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Abstract: We conducted experiments on SnO2 thin layers to determine the dependencies between
the stoichiometry, electrochemical properties, and structure. This study focused on features such as
the film structure, working temperature, layer chemistry, and atmosphere composition, which play a
crucial role in the oxygen sensor operation. We tested two kinds of resistive SnO2 layers, which had
different grain dimensions, thicknesses, and morphologies. Gas-sensing layers fabricated by two
methods, a rheotaxial growth and thermal oxidation (RGTO) process and DC reactive magnetron
sputtering, were examined in this work. The crystalline structure of SnO2 films synthesized by
both methods was characterized using XRD, and the crystallite size was determined from XRD and
AFM measurements. Chemical characterization was carried out using X-ray photoelectron (XPS)
and Auger electron (AES) spectroscopy for the surface and the near-surface film region (in-depth
profiles). We investigated the layer resistance for different oxygen concentrations within a range
of 1–4%, in a nitrogen atmosphere. Additionally, resistance measurements within a temperature
range of 423–623 K were analyzed. We assumed a flat grain geometry in theoretical modeling for
comparing the results of measurements with the calculated results.

Keywords: tin dioxide; DC reactive magnetron sputtering; RGTO technique; surface morphology;
X-ray diffraction (XRD); X-ray photoelectron spectroscopy (XPS); oxygen adsorption

1. Introduction

The surface deposition of semiconductor metal oxides, such as SnO2, TiO2, ZnO, In2O3,
and WO3, is used to create sensitive films for gas sensors [1–6]. Sensors based on tin dioxide
are widely researched due to their application in toxic gas concentration monitoring, mainly
in industry and areas with polluted atmospheres. Oxygen on top of such surface layers is
an essential part of the system because it is highly reactive [7–11]. Oxygen absorbed on a
layer’s surface reduces its conductance, emergence, and rises its work function (in the range
of 423–723 K) [12,13]. On the other hand, the control of oxygen concentration is crucial
in cooling, food production [14,15], gardening [16], diagnostics [17], and alarm devices
such as oxygen monitors for the atmosphere or water [18,19], where improper oxygen
concentrations lead to underwater corrosion phenomena [20]. The SnO2 layer properties are
crucial in determining the interaction of gas with the surface and, consequently, developing
new sensors. Typically, sensors are able to work in the temperature range of 420–720 K
at 1 atm pressure in an atmosphere with high concentrations of oxygen. Under such
conditions, surface oxygen frequently reacts with atmospheric gas.

Additionally, different methods of creating gas-sensing layers and further processing,
for example, aging in a humid atmosphere [21], may influence the response range [22–27].
Therefore, the development of highly sensitive and selective sensors depends on under-
standing the absorption processes and chemistry of compounds inside the sensor layer [8].
Some elements, such as Pt, Pd, Au, and Sb, are frequently added to the sensor material
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in small quantities to improve sensor selectivity and sensitivity [1,8,28–30]. However, the
sensitivity of tin dioxide-based sensors depends primarily on the amount of oxygen re-
moved from the SnO2 oxide lattice. Moreover, control over surface defects, sensor material
additives, and the extended surface–gas interaction are crucial [7,8,31]. Previous studies
have shown that the surface sensitivity of a thin-film sensor to the atmosphere depends
on the smoothness, purity, and temperature of the tin dioxide substrate, as well as on the
properties of the tin dioxide substrate, crystal size, temperature, and humidity of the active
surface layer [32,33]. Previous research has focused mainly on oxygen and synthetic air
interactions with thick films [34,35], whereas thin films have been investigated in fewer
papers [36–38].

In this paper, we present comparative studies of SnO2 layers produced using two
different methods of fabrication. Tin dioxide films were deposited on quartz substrate using
the DC reactive magnetron sputtering method (MS-SnO2 films) and on alundum ceramic
using a rheotaxial growth and thermal oxidation process (RGTO-SnO2 films). These layers
may be useful for the detection of oxidizing (e.g., NO2 and O2) and reducing (e.g., H2)
gases [39–41]. Because the gas molecules interact only with the surface atomic layers, the
accurate characterization of these layers in terms of morphology and surface structure is
essential. In this paper, we present our results on the structure and surface morphology,
chemical composition, and sensing properties of both types of synthesized SnO2 thin films.
The SnO2 thin films were characterized in detail through XRD, SEM, AFM, AES, and
XPS studies. In addition to data on the composition of the surface layers, we obtained
information about the chemical environment or oxidation state of a given element. We
studied the effect of annealing on the sample resistance changes in an oxygen atmosphere
as a function of temperature to determine relationships between the surface morphology
and conductance response. We then compared the obtained measurement results with
theoretical calculations, where a flat grain geometry was assumed in theoretical modeling.

2. Materials and Methods

The dependence of structure and chemistry on the electronic properties of SnO2 thin
layers was determined by analyzing SnO2 surface structure and topography and carrying
out gas tests. The morphology and topography of the SnO2 surface were determined using
SEM and AFM measurements. AES, XPS, and XRD were used to determine the specimen
composition and crystallinity.

2.1. Production of SnO2 Thin Layers

The SnO2 thin films investigated in this paper were grown by either RGTO or mag-
netron sputtering. In the case of RGTO, tin droplets of 99.99% purity were deposited on
alumina substrate and heated to a temperature range of 528–543 K using vacuum thermal
evaporation (p = 10−3 Pa). This was followed by thermal oxidation of the tin layers in
an oxygen-containing atmosphere at 973 K to produce SnO2 [33,40]. The proper thermal
environment is crucial to avoid incomplete oxidation of the metal droplets, which may
lead to unwanted sensor response drift [41]. A detailed description of sensor materials
prepared by the RGTO technique can be found in [39,40].

