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Extracting the tongue body accurately from a digital tongue image is a challenge for automated tongue diagnoses, as the blurred
edge of the tongue body, interference of pathological details, and the huge difference in the size and shape of the tongue. In this
study, an automated tongue image segmentation method using enhanced fully convolutional network with encoder-decoder
structure was presented. In the frame of the proposed network, the deep residual network was adopted as an encoder to obtain
dense feature maps, and a Receptive Field Block was assembled behind the encoder. Receptive Field Block can capture adequate
global contextual prior because of its structure of the multibranch convolution layers with varying kernels. Moreover, the
Feature Pyramid Network was used as a decoder to fuse multiscale feature maps for gathering sufficient positional information
to recover the clear contour of the tongue body. The quantitative evaluation of the segmentation results of 300 tongue images
from the SIPL-tongue dataset showed that the average Hausdorff Distance, average Symmetric Mean Absolute Surface Distance,
average Dice Similarity Coefficient, average precision, average sensitivity, and average specificity were 11.2963, 3.4737, 97.26%,
95.66%, 98.97%, and 98.68%, respectively. The proposed method achieved the best performance compared with the other four
deep-learning-based segmentation methods (including SegNet, FCN, PSPNet, and DeepLab v3+). There were also similar results
on the HIT-tongue dataset. The experimental results demonstrated that the proposed method can achieve accurate tongue
image segmentation and meet the practical requirements of automated tongue diagnoses.

1. Introduction

In the field of complementary medicine, tongue diagnosis is
the most active approach compared to other diagnostic
methods such as palpation and pulse diagnosis [1]. Because
of its simplicity, immediacy, and effectiveness, tongue diag-
nosis is widely used in Traditional Chinese Medicine
(TCM), Japanese traditional herbal medicine, and Tradi-
tional Korean Medicine (TKM) [2].

Tongue diagnosis means that the doctors judge the status
of a patient’s internal organs by the visual information such

as the color, form, substance, and coating of the tongue.
The diagnostic results heavily rely on the doctor’s experi-
ences. Moreover, the inspecting circumstances, such as illu-
mination, also affects the judgment of doctors. So, it is
difficult for tongue diagnosis to obtain objective and
standardized results. In the past decades, researchers have
developed various types of computer-aided tongue diagnosis
systems (CATDS) based on computer vision and machine
learning to address these problems in many countries [3-
6]. The schematic diagram of a typical CATDS is shown in
Figure 1 [7]. The system is mainly composed of four ordered
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FIGURE 1: Schematic diagram of a typical computer-aided tongue diagnosis system.

modules: tongue image acquisition, image preprocessing, fea-
ture analysis, and diagnosis. Plenty of research have already
been carried out on each module.

Generally, tongue images acquired by CATDSs include
some nontongue regions, such as the face, teeth, and lips.
However, the results of tongue diagnosis are only related to
the tongue body according to the theory of traditional orien-
tal medicine. So, it is an essential step to segment the tongue
body from a tongue image in CATDSs. Furthermore, high
accuracy is hugely demanded in tongue image segmentation
because the accurate results of the tongue feature analysis
mainly depend on the result of segmentation. This close rela-
tionship should be emphasized because pathological infor-
mation may exist on any part of the tongue body, for
example, teeth marks, which is one of the important tongue
features with rich disease-related information, usually occur
at the edge of the tongue body. For automated tongue image
segmentation, there are still some factors that make it chal-
lenging to extract tongue body accurately and robustly. The
specific cases are shown in Figure 2.

(i) Different shooting angle and circumstance and wide
variations of patients in the shape and size of the
tongue body

(ii) The variation in tongue color, texture, and shape due
to the pathology of the tongue

(iii) A blurred edge of the tongue body caused by a sim-
ilar color between the tongue body and the lips.

During the past decades, researchers have developed
many methods to segment tongue body from digital tongue
images effectively. Generally, these methods can be divided
into two categories: methods based on traditional image pro-
cessing technology and methods based on deep learning.

