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INTRODUCTION 
 

DNA methylation plays a mechanistic role in embryonic 

development [1–3], aging [4–7], and diseases [1, 7, 8], 

these changes alter the availability of DNA to the 

binding proteins and the spatial organization of 

chromatin that would either enhance or repress gene 

transcription [9–13]. 5-methyl cytosine is enriched in 

CpG dinucleotides, and their methylation status can be 

copied from the parental strand to the offspring strand 

during cell replication, which attracts more attention 

than other classes of methylation pattern. Human 

genome assembly contains about 3 × 10
7 

CpG 

dinucleotides, and about 21.8% CpGs (5.6 out of 25.71 

million) are dynamic among cell types, and 15.4% CpGs 

(4.1 out of 26.5 million) are strongly differentially 

methylated among tissues [14, 15]. It has been found 

that methylation level is highly associated with aging. 

And about 2% CpG sites show hypermethylation or 

hypomethylation with ageing [16, 17]. The overarching 

pattern of DNA methylation changes may activate or 

repress specific transcriptional programs [9]. 

 

Recent studies have reported breed-specific, tissue-

specific, and age-specific methylated CpGs in pig 

genome [18–22]. Epigenetic atlas of various pig skeletal 

muscle and adipose tissues from different breeds  

have been investigated, and the methylation status  

within promoters is negatively correlated with mRNA 

and miRNA expression [19, 21, 23]. Long et al. 
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ABSTRACT 
 

DNA methylome pattern is significantly different among tissues, ages, breeds, and genders. We assessed 20 
methylome and transcriptome data in longissimus dorsi (LD) or testicles from Bamaxiang (BMX) and Large White 
pigs (LW) by deep sequencing technology. We identified ~55.7M CpGs and 5.30M, 0.20M, 1.20M, and 0.16M 
differential CpGs (P<0.01) between tissues, ages, breeds, and genders, respectively. Interestingly, 7.54% of 
differentially methylated regions (DMRs) are co-localized with promoters, which potentially regulate gene 
expression. RNA-seq analysis revealed that 23.42% CpGs are significantly correlated with gene expression (mean 
|r|=0.58, P<0.01), most of which are enriched in tissue-specific functions. Specially, we also found that the 
methylation levels in promoters of 655 genes were strongly associated with their expression levels (mean 
|r|=0.66, P<0.01). In addition, differentially methylated CpGs (DMCpGs) between breeds in HOXC gene cluster 
imply important regulatory roles in myocytes hypertrophy and intermuscular fat (IMF) deposition. Dramatically, 
higher similarity of methylation pattern was observed within pedigree than across pedigrees, which indicates the 
existence of heritable methylation regions. In summary, a part of CpGs in promoter can change its methylation 
pattern and play a marked regulatory function in different physiological or natural environments. 
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identified 9234 DMRs in skeletal muscles between  

young and middle-aged pigs using methylated DNA 

immunoprecipitation sequencing (MeDIP-seq) data, and 

they detected a significant negative correlation (r=-0.21, 

P=3.19×10
-7

) between the methylation of gene and its 

expression [22]. Environmental changes are also 

associated with genome methylation levels. For example, 

Long et al. reported DNA-methylation-mediated gene 

expression alterations of Tibetan pigs in low-altitude 

acclimation [24]. These studies showed personalized and 

common characteristics of pig methylome, but there are 

challenges in clarification of the relationship between 

methylome and expression, and the effect of differential 

methylome on phenotypic variation under identical or 

discrepant growth stage, physiological and natural 

environment. 

 

DNA methylation represses transcription by directly 

and indirectly inhibiting the binding process of 

transcription factors and promoters [1]. However, recent 

studies have also found that methylation can promote 

the transcriptional activation of gene [11], and a part of 

transcription factors (TFs) like to bind the methylated 

motif [10]. 

 

On the other hand, embryonic DNA methylation is 

reprogrammed in vertebrates, but a considerable fraction 

of mammalian genomes might potentially bypass  

the demethylation process during preimplantation  

and PGC reprogramming [25]. DNA methylation in the 

germ line of adults can be inherited intergenerationally 

[25, 26]. Twins study on methylation and their 

methylation correlations suggested that an average of up 

to 20% variance was explained by additive genetic 

factors across whole methylation sites [27]. But it is 

unclear which individually methylated/demethylated 

regions are passed on to or reappear in adult tissues of 

offspring. 