Resistive sensor structures based on thin layers of SnO2 were also fabricated using
DC reactive magnetron sputtering [42]. In this technique, SnO2 and Au layer formation
were carried out on the Leybold Z400 Sputtering System equipped with Au and Sn targets.
Process conditions were as follows: dc mode, power P = 75 W, in O2–Ar plasma (20%
O2–80% Ar) from a metallic target Sn (99.995%) [42], total pressure was ptot = 1 × 10−2

mbar, oxygen pressure pO2 = 2 × 10−3 mbar, and deposition rate vpar = 85 and 94 nm/min.
Au layers (d = 200 nm) were formed by the electrode-deposition method, using magnetron
sputtering, under the following conditions: argon pressure pAr = 8 × 10−3 mbar, power
P = 50 W. The Au layer deposition rate was 108 nm/min.

Figure 1a,b shows resistive sensing structures based on SnO2 thin films fabricated by
RGTO technique and DC reactive magnetron sputtering. In the resistive sensing structures
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investigated in this work, gold electrodes were used, with the configuration shown in
Figure 1a,b. The photo in Figure 1a shows three sensing structures deposited on a single
ceramic substrate (Al2O3), with dimensions of 2 cm × 3 cm. These structures differ in
the shape of the gold electrodes. Gold is the most commonly used electrode material in
resistive gas sensors because it provides the lowest contact resistance while exhibiting poor
catalytic properties compared to platinum, for example [13,22]. Figure 1a also shows a
detailed schematic of one of the structures (the middle structure).
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Figure 1. Photo and schematic of a model resistive-type sensor structure with a SnO2 sensor film fabricated using (a) RGTO
or (b) DC reactive magnetron sputtering.

2.2. Measurement of Gas Response

We accurately recorded the sensor structure response to changes in the gas concen-
tration of the atmosphere through tests. The gas station consisted of an electrical power
source, gas feeder, test chamber, and measuring devices. The resistance measurements
of MS-SnO2 films were performed with dry (3% humidity) gas flow at different oxygen
concentrations (1–4% of oxygen in nitrogen) whilst heating the samples to temperatures of
150–350 ◦C. We performed resistance measurements of RGTO-SnO2 layers under the dry
flow gas mixture containing 2.5% of oxygen in nitrogen within a wide temperature range
of 25–540 ◦C. Above 140 ◦C, we increased the temperature by 10 K every 5 min. For com-
parison, we carried out similar measurements of the resistance temperature dependence
using a commercial Taguchi thick film (TGS 812) device. In all sensor tests, we recorded the
resistance 5 min after reaching the set temperature to attain equilibrium (to establish the
system resistance). We then introduced a dry gas mixture to the testing chamber. The gas
feeder created constant airflow inside the test chamber, which amounted to 100 mL/min.
A mass flow controller (MFC) supervised by a microprocessor system provided precise
control of the gas mass flow [33]. The measurement of sensor resistance was performed
using an Agilent Multimeter 3497A and a Mastech M-3660D multimeter. We controlled the
temperature using a Mastech M383 multimeter and AZ8852 dual-channel thermocouple
thermometer. Figure 2 shows the schematic of the measurement system.

2.3. Characterization of SnO2 Thin Layers

Qualitative X-ray phase analysis was carried out using an X-ray diffractometer (PANa-
lytical X’Pert PRO, PANanalytical B.V., Almelo, Netherlands) with an X-ray lamp equipped
with a cobalt anode at a wavelength of λ = 1.7889 Å, voltage of 30 kV, filament current of
40 mA, and angle 2θ range of 2–120◦. The topography of SnO2 thin films deposited on a
quartz substrate was investigated at a 5–20 kV accelerating voltage using a ZEISS SUPRA
25 high-resolution scanning electron microscope equipped with a TRIDENT XM4 X-ray de-
tector for the detection of scattered radiation by EDAX. Surface analysis of SnO2 thin films
(evaluation of surface roughness, granularity measurements, depth, and size analysis of
pores) was conducted using an atomic force microscope (Digital Instruments Nanoscope).
Measurements were performed at atmospheric pressure and room temperature. A high-
resolution Scanning Auger Microprobe—Microlab 350 (Thermo VG Scientific)—and SAM
PHI 600 model (Physical Electronics) equipped with an Ar+ ion gun for sample sputtering
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were used to conduct qualitative and quantitative analysis of the chemical composition and
to estimate the thickness of the tin dioxide films. An Ar+ ion gun was used to measure the
composition profiles of the oxide layer. Discontinuous sputtering was used to gradually
remove the SnO2 layer. Sputtering parameters were ion energy 3 keV, beam current 1.3 µA,
and crater size 2 mm × 2 mm. The Auger spectra were recorded after each sputtering
period at Ep = 10 keV in 1.0 eV steps with a dwell time of 100 ms.
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The appropriate sensitivity factors from the Thermo VG Scientific peak database
editor for the elemental components were used to convert the Auger signals into atomic
percentages (at %). The sputtering rate of the oxide layers removed by Ar+ ions was
roughly estimated by ion etching a Ta2O5 film of known thickness (30 nm) grown by
anodic oxidation on a Ta substrate [43]. The estimated sputtering rate was 0.2 nm/s. An
Avantage-based data system was used for data acquisition and processing. The ion energy
(SAM PHI 600) was 1 keV, and the sputter rate was about 1.5 nm/min (determined by ion
etching of a silica sample covered by a SiO2 film with known thickness of 100 nm). The
entire sputtering process of RGTO-SnO2 layers took about 5 h (in the near-surface region,
the sputtering cycle stayed at 6 s, whereas it was 3 min for the bulk, and the raster area
amounted to 4 mm2). The primary electron energy was 5 keV, and the sample current
was 10 nA. The peak-to-peak signal intensity was determined from differentiated AES
spectra. On this basis, the relative concentrations of the constituents were estimated using
atomic sensitivity factors taken from [44]. The chemical composition of the sample surfaces
was characterized by X-ray photoelectron spectroscopy (Microlab 350) using AlKα non-
monochromated radiation (hν = 1486.6 eV; 300 W) as the excitation source. The pressure
during analysis was 5.0 × 10−9 mbar. All survey spectra of the SnO2 surface were recorded
using 150 eV pass energy. The binding energy of the target elements (Sn 3d, C 1s, O 1s,
Al 2s, Au 4f, and Cl 2p) were determined with a pass energy of 40 eV at 0.83 eV resolution
using the binding energy of an adventitious carbon (C 1s: 285 eV) as a reference. A linear
or Shirley background subtraction [45] was applied to obtain XPS signal intensity. Peaks
were fitted using an asymmetric Gaussian/Lorentzian mixed function. For data acquisition
and processing, an Avantage-based data system was used.

