2 Ser146, Val197, Leu213)
that are shared by tropinone reductase (2ae2) and
the query. These residues have the same spatial
location and identity. As can be seen, the con-
formations of the estradiol molecules are different.
This may be due to a flexible loop (residues
212–222) at the binding site of 2ae2, which has a
different conformation in 1fds.

Recognition of similarity of catalytic residues
of protein-binding sites

Here, we verify the ability of SiteEngine to recog-
nize similarities of the catalytic residues of serine
proteases,17,18,28,35 which have become a standard
benchmark for evaluation of such methods. In

none of its stages did the algorithm consider the
information regarding the identity of the amino
acid residues. However, the alignment is con-
sidered correct only if it superimposes the corre-
sponding catalytic residues.

First, the ASTRAL dataset was searched with the
binding site of thermitase (subtilisin-like fold,
3tec). The five top-ranking solutions are other pro-
teins of the subtilisin-like fold. Ranked seven and
eight are the binding sites of members of the
trypsin-like fold, which share the same Ser-His-
Asp catalytic triad. The similarity of the corre-
sponding functional groups created by the triads
is correctly recognized and the alignments of these
solutions are very similar to that presented in
Figure 6(a). However, there is one solution that
emphasizes a limitation of our method. In addition
to the five top-ranking solutions, the ASTRAL
dataset contained a kexin protein (1ot5), which is
also classified as a member of the subtilisin-like
fold. The binding site of this protein is correctly
located by SiteEngine and its catalytic triad is cor-
rectly matched to the query. However, it is ranked
only 94. This low rank is due to a deviation of
almost 7 Å of a flexible loop (3tec, 106–119) that is
present in the binding site. Since SiteEngine does
not explicitly address the flexibility of protein
molecules, it considers the corresponding loop
regions to be unmatched.

We proceed to search the ASTRAL dataset with a
binding site of a member of trypsin-like fold
(4sgb). Eleven out of 15 top ranking solutions are
correctly recognized binding sites of proteins of
the trypsin-like fold that share the Ser-His-Asp
catalytic triad. Ranked seven is a 3C cysteine
protease (1cqq). This protein is a member of the
same SCOP family as SARS-coronavirus (1q2w)
and the alignment obtained is similar to that pre-
sented in Figure 6(b). Ranked 15 is the catalytic
site of the first member of subtilisin-like fold
(1dtw). As before, the corresponding residues of
the two catalytic triads are correctly matched by
the transformation of SiteEngine. However, there
are two unexpected solutions that received an
extremely low rank. One is the epidermolytic
(exfoliative) toxin A (1agj), which is ranked 2594.
Although classified as a member of the trypsin-
like fold, it has a different binding site as
confirmed by the crystallographic studies.69 A
similar result was obtained for a serine-carboxyl
proteinase PSCP (1ga6) that is ranked 2345.
Although its overall structure belongs to a
subtilisin-like fold, its binding site is different
and it functions through a Glu-Asp-Ser catalytic
triad.70

of the adenine-binding site cAMP-dependent protein kinase to a region of photosynthetic reaction centre (1dxr). The
ATP molecule of 1atp is green. The surfaces of the two binding sites are depicted as dots (1atp, red; 1dxr, blue) and
the functional groups are depicted as spheres. (f) A presumably false-positive solution of similarity of a CXE-binding
site of an outer membrane protein NspA (1p4t) to an estradiol-binding site of sex hormone-binding globulin (1lhu).
The binding sites are depicted as dots (1lhu, red; lp4t, blue) and the ligands as sticks (1lhu, green; 1p4t, purple).
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Inferring the function of novel proteins

Almost half of the proteins from M. jannaschii,
whose structures were determined as a part of the
Structural Genomics project, are classified as func-
tionally unknown “hypothetical” proteins.71 In this
section, we use the ASTRAL dataset to show two
examples of how SiteEngine can assist in func-
tional annotation of these proteins.