In the first category, some methods employed the tech-
niques of the adaptive threshold, region growing and merg-
ing, and edge detection to segment the tongue body from
tongue images [8-10]. However, these segmentation
methods just took the low-level visual information (such as
color, edge, and texture) into account and often failed to

extract the tongue body from the surroundings completely.
They ignored high-level information such as shape attribute,
which is an indispensable factor for this segmentation task.
Therefore, the other methods which introduce high-level
information were proposed to achieve better performance.
The active contour model (ACM) [11] was the most widely
used method based on high-level information in the field of
tongue image segmentation in the first category, which is also
known as Snakes. According to the initialization methods
and the strategy of curve evolution, there were many variants
of the ACM-based algorithms. Concerning the initialization,
Pang et al. [12] applied the bielliptical deformable template to
obtain the initial evolving contour. Zuo et al. [13] used a
polar edge detector to detect the initial boundary of the ton-
gue body. Furthermore, Wu et al. [14] applied the watershed
transformation to obtain the initial contour of the snake.
Regarding the curve evolution, Yu et al. [15] extracted the
tongue body by the addition of a color gradient to the gradi-
ent vector flow (GVF) snake. Shi et al. [16] applied double
geodesic flow to extract tongue body based on the prior infor-
mation of tongue shape and location. Later, Shi et al. [17]
continued the work with the color control-geometric and
gradient flow snake algorithm-enhanced curve velocity.
However, the traditional methods still could not meet the
demands of accuracy and robustness simultaneously, which
are essential for the following automated analysis of the ton-
gue features.

Since 2012, the convolutional neural network (CNN) has
made significant progress in various fields of computer
vision. Some researchers also tried to apply CNNs to tongue
image segmentation [18-20]. In these studies, the methods
based on deep learning could get better results than tradi-
tional methods. However, it was still difficult for these
methods to get accurate segmentation results because of their
simple network architecture, when they deal with similar
cases shown in Figure 2.

After Shelhamer et al. [21] introduced the fully convolu-
tional neural network to the field of image segmentation, var-
ious new models emerged and achieved remarkable results in
the field of image segmentation. There were still several fac-
tors that affect the accuracy of segmentation results. The first
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Figure 2: Difficult cases for automated tongue image segmentation. (a) Tongue bodies with different size and shape. (b) Severe fissures and
teeth marks on the surface of a tongue body. (c) Similar color between tongue body and lips.

one is related to the fact that the effective receptive field on
high-level layers of CNN is much smaller than the theoretical
one, especially on high-level layers [22], which may make
many networks only “see” a small part of the entire image
and be unable to integrate the sufficient contextual prior.
Some methods employed spatial pyramid pooling to capture
multiscale context to address the problem. DeepLab v3+ [23]
used Atrous Spatial Pyramid Pooling (ASPP) to capture con-
textual information. In [24], ASPP was replaced by the Vor-
tex Pooling Module, which can aggregate features around the
target position more efficiently by assigning different atten-
tion. Pyramid scene parsing net [25] introduced the pyramid
pooling module to contain information with different scales.
All of the above works demonstrated outstanding perfor-
mance. The second factor is caused by the inherent limitation
of CNN. In the task of image classification, deeper networks
with multiple down-sampling by max-pooling or convolu-
tion operation (stride > 1) have proven to be most successful.
However, for image segmentation, higher layer feature maps
usually contain more semantic meanings and yet lose more
positional information inevitably, which may cause rough
object boundaries. Meanwhile, clear and sharp object bound-
aries are critical in some applications. The researchers have
proceeded in two directions to deal with this problem [25].
The first one was the structure prediction. In researches
[26-28], the conditional random field (CRF) was adopted
to improve the segmentation result. The other direction was
to fuse feature maps from different intermediate layers in
CNN:ss to predict the object boundaries better. The skip con-
nection or encoder-decoder structure was the primary form
of multiscale feature map fusion. DeepLab v3+ and Refine-
Net [29], which use the encoder-decoder structure, showed
effectiveness in the field of image segmentation.