3. Results and Discussion
3.1. X-ray Diffractometry

The investigation of SnO2 layers deposited on quartz substrate using DC reactive
magnetron sputtering and on Al2O3 substrate by the RGTO technique was carried out
in a goniometric system using a strip detector. The thickness of the layers ranged from
100 to 500 nm. Due to a large number of reflections from the substrate material during
sample testing, a stable angle of incidence (α = 1.5) of the primary X-ray beam was
employed. This was achieved using a parallel beam collimator in front of the proportional
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detector to obtain information primarily from the surface layer of the sample. Due to the
possibility of recording a diffraction pattern of a beam falling on the sample surface at low
angles, diffraction patterns of thin layers could be obtained by increasing the volume of
diffraction material.

With the help of the JCPDS (International Centre for Diffraction Data [46]), the analysis
revealed the presence of SnO2 reflections (tetragonal grid, JCPDS card no. 41-1445) from
the layer and Au reflections (regular grid, JCPDS card no. 04-0784). The use of samples (test
structures) with gold electrodes deposited on the SnO2 layer caused reflections from gold
in the diffraction patterns. The research also revealed the presence of Al2O3 (rhombohedral
grid, JCPDS card no. 46-1212) reflections originating from the substrate material of the
RGTO-SnO2 film (Figure 3c).

The X-ray diffraction pattern of the MS-SnO2 films with a thickness of 300 nm, pre-
pared on quartz substrate by magnetron sputtering with different film deposition rates,
are shown in Figure 3a,b. The results of the qualitative X-ray phase analysis revealed that
the crystalline SnO2 layer was deposited on quartz (Figure 3a,b) or on alundum ceramics
(Figure 3c), which was demonstrated by the identification of reflections originating from
crystallographic planes (110), (101), (200), (211), (112), and (321). No Sn reflections were
observed. In Figure 3a,b, one may notice that the preferred orientation of MS-SnO2 (211)
became more intense when the deposition rate was slightly increased. Au reflections origi-
nating from planes (111), (200), (220), and (311) were also identified. Their occurrence was
related to the sample geometry and the distance between the gold electrodes. Despite using
a 1 mm inlet gap, it was impossible to eliminate that component with the measurement
parameters that were used. The measurement of the crystallite size was based on diffraction
patterns obtained using Scherrer’s formula and SnO2 reflections from the (110) plane using
the geometry of the constant angle of incidence [47]. Results showed that the average size
of crystallites in the 300 nm thick MS-SnO2 films was about 40 nm when the deposition
rate was 85 nm/min and about 25 nm for deposition rate = 94 nm/min. As a result of
previous calculations, we found that the average size of crystallites in the 100–500 nm
thick samples was in the range of 15–40 nm [48]. The RGTO-SnO2 layer was formed by
crystallites of about 90 nm average size. Measurement errors for the data, mentioned above,
were about 10%.

3.2. Atomic Force (AFM) and Scanning Electron (SEM) Microscopy

Figure 4 shows AFM images of MS-SnO2 film spread over a quartz substrate using
magnetron sputtering. The presented surface was highly homogenous and smooth, which
was consistent with the results of AFM and SEM tests given in [37,49]. The 100 nm film was
very smooth, and irregularities were only 3–5 nm with an RMS of about 0.5–0.8 nm and an
average grain diameter of 13 nm (Figure 4b). We described the topography of the 500 nm
film in [48], with grains 124 nm long and 55 nm wide visible, and the surface irregularity
varied from 4 to 12 nm with an RMS roughness of 1.5–2.4 nm.



Sensors 2021, 21, 5741 6 of 19Sensors 2021, 21, x FOR PEER REVIEW 6 of 19 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. X-ray diffraction spectra for MS-SnO2 300 nm thick film deposited on quartz substrate 
using magnetron sputtering with different deposition rate: (a) 85 nm/min and (b) 94 nm/min [48] 
and for (c) RGTO-SnO2 film deposited on a ceramic substrate (Al2O3-96%) with a constant angle of 
incidence. 

Figure 3. X-ray diffraction spectra for MS-SnO2 300 nm thick film deposited on quartz substrate
using magnetron sputtering with different deposition rate: (a) 85 nm/min and (b) 94 nm/min [48]
and for (c) RGTO-SnO2 film deposited on a ceramic substrate (Al2O3-96%) with a constant angle
of incidence.



Sensors 2021, 21, 5741 7 of 19

Sensors 2021, 21, x FOR PEER REVIEW 7 of 19 
 

 

3.2. Atomic Force (AFM) and Scanning Electron (SEM) Microscopy 
Figure 4 shows AFM images of MS-SnO2 film spread over a quartz substrate using 

magnetron sputtering. The presented surface was highly homogenous and smooth, which 
was consistent with the results of AFM and SEM tests given in [37,49]. The 100 nm film 
was very smooth, and irregularities were only 3–5 nm with an RMS of about 0.5–0.8 nm 
and an average grain diameter of 13 nm (Figure 4b). We described the topography of the 
500 nm film in [48], with grains 124 nm long and 55 nm wide visible, and the surface 
irregularity varied from 4 to 12 nm with an RMS roughness of 1.5–2.4 nm. 

  
(a) (b) 

Figure 4. AFM images (500 nm × 500 nm) of the MS-SnO2 film of thickness d = 100 nm formed using the magnetron 
sputtering method with measurements of crystallites and film topography: (a) 3D image and (b) 2D image. 