First, we repeat the example of our previous
section and use an ATP-binding site from MJ0577
to search the ASTRAL dataset of complete protein
structures. As expected, the top-ranking solution
is the query-binding site recognized in its native

protein. The next two top-ranking solutions cor-
rectly recognize the similarity of the query to
AMP-binding sites of ETFP subunits (1o97 and
1efv) that belong to the same SCOP superfamily54

as the query. Figure 10(a) presents the alignment
of the binding site of 1o97 to the query. As can be
seen, the binding sites are extremely similar and
the ligands are perfectly aligned. The recognized
similarity of the binding sites in addition to the
similarity of the overall structures of these proteins
can suggest similarity of their functions.
Figure 10(b) presents another example, ranked 7,
where SiteEngine has recognized a similarity to an
ADP-binding site of arsenite-translocating ATPase

Figure 10. (a) The similarity of the functional groups (depicted as spheres) of an AMP-binding site of ETFP subunit
(1o97) to that of the hypothetical protein MJ0577. This alignment is ranked 3 and provides a perfect superimposition
of the corresponding substrates. (b) The similarity (ranked 7) of an ADP-binding site of arsenite-translocating ATPase
ArsA (1ihu) to an ATP-binding site of the hypothetical protein MJ0577. Although the proteins belong to different over-
all folds, the similarity of some their secondary structures (e.g. the depicted helices) support the correctness of the
obtained solution. (c) The similarity a G protein Gialpha1 (1cip, ranked 26) to a bound form of the ANP-binding site
of the hypothetical protein MJ0226 (2mjp). SiteEngine recognized the similarity of the phosphate-binding regions of
these sites. (d) Similarity (rank 30) of an UMA-binding site of UDP-N-acetylmuramoyl-L-alanine: D-glutamate (MurD)
ligase (2uag) to an unbound form of the ANP-binding site of the hypothetical protein MJ0226 (1b78). The residues
shared by these sites are colored blue (1b78) and cyan (2uag).

628 Recognition of Protein Functional Sites



ArsA (1ihu). Although the alignment of an ADP
substrate of this protein to the ATP of the query is
not very good, we have obtained a good alignment
of the binding sites as well as of some secondary
structure elements. While this protein is classified
to a different fold than the query, the similarity, of
the secondary structure elements superimposed
by the transformation of SiteEngine suggests that
the obtained alignment is correct and can assist in
deciphering the function of this protein. Another
surprising result of this search is the consistency
of our presumably false-positive results to what
was observed on our benchmark dataset. Six out
of 15 top-ranking solutions of this search are oxido-
reductases. The alignments obtained in these cases
are similar to the one presented in Figure 8(b).
However, once again, we are unable to confirm
the biological correctness of this result.

In the next example we applied the method to
recognize functional sites similar to an ANP-bind-
ing site of the hypothetical protein MJ0226 with
an unknown function. This example is especially
challenging, since the binding site of this protein
is very unusual. The binding mode of its ANP sub-
strate is different from the binding mode in other
proteins and its main interaction with the protein
is by its phosphate groups, while its adenine ring
is exposed and is pointing outwards from the pro-
tein surface. Here, we have performed two tests,
in which the ASTRAL dataset was searched with
both a bound (2mjp) and an unbound (1b78) form
of this protein.

As expected the first two solutions are the trivial
recognition of the binding sites of the proteins
themselves. In both cases, these two solutions
were followed by a hypothetical protein YggV
(1k7k). Although extremely similar to the query,
this protein is also a part of the Structural
Genomics project and its function is unknown.
When searched with a bound form of MJ0226
(2mjp), ranked 4 is a binding site of autoinducer-2
production protein LuxS (1j6w) and ranked 5 is a
tandem phosphatase domain of RPTP LAR (1lar).
Ranked 6 is a binding site of adenylate kinase
with the substrate-mimicking inhibitor Ap5A. This
inhibitor can be considered as an ATP molecule
coupled to an AMP molecule via the additional
phosphate group and its interaction with the pro-
tein shows the pathway of phosphoryl transfer.72