Inspired by these works, an automated tongue image seg-
mentation network named TISNet was presented, which was
based on the fully convolutional network with encoder-

decoder structure. The ResNet101 [30] was adopted as an
encoder to obtain dense feature maps, and the Receptive
Field Block (RFB) [31] was assembled behind the encoder
to integrate adequate global contextual prior. Moreover, a
Feature Pyramid Network (FPN) [32] was used as a decoder
to fuse multiscale feature maps to recover the clear and sharp
boundary of the tongue body.

2. Methods

As mentioned above, for a well-performance segmentation
network, it is significant to have a large receptive field for
integrating adequate global contextual prior and maintain
more positional information at the same time. In the TISNet,
Receptive Field Block was introduced to integrate adequate
global contextual prior, and Feature Pyramid Network was
adopted to gather sufficient positional information to cover
the contour of the tongue body. Next, the structures of
RFB, FPN, and the architecture of TISNet were described in
detail.

2.1. Receptive Field Block. Currently, in several state-of-art
segmentation networks, a particular module is designed to
obtain global contextual information for more accurate seg-
mentation results [23-25, 33, 34]. However, these modules
commonly set the receptive field of the same size on the fea-
ture map with a regular sampling grid, which may cause
some loss in the robustness and discernibility of the feature.
For example, the Atrous Spatial Pyramid Pooling (ASPP)
module used in DeepLab v3+ is employed to capture the
multiscale context. The ASPP module, which has several par-
allel branches of convolutional layers with different atrous
rates, is applied on the top feature maps. Though the ASPP
module can change the sampling distance from the center
of feature maps, resulting features captured by it still have a
uniform resolution and tend to be less distinctive than
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daisy-shaped ones. There are the same problems in Pyramid
Pooling Module [25] and Vortex Pooling Module [34].

In the field of neuroscience, researchers find that the size
of population Receptive Field (pRF) is a function of eccen-
tricity in the retinotopic maps in the human visual system,
and the size of pRF increases with eccentricity in spite of
varying in the maps. This mechanism means that the region
closer to the center of retinotopic maps is more important
than others in distinguishing object [35].

Inspired by the mechanism of pRF in the human visual
system, a module named Receptive Field Block was intro-
duced to strengthen global contextual prior information
learned from CNN in this study, which is helpful for accurate
image segmentation. Figure 3 illustrates the details of the
internal structure of RFB. The RFB includes a multibranch
convolutional block and a shortcut connection. The convo-
lutional block consists four branches, and each branch
has a convolutional layer with a particular kernel size
and a corresponding atrous convolutional layer with the
same value in dilation rate. The functional relation
between the kernel size and dilation rate is similar to that
of the size and eccentricity of pRFs in the human visual

system. The ordinary convolutional layer generates the
multisize pRF, and the atrous convolutional layer simu-
lates the human visual system to build the relationship
between the size and eccentricity of pRF. Finally, all fea-
ture maps from the different branches are merged into
one convolutional layer and pixel-wise added with the
shortcut connection branch.

2.2. Feature Pyramid Network. Before pixel prediction has
arisen, segmentation models generally adopt CNN models
as a backbone to extract the feature maps. However, these
CNN models transferred from the tasks of image classifica-
tion usually lose more positional information due to CNN
invariance, which causes that segmentation network cannot
obtain accurate object boundaries. Therefore, for better per-
formance, some of the new methods of image segmentation
attend to use the different layers in a CNN [21, 36] or concat-
enate the feature maps from multiple layers before final mask
predictions [37, 38]. Also, some methods associate the high-
level semantic information with low-level feature maps
though lateral/skip connections to recover the positional
information [39, 40].
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FIGURE 5: The architecture of the tongue image segmentation network.

TaBLE 1: Training parameters of the proposed method.