The high smoothness and homogeneity of the SnO2 layer surface produced by mag-
netron sputtering was in accordance with results reported in [37,38,49,50], where the crys-
tal sizes varied from 15 to 200 nm. The results of the AFM analysis revealed that the SnO2 
films obtained by means of magnetron sputtering had a granular structure. These films 
were composed of similarly sized grains, which were responsible for the significant 
smoothness of the film surface (a lack of porosity and smaller surface development in 
comparison to films obtained using the RGTO technique [39,40,51]). 

The topographies of the MS-SnO2 and RGTO-SnO2 layers are presented in Figures 5 
and 6. A high-resolution scanning electron microscope equipped with a scattered X-ray 
detector was used for an EDX local chemical analysis in selected microregions. Figures 5a 
and 6a show SEM micrographs of the SnO2 thin layers produced by the magnetron sput-
tering and formed using the RGTO technique (Sn deposited on a ceramic substrate (Al2O3-
96%) at a temperature of 543 K). The results of this qualitative and quantitative analysis 
are shown in Figures 5b and 6b. Both surfaces differed significantly in smoothness and 
grain size. The SEM image (see Figure 5a) showed that the MS-SnO2 layer of thickness d 
= 300 nm was composed of grains with a diameter ranging from several nanometers to 
about 50 nm. They were characterized by significant surface smoothness, which results in 
a larger uniformity of the layer thickness and, thus, less development of the surface than 
the layers obtained with the RGTO technique. In contrast to the MS-SnO2 film, it was evi-
dent that the RGTO-SnO2 film (in Figure 6) was characterized by a more porous structure. 
SEM images also showed that layer-forming grain diameters varied from 40 to 1800 nm. 
In these films, grains were not closely packed together on the substrate and the layer of 
microholes was visible and, therefore, the sensitive area was well developed. 

100 nm MS-SnO2 

Figure 4. AFM images (500 nm × 500 nm) of the MS-SnO2 film of thickness d = 100 nm formed using the magnetron
sputtering method with measurements of crystallites and film topography: (a) 3D image and (b) 2D image.

The high smoothness and homogeneity of the SnO2 layer surface produced by mag-
netron sputtering was in accordance with results reported in [37,38,49,50], where the crystal
sizes varied from 15 to 200 nm. The results of the AFM analysis revealed that the SnO2 films
obtained by means of magnetron sputtering had a granular structure. These films were
composed of similarly sized grains, which were responsible for the significant smoothness
of the film surface (a lack of porosity and smaller surface development in comparison to
films obtained using the RGTO technique [39,40,51]).

The topographies of the MS-SnO2 and RGTO-SnO2 layers are presented in
Figures 5 and 6. A high-resolution scanning electron microscope equipped with a scat-
tered X-ray detector was used for an EDX local chemical analysis in selected microregions.
Figures 5a and 6a show SEM micrographs of the SnO2 thin layers produced by the mag-
netron sputtering and formed using the RGTO technique (Sn deposited on a ceramic
substrate (Al2O3-96%) at a temperature of 543 K). The results of this qualitative and quan-
titative analysis are shown in Figures 5b and 6b. Both surfaces differed significantly in
smoothness and grain size. The SEM image (see Figure 5a) showed that the MS-SnO2 layer
of thickness d = 300 nm was composed of grains with a diameter ranging from several
nanometers to about 50 nm. They were characterized by significant surface smoothness,
which results in a larger uniformity of the layer thickness and, thus, less development of
the surface than the layers obtained with the RGTO technique. In contrast to the MS-SnO2
film, it was evident that the RGTO-SnO2 film (in Figure 6) was characterized by a more
porous structure. SEM images also showed that layer-forming grain diameters varied from
40 to 1800 nm. In these films, grains were not closely packed together on the substrate and
the layer of microholes was visible and, therefore, the sensitive area was well developed.
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silicon Si (LVV) (78 eV) and oxygen O (KLL) (507 eV). The layer thickness was about 300 
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For the RGTO-SnO2 film, the major oxygen peak was located at the energy of 506.5 
eV, and there was a minor peak at 484 eV (Figure 7b). The series of peaks from 315.0 to 
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The carbon peak was located at 263 eV. To calculate the atomic concentration of elements 
in the MS-SnO2 film, the Auger peak area (after background removal) was used. Sensitiv-
ity factors for carbon, tin, and oxygen were 0.555, 0.214, and 0.15, respectively. For the MS-

Figure 5. (a) SEM image of the MS-SnO2 film surface (250,000×) of thickness d = 300 nm and (b) results of (SnO2)
microanalysis (qualitative and quantitative analysis).
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(b) results of (SnO2) microanalysis (qualitative and quantitative analysis).

SEM and AFM analyses acknowledge the existence of conductive “bridges” during
tin oxidation in the RGTO process that contributed to the SnO2 film sensitivity, reported
previously by other authors [52]. Such facts are significant because the thickness and
porosity of layers strongly influence toxic and explosive gas sensing abilities.

3.3. Auger Electron Spectroscopy (AES)

To better understand the chemical composition of the MS-SnO2 and RGTO-SnO2
layers, surface analytical measurements and Auger electron spectroscopy combined with
Ar+ sputtering were used. Auger spectra, registered in layer etching time, are described
in Figure 7. Elements were identified using the handbook of standard Auger spectra and
Avantage Peak Database Editor (Thermo VG Scientific) [53].

Figure 7a shows examples of survey spectra for the MS-SnO2 sample. The Sn (MNN)
stable intensity (424.5 eV) and O (KLL) (511 eV) signals were clearly visible during sputter-
ing, reflecting analytical results at various depths of the sample within the tin oxide layer.
After sputtering the SnO2 layer away, the substrate spectra revealed the presence of silicon
Si (LVV) (78 eV) and oxygen O (KLL) (507 eV). The layer thickness was about 300 nm.