SiteEngine has recognized a high degree of simi-
larity of the regions that interact with the phos-
phate groups, which are aligned by the calculated
transformation. A similar alignment is also recog-
nized with the GNP-binding site of a G protein
gialphal (1cip, ranked 27), presented in Figure
10(c). This result seems consistent with the sugges-
tion by Hwang et al.71 that this protein can function
similarly to the signal sorters of G-proteins. When
searched with an unbound form of MJ0226 (1b78),
the ranking of the results (other than the top
three) is slightly different due to the differences of
the surfaces of the bound and unbound forms.
Ranked 4 is a copper amine oxidase (1ivw), ranked

5 is a tryptophan indol-lyase (1ax4) and ranked 6 is
a farnesyl diphosphate synthase (1uby). Figure
10(d) illustrates the result that is ranked 31, in
which we recognize similarity to a UDP-N-acetyl-
muramoyl-L-alanine-D-glutamate (MurD) ligase
(2uag). The obtained alignment of the binding
sites provides a superimposition of the ANP sub-
strate of the query to a nucleotide precursor UDP-
N-acetylmuramoyl-L-alanine (UMA). As can be
seen, the rings of the two ligands participate in
similar aromatic interactions with a phenyl residue
that is present in both binding sites. In total, these
binding sites share three residues (1b78 Asn19,
Asp73, Phe149, and 2uag Asn138, Asp35, Phe422)
that have the same spatial location and identity.

Comparison of the experimental results

In this section, we compare the results obtained
on the two datasets used in this work. The
ASTRAL and the benchmark datasets are
constructed for different purposes and contain
structures with different PDB codes. The bench-
mark dataset was constructed for the purpose of a
thorough evaluation of the method on a set of
well-studied examples. Consequently, it contains
redundancies that are important for the verification
of the consistency and for the analysis of false-
negatives. On the other hand, the ASTRAL dataset
contains no proteins with similar sequences and
structures. Applying the method to such a repre-
sentative dataset is important to show the large-
scale applicability of the method. However, in
many cases the proteins of our benchmark dataset
were not selected as representative structures and
therefore were not included in the ASTRAL data-
set. One such example is the set of proteins that
are complexed with estradiol. There are 12 such
proteins in our benchmark dataset and only one in
the ASTRAL. Representatives that are selected for
the same protein families do not necessarily bind
estradiol, since they may contain mutations that
can influence the functional region and can inter-
fere with the binding. This has an impact on the
obtained ranking and on our ability to evaluate
the results.

When searching for regions similar to the ade-
nine-binding site of cAMP-dependent protein
kinase (1atp), the five top-ranking solutions
obtained on our benchmark dataset (see Table 1)
are within the ten top-ranking solutions obtained
on the ASTRAL dataset. The hypothetical protein
MJ0577 (1mjh), which is ranked eighth on the
benchmark dataset is 263rd on the ASTRAL. In
both datasets these ranks are within the 6% of the
best solutions†. Hexamerization domain (1nsf) is
ranked eighth (best 8%) on the benchmark dataset
and its homologue (1d2n) that binds adenine is
ranked 111th (best 3%) on the ASTRAL. Two

† Calculated as the obtained rank relative to the size of
the dataset.
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additional examples are oxidoreductases, which
are represented by the PDB codes 1b4v and le6w
in the benchmark dataset and by 1gos and 1b16 in
the ASTRAL. These are ranked 11th and 13th (best
10%) on the benchmark dataset and 214th (best
5%) and 41st (best 1%), respectively, on the
ASTRAL.