Hyperparameters Interpretation

Normalization Mean centering and standard deviation normalization of the intensities were performed
Cropping All the images were center-cropped to a 512 x 512 pixel size
Optimization SGD optimizer with the base learning rate 0.01

Learning rate scheduling

Batch size

Epoch number size
Momentum
Weight decay

The poly learning rate policy was used, where the current learning rate equals to

power

the base one multiplying (1 — n/N)
4
50
0.9
0.0005

In this paper, the Feature Pyramid Network (FPN) was
introduced to gather more positional information for obtain-
ing fine object boundaries. Giving a single-scale image of
arbitrary size, the FPN can generate a set of feature maps with
proportionally sized at multilevel. As shown in Figure 4, the
structure of FPN consists three components: a bottom-up
pathway, a top-down pathway, and lateral connections. The
details of FPN would be explained in the next section.

2.3. Tongue Image Segmentation Network. As shown in
Figure 5, the TISNet consists four parts: backbone module,
RFB module, FPN module, and final prediction module.
The ResNet101 is adopted as a backbone to extract the fea-
ture maps, and the feature maps output by each stage’s last
residual block are used. The feature maps of the last residual
blocks of conv2, conv3, conv4, and conv5 are denoted as C2,

C3, C4, and C5, which correspond to the strides of 4, 8, 16,
and 32 pixels to the input image. The convl is not included
because of the large requirement of memory.

Behind the backbone, the RFB module is applied to inte-
grate adequate global contextual prior. The structure of the
RFB module has been described in detail in Section 3.1. By
four branches, the RFB module can cover the whole, half,
and small portions of the image. The feature maps from all
the branches are fused and then fed into the FPN. The details
of the FPN is shown in the box of FPN. It fuses high-level
semantic information with the middle- and low-level features
by lateral connections in the top-down path. The coarser-
resolution feature maps are up-sampled by a factor of 2 and
then merged with the corresponding feature maps from the
backbone by element-wise addition. Before merging, the fea-
ture maps from backbone go though a 1x 1 convolutional



Computational and Mathematical Methods in Medicine

TaBLE 2: Description of the evaluation metrics.

Metric name Abbr. Range Interpretation Category
Dice similarity coefficient DsC 0-1 Similarity between masks Overlap
Hausdorft distance HD >0 Longest Euclidean distance between mask contours (absolute error) Distance
Symmetric mean absolute MSD >0 Mean Euclidean distance between mask contours (mean error) Distance
Surface distance precision PPV 0-1 Low values mean that the method tends to over segment Statistical
Sensitivity TPR 0-1 Low values mean that the method tends to under segment Statistical
Specificity TNR 0-1 Quality of segmented background Statistical
TaBLE 3: Evaluation of the segmentation results for 100 tongue images from the HIT-tongue dataset.

Method DSC HD (pixel) MSD (pixel) Precision Sensitivity Specificity

SegNet 0.9821 £ 0.0097 14.8461 + 4.1231 3.0021 +£2.0801 0.9814 £ 0.0153 0.9832 £0.0168 0.9893 +£0.0082
FCN 0.9700 £0.0148 17.9651 + 7.0000 4.8904 +2.8970 0.9646 + 0.0246 0.9762 +0.0184 0.9792 £ 0.0143
PSPNet 0.9800 £ 0.0071 12.9046 + 5.6969 3.2129 £1.0758 0.9806 £0.0119 0.9797 £0.0138 0.9885 £ 0.0075
DeepLab v3+ 0.9867 = 0.0060 10.8410 + 4.0000 2.1777 £1.0120 0.9834 +£0.0104 0.9901 £0.0103 0.9903 £ 0.0064
Ours 0.9869 £ 0.0067 10.7215 + 4.0000 2.1107 £1.0312 0.9862 £ 0.0096 0.9878 £0.0124 0.9921 £ 0.0053

layer to reduce channel dimensions. Then, a 3 x 3 convolu-
tion operation is applied to the merged map to reduce the
aliasing effect of up-sampling before producing the final fea-
ture maps of this level. This process iterates until the highest
resolution feature maps are generated. The set of final feature
maps are denoted as P2, P3, P4, and P5, which correspond to
C2, C3, C4, and C5, and have the same spatial sizes. Also, the
number of channels of all final feature maps in each level is
set to 256 for simplifying the computational complexity.