For the RGTO-SnO2 film, the major oxygen peak was located at the energy of 506.5 eV,
and there was a minor peak at 484 eV (Figure 7b). The series of peaks from 315.0 to 464.0 eV
were characteristic of tin, which had its highest peaks at approximately 420.5 eV. The carbon
peak was located at 263 eV. To calculate the atomic concentration of elements in the MS-
SnO2 film, the Auger peak area (after background removal) was used. Sensitivity factors
for carbon, tin, and oxygen were 0.555, 0.214, and 0.15, respectively. For the MS-SnO2
film, the ratio of oxygen to tin ((O)/(Sn)) concentrations was calculated using integral AES
spectra. This ratio varied from 2.11 on the surface to 1.83 in depth. For the RGTO-SnO2 film,
we estimated the ratio of (O)/(Sn) from the quotient of the Auger peak-to-peak heights of
the O (KLL) signal at an electron kinetic energy of 508.5 eV, and of the tin signal at 423.5 eV
corresponding to the low-energy Sn (MNN) transition using the atomic sensitivity factors
(carbon: 0.14; tin: 0.9; oxygen: 0.4) taken from [44]. The (O)/(Sn) average value varied
from 1.25 (in the bulk of the sample) to 1.58 (at the surface) for the weakly oxidized sample.
Moreover, the locations of the most distinctive twin peaks for the RGTO-SnO2 films at
423.5 and 431.0 eV in differentiated spectra (430 and 437 eV for pure metallic tin [44])
indicated that tin was mainly present in an oxide form. The good separation of the doublet
signal (7.5 eV) showed that either no metallic tin was present, or it was present in a small
amount [54].

The calculated in-depth profiles of the relative concentration of elements (Figure 8)
showed that the MS-SnO2 and RGTO-SnO2 films were relatively homogenous in terms of
chemical composition, except for a thin near-surface layer with a thickness of about 7 and
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55 nm, respectively. Results of prior research on SnO2 thin layers produced by the RGTO
technique showed that homogeneous, well-oxidized layers [55] with an (O)/(Sn) ratio of
1.89 on the surface were characterized by the repeatability of resistance measurements,
though carbon contamination on the surface reached 50 nm in depth [33]. A relatively
high depth of carbon penetration was caused primarily by the roughness of the crystal
grain structure.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 19 
 

 

SnO2 film, the ratio of oxygen to tin ((O)/(Sn)) concentrations was calculated using integral 
AES spectra. This ratio varied from 2.11 on the surface to 1.83 in depth. For the RGTO-
SnO2 film, we estimated the ratio of (O)/(Sn) from the quotient of the Auger peak-to-peak 
heights of the O (KLL) signal at an electron kinetic energy of 508.5 eV, and of the tin signal 
at 423.5 eV corresponding to the low-energy Sn (MNN) transition using the atomic sensi-
tivity factors (carbon: 0.14; tin: 0.9; oxygen: 0.4) taken from [44]. The (O)/(Sn) average value 
varied from 1.25 (in the bulk of the sample) to 1.58 (at the surface) for the weakly oxidized 
sample. Moreover, the locations of the most distinctive twin peaks for the RGTO-SnO2 
films at 423.5 and 431.0 eV in differentiated spectra (430 and 437 eV for pure metallic tin 
[44]) indicated that tin was mainly present in an oxide form. The good separation of the 
doublet signal (7.5 eV) showed that either no metallic tin was present, or it was present in 
a small amount [54]. 

 
(a) 

 
(b) 

Figure 7. Integral Auger spectra (N(E) = f(Ekin)) for MS-SnO2 sample measured (a) during etching
of the tin dioxide layer from the outermost surface to silicon dioxide substrate and for RGTO-SnO2

sample (b) in the near-surface region.



Sensors 2021, 21, 5741 10 of 19

Sensors 2021, 21, x FOR PEER REVIEW 10 of 19 
 

 

Figure 7. Integral Auger spectra (N(E) = f(Ekin)) for MS-SnO2 sample measured (a) during etching of 
the tin dioxide layer from the outermost surface to silicon dioxide substrate and for RGTO-SnO2 
sample (b) in the near-surface region. 

The calculated in-depth profiles of the relative concentration of elements (Figure 8) 
showed that the MS-SnO2 and RGTO-SnO2 films were relatively homogenous in terms of 
chemical composition, except for a thin near-surface layer with a thickness of about 7 and 
55 nm, respectively. Results of prior research on SnO2 thin layers produced by the RGTO 
technique showed that homogeneous, well-oxidized layers [55] with an (O)/(Sn) ratio of 
1.89 on the surface were characterized by the repeatability of resistance measurements, 
though carbon contamination on the surface reached 50 nm in depth [33]. A relatively 
high depth of carbon penetration was caused primarily by the roughness of the crystal 
grain structure. 

  
(a) (b) 

Figure 8. Composition depth profiles of the relative element concentration in the near-surface region and the bulk of the 
SnO2 layer formed by (a) magnetron sputtering and (b) RGTO methods. 

3.4. X-ray Photoelectron Spectroscopy (XPS) 
XPS was used to analyze the chemical composition and the nature of the chemical 

bonds of both the MS and RGTO oxide layer surfaces. This technique provided infor-
mation with a lateral resolution of ca. 2 mm × 5 mm. Figure 9 presents the XPS spectra of 
the SnO2 samples produced with different methods. From the XPS survey spectra (Figure 
9a,b)), we observed signals for Sn 3d, O 1s, C 1s, Sn 3s, Sn 3p, Sn 4d, Sn 4p, and Sn 4s. 
Additionally, weak XPS signals at around 84, 120, and 200 eV were detected for Au 4f, Al 
2s, and Cl 2p, respectively (Figure 9b). The recorded spectra were consistent with those 
reported elsewhere [51]. 

Table 1 presents the binding energies of Sn 3d5, O 1s, C 1s, Al 2s, Au 4f7, and Cl 2p3 
signals for both investigated samples (MS-SnO2 and RGTO-SnO2). Organic carbon con-
tamination was observed at the outermost surface (Figure 10a,b). It consisted of a majority 
of hydrocarbons (C–C peak set at 285.0 eV) with a minor component of carbon species 
singly bonded (C–OH peak at 286.9 or 287.0 eV) or double bonded (carboxyls at 289.0 or 
289.1 eV) to oxygen [56,57]. 