When searching for regions similar to the ATP-
binding site of the hypothetical protein MJ0577
(1mjh) the results are similar to the above. The
lactate dehydrogenase (9ldt) that is ranked second
on the benchmark dataset (see Table 3) is rep-
resented by li0z in the ASTRAL and is ranked
eighth. Another example is the hexamerization
domain (1nsf) that is ranked sixth on the bench-
mark dataset and is within the 5% of the best sol-
utions. In the ASTRAL dataset, the representative
structure of the same family (1d2n) is ranked
339th, which is the upper 8% of the best solutions.
Another successful example is the members of the
nitrogenase iron protein-like family (1a82, rep-
resented by lihu in the ASTRAL dataset) that are
ranked seventh on both datasets. In general, there
is a similarity of the rankings obtained on the two
datasets and results that are within the 10% of the
best solutions of the benchmark dataset are within
the 10% of the best solutions of the ASTRAL dataset.

Summary and Conclusions

Recognition of functional sites in protein struc-
tures is extremely important for various biological
applications, such as prediction of function and
ligand binding. We have presented a novel
method, SiteEngine, that in a matter of seconds
can search large protein surfaces to recognize such
sites and make predictions. We used a benchmark
dataset to evaluate the performance of the method
for three types of search applications. These experi-
ments have shown that searching the database of
complete protein structures is the most general
and reliable application. Therefore, we have
proceeded to use this application to search a non-
redundant database constructed from the entire
PDB. Below, we analyze its main advantages and
weaknesses.

One of the main advantages of the method is its
speed, which is obtained due to the following
factors: (1) introduction of a low-resolution surface
representation via chemically important surface
points; (2) hashing and matching triangles of
physico-chemical properties; (3) application of
hierarchical scoring schemes for a thorough
exploration of global and local similarities.

The biological significance of the results
obtained by the method is the outcome of the
following factors: (a) consideration of both
physico-chemical and geometrical properties of a
protein molecule; (b) consideration of both
discrete (pseudocenters and patch centers) and
continuous (surfaces and shapes) representations
of the protein molecule; (c) development of a set

of scoring schemes that score each type of potential
interaction differently according to its main
chemical characteristics; (e) scoring each candidate
solution, without any specific pre-requirement
regarding the size of the matched region.

However, SiteEngine is a software tool and
therefore is limited in the quality of its biological
predictions. It recognizes geometrically and
chemically similar regions that belong to totally
unrelated proteins. However, these similarities do
not necessarily imply similarity in the binding
partners and in the biological functions. SiteEngine
can provide a list of proteins that are most likely to
behave similarly to a binding site of interest.
However, it cannot assess the biological signifi-
cance of the recognized similarity.

As in many other applications in structural
biology, the, major bottleneck of the method is
scoring. In the current version of SiteEngine there
is no implicit treatment of electrostatic potentials
that have a strong impact on the interaction.
Addition of such consideration may help to filter
the false-positive solutions like the one
presented in Figure 5. Additional weaknesses of
the method are the requirement of high-resolution
protein structures and addressing protein
molecules as rigid bodies. Protein flexibility is
addressed only through a set of thresholds
that allow a certain variability in the locations.
These are definitely insufficient for efficient
searches of binding sites that can bind large flexible
molecules.

Other limitations that influence the quality of the
results are implied by the screening applications
and are general to the problem. One is the absence
of a clear definition of what exactly is a functional
site and what are the features that define it. When
the binding site is defined by its contacts with the
smaller ligand, a significant amount of information
may be missed. As a result, essential features
might be ignored and the extracted pattern might
be partially aligned to other functionally different
binding sites. There is no simple automatic
solution to this problem. One possibility is the
construction of a database of consensus binding
patterns, common to all proteins with the same
function. Another problem is assessing the
statistical significance of the obtained results.
These are strongly influenced by the number of
functional sites of the same type present in the
searched database. Although the ASTRAL dataset
provides a non-redundant coverage of protein
structures, it contains many redundancies of
functional sites. In order to provide a truly
representative statistical evaluation it is essential
to consider a non-redundant dataset of functional
sites, the construction of which is a future
challenge. In order to efficiently address these
problems there is a need for methods for multiple
structural alignments between binding sites. In the
future, we intend to utilize the insights we have
gained in the present method for the development
of such algorithms.
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