In the final prediction module, a strategy of fusion of
multiscale feature maps is applied to recover the contour
details instead of only using the feature map with the highest
resolution (P2). The final set of feature maps P3, P4, and P5 is
first bilinearly up-sampled to the same size of P2, and then all
of the four feature maps are concatenated. After the concate-
nation, a 3 x 3 convolution is appended on the feature maps,
followed by another simple bilinear up-sampled by a factor of
4 to obtain the final mask.

3. Experiments and Results

In this section, the performance of TISNet was evaluated on
two tongue image datasets: HIT-tongue dataset and SIPL-
tongue dataset. All experiments were conducted on the pub-
lic platform PyTorch 0.4.1 on the Windows system. The
system configuration is Intel (R) i5-7500 CPU @ 3.4GHz
with 16 G memory and NVIDIA Titan XP graphics card.

3.1. Implementation Details
3.1.1. Datasets

(1)HIT-Tongue Dataset. This dataset is an open tongue image
dataset from the Harbin Institute of Technology. The dataset
contains 300 RGB tongue images, and the corresponding
manual masks as the ground truth. All the tongue images
are acquired in a semienclosed environment under stable
lighting conditions. The image size is 768 x 576.

(2) SIPL-Tongue Dataset. This dataset is constructed exclu-
sively for automated tongue image analysis by ourselves. All
the images are acquired by a self-designed acquisition device
in a closed environment and carefully selected and labelled
by the experts in Chinese Traditional Medicine from Beijing
Xuanwu Hospital. In the SIPL-tongue dataset, there are 700
RGB tongue images and the corresponding well-labelled
masks for tongue image segmentation. The image size is
1024 x 768.

3.1.2. Data Augmentation. The research suggests that the
number of training samples is critical to the performance of
CNN. For a small-scale dataset, artificial data augmentation
is a common method to generate enough training samples.
Because of the limited scale of the tongue image dataset, the
strategies, including random Horizontal Flip, random resize
between 0.5 and 2, random rotation between -10 and 10
degrees, and random Gaussian blur, were adopted for data
augmentation in this study.

3.1.3. Training Parameters. In this study, the weights of pre-
trained Resnet101 were directly employed in the backbone
module of the TISNet. Then TISNet was trained on the PAS-
CAL VOC 2012 semantic segmentation benchmark [41] and
was fine-tuned, respectively, on two tongue image datasets.
Table 1 shows the parameters used in the training step.

3.2. Evaluation Criteria. In this study, there are six metrics
used to evaluate the performance of TISNet. Table 2 gives a
detailed description of the six metrics.

3.3. Experimental Results. To validate the effectiveness of the
proposed method, a comparison of performance was made
between our method and the other four deep-learning-
based methods (including FCN, SegNet, PSPNet, and Dee-
pLab v3+) on the HIT-tongue dataset and SIPL-tongue
dataset. For a fair comparison, these four models have the
same training hyperparameters as our model and follow the
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FiGure 6: Continued.
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FIGURE 6: Segmentation results of tongue images from HIT-tongue dataset.

TaBLE 4: Evaluation of the segmentation results for 300 tongue images from the SIPL-tongue dataset.

Method

DSC

HD (pixel)

MSD (pixel)

Precision

Sensitivity

Specificity

SegNet

FCN

PSPNet
DeepLab v3+

Ours

0.9645 £0.0194
0.9646 £ 0.0148
0.9680 £ 0.0138
0.9699 £0.0148
0.9726 £ 0.0136

26.3156 + 33.4805

14.4019 + 5.4493
12.9473 +5.1630
12.5066 + 6.2588
11.2963 + 5.7781

5.9745 £ 6.3669
4.4256 +£1.6332
4.0266 + 1.6854
3.8472 £1.8831
3.4737 £1.7573

0.9429 £ 0.0382
0.9466 + 0.0324
0.9519 £ 0.0298
0.9483 £0.0299
0.9566 + 0.0294

0.9871£0.0114
0.9843 £ 0.0144
0.9854 £ 0.0132
0.9931 = 0.0060
0.9897 +0.0085

0.9831£0.0118
0.9843 £0.0144
0.9854 £ 0.0132
0.9840 £0.0103
0.9868 + 0.0096




Computational and Mathematical Methods in Medicine

FiGure 7: Continued.