Figure 8. Composition depth profiles of the relative element concentration in the near-surface region and the bulk of the
SnO2 layer formed by (a) magnetron sputtering and (b) RGTO methods.

3.4. X-ray Photoelectron Spectroscopy (XPS)

XPS was used to analyze the chemical composition and the nature of the chemical
bonds of both the MS and RGTO oxide layer surfaces. This technique provided information
with a lateral resolution of ca. 2 mm × 5 mm. Figure 9 presents the XPS spectra of the SnO2
samples produced with different methods. From the XPS survey spectra (Figure 9a,b)), we
observed signals for Sn 3d, O 1s, C 1s, Sn 3s, Sn 3p, Sn 4d, Sn 4p, and Sn 4s. Additionally,
weak XPS signals at around 84, 120, and 200 eV were detected for Au 4f, Al 2s, and
Cl 2p, respectively (Figure 9b). The recorded spectra were consistent with those reported
elsewhere [51].

Table 1 presents the binding energies of Sn 3d5, O 1s, C 1s, Al 2s, Au 4f7, and Cl
2p3 signals for both investigated samples (MS-SnO2 and RGTO-SnO2). Organic carbon
contamination was observed at the outermost surface (Figure 10a,b). It consisted of a
majority of hydrocarbons (C–C peak set at 285.0 eV) with a minor component of carbon
species singly bonded (C–OH peak at 286.9 or 287.0 eV) or double bonded (carboxyls at
289.0 or 289.1 eV) to oxygen [56,57].

In all cases, the oxidized samples exhibited a clear Sn 3d5/2 signal at 486.9 (Ms-SnO2,
Figure 10c) and 486.5 eV (RGTO-SnO2, Figure 10d). This signal was ascribed to the Sn–O
bond resulting from the presence of tin dioxide [58–60]. However, the deconvolution
of the O 1s signals suggested that two contributions may have been assigned to metal
oxides 530.9 eV (MS-SnO2), 530.4 eV (RGTO-SnO2), and organic carbon contaminations
(Figure 10e,f and Table 1). This finding was in accordance with the data reported by other
authors [59,61,62]. Figure 10c also shows satellite peaks of Sn 3d5/2 and Sn 3d3/2 at 489.0
and 497.4 eV, respectively. Furthermore, metallic tin (Sn0) was present in small amounts
only in the RGTO-SnO2 sample (Figure 10d).

The atomic ratio of oxygen and tin (the corresponding data can be found in Table 1)
indicated that the MS-SnO2 film ((O)/(Sn) = 2.18 at the surface and 1.89 in bulk) was more
thoroughly oxidized than the RGTO-SnO2 film ((O)/(Sn) = 1.77 in the near-surface region).
The calculated values of chemical shifts, equal to 1.9 eV [63] and 1.5 eV, respectively (with
respect to pure tin, Sn 3d5/2 binding energy = 485.0 eV [58]), confirmed these conclusions.
The Au 4f high-resolution XPS spectrum (RGTO-SnO2 layer) could be deconvoluted into
two components (Figure 11a). The bands at 83.1 and 84.8 eV indicated the presence of
metallic gold and likely gold–tin bonds [58], respectively. Note that the Au0 4f7/2 negative
binding energy shift (−0.9 eV), compared with that of the bulk metallic Au0 (84.0 eV),
indicated interactions between Au and SnO2 [64]. Additionally, aluminum oxide (Al 2s
binding energy = 119.8 eV) and alkali chloride (Cl 2p3/2 binding energy = 198.9 eV) from
the substrate were also observed (Figure 11b,c) [58].
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Table 1. XPS study of the chemical state and chemical composition of the surface of the sensitive layers SnO2 obtained using
(a) magnetron sputtering method and (b) RGTO technique (Sn deposited at 270 ◦C).

Layer Sn3d5
(eV)

C1s
(eV)

O1s
(eV)

Al2s
(eV)

Au4f7
(eV)

Cl2p3
(eV)

Chemical
State

Chemical
Composition

at (%)

(a)
SnO2/
SiO2

486.9
-
-
-

-
285.0
286.9
289.0

530.9
-

532.8
-

-
-
-
-

-
-
-
-

-
-
-
-

SnO2
C–C

comp. (C, O, H)
organic comp. (C, O)

O (46.4)
C (32.3)
Sn (21.3)



Sensors 2021, 21, 5741 12 of 19

Table 1. Cont.

Layer Sn3d5
(eV)

C1s
(eV)

O1s
(eV)

Al2s
(eV)

Au4f7
(eV)

Cl2p3
(eV)

Chemical
State

Chemical
Composition

at (%)

(b)
SnO2/
Al2O3

486.5
-
-
-
-
-
-
-
-

484.8
487.9

-
285.0

-
287.0
289.1

-
-
-
-
-
-

530.4
-

532.0
533.2

-
-
-
-
-
-
-

-
-
-
-
-

119.8
-
-
-
-
-

-
-
-
-
-
-
-

83.1
84.8

-
-

-
-
-
-
-
-

198.9
-
-
-
-

SnO2
C–C

metallic oxide (Al, O)
comp. (C, O, H)

organic comp. (C, O)
Al with O (Al2O3)

alkali chloride
Au

Au with Sn
Sn0

Sn–Au

O (44.9)
Sn (25.3)
C (21.5)
Al (5.2)
Au (1.6)
Cl (1.5)Sensors 2021, 21, x FOR PEER REVIEW 12 of 19 

 

 

binding energy = 119.8 eV) and alkali chloride (Cl 2p3/2 binding energy = 198.9 eV) from 
the substrate were also observed (Figure 11b,c) [58]. 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Deconvoluted (a,b) C 1s, (c,d) Sn 3d, and (e,f) O 1s core-level XPS spectra of MS-SnO2 (thickness = 300 nm) and 
RGTO-SnO2 films, as indicated. Figure 10. Deconvoluted (a,b) C 1s, (c,d) Sn 3d, and (e,f) O 1s core-level XPS spectra of MS-SnO2

(thickness = 300 nm) and RGTO-SnO2 films, as indicated.