10

Computational and Mathematical Methods in Medicine

FIGURE 7: Segmentation results of tongue images from SIPL-tongue dataset.

same training procedure during experiments. Among these
methods, FCN is the first work that trains a fully convolu-
tional network end-to-end for semantic segmentation and
exceeds the state-of-the-art at that time. Many follow-up
excellent works are based on FCN. SegNet is a model with
the encoder-decoder structure for pixel-wise image segmen-
tation and obtains a good balance between accuracy and
requirement of memory. PSPNet embeds a pyramid pooling
module into the scene parsing network to aggregate region-
based context and achieves state-of-the-art performance on
various datasets by exploiting the capability of global context
information. DeepLab v3+ combines the advantages of spa-
tial pyramid pooling module and encoder-decoder structure
and obtains the best results on the PASCAL VOC 2012

semantic segmentation benchmark [41] and Cityscapes data-
sets [42].

3.3.1. Experiments on HIT-Tongue Dataset. A comparison of
the performance of five methods was conducted on the HIT-
tongue dataset, and Table 3 shows the quantitative results. It
can be seen that TISNet gets the best results in terms of DSC,
HD, MSD, accuracy, and specificity. Also, Figure 6 exhibits
the segmentation results of six typical cases from the HIT-
tongue dataset. Rows 1 to 4 are the four cases in which the
tongue body is with different size and shape. Rows 5 and 6
give two cases in which the color of the tongue body is similar
to the lip, and the interference from the teeth is also visible.
The segmentation results show that all deep models can
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TaBLE 5: Ablation study on the SIPL-tongue dataset.

Method DSC H D(pixel) MSD (pixel) Precision Sensitivity Specificity

Baseline 0.9611 £0.0141 17.0623 + 13.9580 5.1126 £2.2745 0.9387 £0.0324 0.9856 £0.0146 0.9809 £0.0110

+RFB 0.9654 £ 0.0124 13.8587 = 5.0418 4.3694 +1.5632 0.9485 £ 0.0279 0.9836 £ 0.0148 0.9841 £ 0.0095

+FPN 0.9689 £0.0128 13.2633 +7.6874 3.9478 £1.6488 0.9515 £0.0292 0.9878 £0.0116 0.9850 £ 0.0099

+MS 0.9726 £0.0136 11.2963 +5.7781 3.4737 £1.7573 0.9566 + 0.0294 0.9897 £ 0.0085 0.9868 + 0.0096

+: adding a new module or strategy based on the last row instead of the baseline. RFB: embedding RFB block into the segmentation network. FPN: employing
the FPN structure. MS: fusing multiscale feature maps before final pixel prediction.

locate the tongue body regardless of the difference in size and
shape. Although FCN, SegNet, and PSPNet can obtain the
smooth contour, the segmentation results are not accurate,
usually accompanied by oversegmentation or undersegmen-
tation, especially FCN. Instead, DeepLab v3+ and TISNet can
retain more details and present clear and sharp contours.

3.3.2. Experiments on SIPL-Tongue Dataset. Table 4 lists the
quantitative results obtained by different methods. It can be
seen that TISNet can get the best results on 5 out of 6 metrics
and can also perform well in terms of sensitivity. TISNet has
the lowest value in DSC, HD, and MSD along with small
standard deviations, and this indicates that TISNet can
obtain a more accurate contour of the tongue body. It also
is confirmed by qualitative results shown in Figure 7, where
the segmentation results of six cases from the SIPL-tongue
dataset are illustrated. Rows 1 and 2 are two cases in which
the tongue body is with different size and shape. Rows 3
and 4 show two cases in which there are severe fissures, tooth
marks, and coating on the surface of the pathological tongue.
Rows 5 and 6 are two cases in which the tongue body has
blurred contour between the tongue body and the lip along
with the interference from the teeth. The tongue images from
the SIPL-tongue dataset are more diverse and complicated
compared with the HIT-tongue dataset, which can test the
performance of the model more effectively. From Figure 7,
FCN and SegNet all fail to extract the tongue body in case
1, and there are oversegmentation or undersegmentation in
the other five cases. Because of more complicated and power-
ful models, PSPNet and DeepLab v3+ get better results than
FCN and SegNet, but they still cannot segment the tongue
body accurately, and especially, there are obvious overseg-
mentation in case 5 and case 6. It means that PSPNet and
DeepLab v3+ cannot deal with the problem of the blurred
edge well. Instead, TISNet solves the problem better and gets
the finest segmentation results, which principally benefits
from the elaborately designed network structure.

3.3.3. Ablation Study. In this study, RFB, FPN, and multiscale
fusion strategy are employed to improve the performance of
the segmentation network. The ablation study is conducted
on the SIPL-tongue dataset to validate the effectiveness of
these modules and strategies. Table 5 shows the results of
the ablation study. It should be noted that the “+” means add-
ing a new module or strategy based on the last row instead of
the baseline. The first row in Table 5 contains the results of
the baseline. The baseline uses the Resnet101 pretrained on
ImageNet as a backbone. A 3 x 3 convolution layer with

channel dimension 2 is embedded on top of the backbone
to classify the pixels, and then the coarse output is up-
sampled to produce the final segmentation results. Because
the size of the final outputs of the backbone is 1/32 of the
input image, the scale of details in the final prediction is lim-
ited, which leads to the worst results. The second row in
Table 5 shows the results when adding the RFB before the
final prediction occurs. As we can see, the performance is
overall improved, and especially, the HD is decreased from
17.0623 to 13.8587. Then, the FPN is embedded in the previ-
ous structure, which further improves the performance in all
six metrics. Finally, after the multiscale fusion strategy is
added, the best results are yielded and listed in the fourth
row in Table 5. It is concluded that these modules and strat-
egies reinforce the performance of the network for tongue
image segmentation.

4. Discussion and Conclusion

In this study, a new tongue image segmentation method
named TISNet was proposed, and it achieved the best perfor-
mance on two tongue image datasets compared with the
other four deep-learning-based methods. The qualitative
and quantitative evaluation showed that the proposed
method met the practical requirements of automated tongue
image segmentation and could be embedded in computer-
aided tongue diagnosis systems.

According to the experimental results, it can be con-
cluded that the deep-learning-based methods are robust to
the variation in the size and shape of the tongue body, as well
as pathological details on the surface of the tongue. For the
method of tongue image segmentation, the key point is to
deal with the problem of the blurred edge of the tongue body
to obtain a sharp and clear contour. An elaborately designed
model is critical.

In this study, three factors make TISNet achieve the best
performance. Firstly, the ResNet101 model is adopted as a
backbone to extract the dense feature maps, which is also
used in PSPNet and DeepLab v3+. The ResNet101 is more
potent in feature extraction and representation than
VGGI16 [43] used as the backbone in FCN and SegNet. It is
one of the reasons that TISNet, DeepLab v3+, and PSPNet
can perform better than FCN and SegNet in total. Secondly,
RFB is introduced behind the backbone to integrate adequate
global contextual prior. Moreover, because the structure of
the RFB simulates the pRF in the human vision system, the
feature extracted by RFB is more distinctive than the ones
obtained by PPM in PSPNet and by ASPP in DeepLab v3+.
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Finally, FPN is applied to produce a fine mask. FFN is a
typical encoder-decoder structure and can gather sufficient
positional information by fusing multiscale feature maps,
and this positional information is much valuable for recover-
ing the accurate contour of the tongue body.

In the future, other than applying the proposed method
to a more number of clinical data, our research will focus
on making the model light-weight and efficient to run it in
mobile devices.

Data Availability

The HIT-tongue dataset used in this research can be taken
from https://github.com/BioHit/TongelmageDataset. The
SIPL-tongue dataset used in this research has not been
allowed to be public now because this dataset comes from
an ongoing collaborative project and is being used for other
research at the same time.
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