Sensors 2021, 21, 5741 13 of 19

Sensors 2021, 21, x FOR PEER REVIEW 13 of 19 
 

 

Table 1. XPS study of the chemical state and chemical composition of the surface of the sensitive layers SnO2 obtained 
using (a) magnetron sputtering method and (b) RGTO technique (Sn deposited at 270 °C). 

Layer Sn3d5 
(eV) 

C1s 
(eV) 

O1s 
(eV) 

Al2s 
(eV) 

Au4f7 
(eV) 

Cl2p3 
(eV) 

Chemical 
State 

Chemical 
Composition 

at (%) 

(a) 
SnO2/ 
SiO2 

486.9 
- 
- 
- 

- 
285.0 
286.9 
289.0 

530.9 
- 

532.8 
- 

- 
- 
- 
- 

- 
- 
- 
- 

- 
- 
- 
- 

SnO2 

C–C 
comp. (C, O, H) 

organic comp. (C, O) 

O (46.4) 
C (32.3) 
Sn (21.3) 

(b) 
SnO2/ 
Al2O3 

486.5 
- 
- 
- 
- 
- 
- 
- 
- 

484.8 
487.9 

- 
285.0 

- 
287.0 
289.1 

- 
- 
- 
- 
- 
- 

530.4 
- 

532.0 
533.2 

- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 

119.8 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 

83.1 
84.8 

- 
- 

- 
- 
- 
- 
- 
- 

198.9 
- 
- 
- 
- 

SnO2 

C–C 
metallic oxide (Al, O) 

comp. (C, O, H) 
organic comp. (C, O) 

Al with O (Al2O3) 
alkali chloride 

Au 
Au with Sn 

Sn0 
Sn–Au 

O (44.9) 
Sn (25.3) 
C (21.5) 
Al (5.2) 
Au (1.6) 
Cl (1.5) 

 

 
(a) 

  
(b) (c) 

Figure 11. (a) Au 4f, (b) Al 2s, and (c) Cl 2p core-level XPS spectra of the RGTO-SnO2 film. Figure 11. (a) Au 4f, (b) Al 2s, and (c) Cl 2p core-level XPS spectra of the RGTO-SnO2 film.

3.5. Gas Sensing Properties

Figure 12 presents the relationship between calculated conductance from the resistance
measurements as a function of the temperature for various partial pressures of gas. From
the measurements, we concluded that the response of the structure to the investigated gas
depended on its concentration, working temperature, and film thickness. The maximum
conductance was obtained at about 573 K in the 100 nm film (Figure 12a), whereas in
the case of the 500 nm film, maximum conductance was reached at a lower temperature
(Figure 12b). Conductance decreased above 473 K with increased oxygen pressure in a gas
atmosphere for both 100 and 500 nm films.

Similar relationships—preferable when considering gas sensor applications—were
obtained from a theoretical analysis substantiated in our previous publication [65]. The
response of the resistive SnO2 film to the action of oxidizing gas was heavily dependent
on the one hand, on the mechanism of the interaction between gas molecules and the
SnO2 film, and on the other hand, on the transport of carriers in the depleted region
induced by a negative charge trapped by the adsorptive acceptor-type surface states. The
surface space charge region, induced by adsorbed oxygen ions, contributed significantly
to the conductance of the semiconducting SnO2 layers. Figure 13 shows the results of
theoretical calculations of the relationship between conductance and temperature based on
the assumption that the 100 and 500 nm films were totally depleted, and donors (oxygen
vacancies) in the bulk were mobile [66]. Measurements and calculations were carried out
for identical partial pressures of oxygen. Comparing Figures 12 and 13, we can conclude
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that the resulting values of conductance per square were in line with the measurement
data. As suggested by theoretical analysis, the observed conductivity maximum may
be linked to the minimal oxygen ion coverage at a given temperature (equalization of
coverage by different oxygen ions), which was strongly related to the layer structure
(volume doping level). Since structural tests revealed the crystalline structure of grains,
findings from the numerical analysis may be used to interpret measured characteristics
of the investigated films. For a layer with a given thickness, for example, 100 nm, the
calculations showed that the maximum conductance shifted towards lower temperatures
as the partial pressure of oxygen decreased or when the donor concentration (Nd) in bulk
increased [65]. Experimentally, the maximum conductance was observed at 450 K for
SnO2 nanocrystalline layers with a grain diameter of <20 nm. Additionally, maximum
conductance was observed between 550 and 600 K for thin polycrystalline layers with a
thickness less than 500 nm and an average grain size of 15 nm [67].
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The measured dependencies of conductance changed as a function of temperature
for 2.5% oxygen concentration in nitrogen, a RGTO-SnO2 thin-film sensor (with tin de-
position temperature of 255 ◦C), and a commercially available thick-film sensor TGS 812
are summarized in Figure 14. We could see that both the n-type sensor devices exhibited
a similar conductance behavior versus temperature (in the range of 25–540 ◦C), with a
specific maximum. We obtained a conductance maximum of about 543 and 523 K for the
RGTO-SnO2 sensor and thick-film sensor TGS 812, respectively.
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Previously, we provided our interpretation of conductance measurement results for
other O2 concentrations (4%, 21%, 75%) in nitrogen and tin deposited at 270 °C [33], in
which appropriate potential chemical reactions responsible for the sensor response changes
were discussed in detail.

The method used to produce thin-film layers determined their layer thickness, work-
ing temperature, shape, and grain size. These different structures had different responses
to gases. For example, as seen in our previous publication [33], sensor structures obtained
with the RGTO technique had maximum sensitivity to oxygen in the researched atmo-
sphere in the temperature range of 533–558 K. Other investigations in the literature have
shown maximum conductance at about 590 K in the case of thin films [67] and at lower
temperatures (555 K) for thick films [68].

Minimum resistance (maximum conductance) at the desired temperature is a very
positive phenomenon used in gas sensors. At optimal temperature, the sensor response is
independent of small changes in temperature, which allows the requirement for a precise
temperature stabilizer to be relaxed [48].

4. Conclusions

The results of the qualitative X-ray phase analysis revealed that the crystalline SnO2
layer was deposited on quartz or on alundum ceramics. The results of AFM revealed the
granular structure of the SnO2 films produced using DC reactive magnetron sputtering.
These films were composed of similarly sized grains, which were responsible for significant
smoothness of the film surface, i.e., the lack of porosity and a smaller surface development,
in comparison to films produced using the RGTO technique.

The gas molecule adsorption mechanism on the surface of the oxide semiconduc-
tor was determined mainly by the chemical and electron properties of the surface and
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near-surface region. Electric properties of SnO2 thin layers strongly depended on their
stoichiometry and microstructure [13]. The (O)/(Sn) value, calculated using the integral
AES spectrum, changed from 1.58 at the surface to 1.25 in the layered bulk RGTO-SnO2
and from 2.11 to 1.83 in MS-SnO2. We estimated the depth of the carbon presence at
around 50 nm for RGTO-SnO2 and 7 nm for MS-SnO2. The structure response to gas action
was dependent on the working temperature and film thickness. In particular, maximum
conductance was observed at about 573 K in the case of the 100 nm film, whereas in the
case of the 500 nm film, the maximum conductance was observed at a lower temperature.
The maximum for the temperature characteristics of conductance (for similar concentration
levels of oxygen in nitrogen), was also obtained from a theoretical analysis of oxygen
adsorption on the surface of SnO2 (110) for totally depleted 100 and 500 nm layers. For the
investigated films, there was agreement between the measurements and calculations for
the temperature dependence of conductance.

The structural, chemical (XRD, SEM, AFM, AES, XPS), and sensor (measurements of
changes in resistance in the gas atmosphere) tests enabled us to determine that parameters
such as the layer structure, surface morphology, working temperature, and gas concentra-
tion were key factors for the optimum operation of the SnO2 thin film sensor in an oxygen
atmosphere.
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sensor to oxygen. Vacuum 2008, 82, 966–970. [CrossRef]

34. Rantala, T.S.; Rantala, T.T.; Lantto, V. Computational studies for the interpretation of gas response of SnO2 (110) surface. Sens.
Actuators B Chem. 2000, 65, 375–378. [CrossRef]

35. Suematsu, K.; Yuasa, M.; Kida, T.; Yamazoe, N.; Shimanoe, K. Determination of Oxygen Adsorption Species on SnO2: Exact
Analysis of Gas Sensing Properties Using a Sample Gas Pretreatment System. J. Electrochem. Soc. 2014, 161, B123–B128. [CrossRef]

36. Savu, R.; Ponce, M.A.; Joanni, E.; Bueno, P.R.; Castro, M.; Cilense, M.; Varela, J.A.; Longo, E. Grain size effect on the electrical
response of SnO2 thin and thick film gas sensors. Mater. Res. 2009, 12, 83–87. [CrossRef]

37. Khan, A.F.; Mehmood, M.; Rana, A.M.; Bhatti, M.T. Effect of annealing on electrical resistivity of rf-magnetron sputtered
nanostructured SnO2 thin films. Appl. Surf. Sci. 2009, 255, 8562–8565. [CrossRef]

http://doi.org/10.1002/cphc.200600292
http://www.ncbi.nlm.nih.gov/pubmed/16955518
http://doi.org/10.1016/S0925-4005(99)00278-6
http://doi.org/10.1016/j.snb.2006.04.004
http://doi.org/10.24966/DRT-9315/100016
http://doi.org/10.3390/s18041130
http://www.ncbi.nlm.nih.gov/pubmed/29642468
http://doi.org/10.1080/19315260.2012.713451
http://doi.org/10.1177/0310057X8601400418
http://www.ncbi.nlm.nih.gov/pubmed/3565729
http://doi.org/10.3390/s19183995
http://www.ncbi.nlm.nih.gov/pubmed/31527482
http://doi.org/10.20964/2019.05.49
http://doi.org/10.3390/s18010254
http://doi.org/10.3390/s141120480
http://doi.org/10.3762/bjnano.10.136
http://doi.org/10.1016/j.pmatsci.2008.06.003
http://doi.org/10.3389/fchem.2018.00364
http://doi.org/10.1155/2015/694823
http://doi.org/10.3390/nano10071392
http://www.ncbi.nlm.nih.gov/pubmed/32708967
http://doi.org/10.3390/nano10040813
http://www.ncbi.nlm.nih.gov/pubmed/32340380
http://doi.org/10.3390/s150614286
http://www.ncbi.nlm.nih.gov/pubmed/26091394
http://doi.org/10.1016/j.snb.2012.10.087
http://doi.org/10.1007/s10853-008-2486-4
http://doi.org/10.1016/j.vacuum.2008.01.003
http://doi.org/10.1016/S0925-4005(99)00292-0
http://doi.org/10.1149/2.004406jes
http://doi.org/10.1590/S1516-14392009000100010
http://doi.org/10.1016/j.apsusc.2009.06.020


Sensors 2021, 21, 5741 18 of 19

38. Suematsu, K.; Yamada, K.; Yuasa, M.; Kida, T.; Shimanoe, K. Evaluation of Oxygen Adsorption Based on the Electric Properties of
SnO2 Semiconductor Gas Sensors. Sens. Mater. 2016, 28, 1211–1217.

39. Sberveglieri, G.; Faglia, G.; Groppeli, S.; Nelli, P.; Camanzi, A. A New Technique for Growing Large Surface Area SnO2 Thin Film
(RGTO-Technique). Semicond. Sci. Technol. 1990, 5, 1231–1233. [CrossRef]

40. Szuber, J.; Uljanow, J.; Karczewska-Buczek, T.; Jakubik, W.; Waczynski, K.; Kwoka, M.; Kończak, S. On the correlation between
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