 

We herein survey global genome DNA methylation level 

using high-depth WGBS from 1 to 9 year-old BMX pigs 

and 7-months LW pigs, with the aim to 1) draw a high-

resolution dynamic methylation map based on different 

genders, breeds, tissues, and age status, 2) to explore the 

relationship between DNA methylation and tissue-

specific function at transcriptomic and phenotypic level, 

3) to detect the inheritable methylation regions whose 

methylated status transmit from the parent to the 

offspring generations. Pork is the main source of edible 

meat, and pigs have been widely used in human 

medicine as the large model mammal for organ 

transplantation and disease researches. The systematic 

investigation of methylomic homogeneity and 

heterogeneity under different factors will provide an 

important theoretical basis for pig breeding and human 

medical models. 

RESULTS 
 

The distribution of global CpGs and methylation level 
 

In total, we acquired 2.24Tb WGBS data with an 

average of 46X genome coverages in 20 samples for 

BMX and LW, of which 55,685,213 autosomal CpGs 

(both strands of DNA) were detected. These CpG sites 

are unevenly distributed across the genome, with the 

preference of locating at the ends of chromosomes, and 

abundantly clustered in local locations (Figure 1A).  

 

Integrating genome annotation information, we detected 

the proportion of these CpG sites distributed in introns, 

exons, and intergenic regions are 51.9%, 9.11%, and 

38.98%, respectively (Figure 1B). Further analysis 

uncovered that 9.62% of 55,685,213 CpG sites are 

enriched in CpG islands (CGIs), of which 11.64% CpGs 

are located in CGI shores (Figure 1C). 

 

We retained about 35M CpGs whose coverage ≥10 and 

≤300 in half of samples to investigate the global 

methylation level. The global methylation levels formed 

a skew bimodal distribution with mean 70.5% (Figure 

1D). In LD, the global methylation level was higher in 

LW than in BMX. Comparing results between tissues, 

the methylation level in testis was higher than in LD for 

BMX (Figure 1E). Based on the annotated genes and 

CGIs in pig genome, we also showed the distribution of 

methylation levels over ten regions (Figure 1F). Lower 

mean methylation levels (~50%) were found in 5’ UTRs 

and CGIs, and methylation levels in the two regions had 

a larger inter-quartile (~0.8). In addition, overlap of 5’ 

UTRs and CGIs (5’ UTR-CGI) had an extremely low 

methylation level (mean 7.65%) (Figure 1F and 

Supplementary Table 1). Focusing on hypomethylation 

and hypermethylation CpGs, we explored the 

distribution of 1,147,532 hypomethylated CpGs 

(methylation level was lower than 10%) and 5,743,199 

hypermethylated CpGs (higher than 90%). More than 

half of hypomethylated CpGs are localized in CGIs or 

CGI shores, and the hypomethylated sites are also 

enriched in 5’ UTRs (Fisher’ exact test odds=2.80, 

P=2.2e-16). Our results revealed hypermethylated global 

genome and local hypomethylation in genome and 

further discovered highly variable methylation level and 

hypomethylation in 5’ UTRs and CGIs. 

 

To further investigate relation between gene expression 

and methylation, we focused on the correlation between 

methylation level in the promoter regions and gene 

expression as most of CGIs are located in gene 

promoters in mammalian. We herein calculated the 

mean methylation level in 1000 bp promoter regions 

(800 bp upstream of TSS to 200 bp downstream of 

TSS). We retained 7558 genes’ promoters which have 
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at least ten CpGs in our filtered data. About 6.8% (655 

out of 7558) mean methylation level of promoters were 

strongly correlated with genes’ expression (Spearman 

correlation, P<0.01, mean |r|=0.66). The results 

suggested that gene promoter methylation plays an 

importantly regulatory role in gene expression in the 

adult tissues. 

 

Differentially methylated CpGs between tissues 

 

To reveal tissues or organs specific DMCpGs relating to 

structural and functional elements in adulthood pigs, we 

detected the methylomic differences between LDs and 

testes from young to elder stages. The joint results of 

three differential analyses under BGLMM framework 

identified ~5.3 million DMCpGs (9.52% out of captured 

autosomal CpGs, P<0.01, Figure 1A) which belonged to 

1,466,027 discrete DMRs following Matthew D.S et al. 

[15]. Focusing on the DMRs in promotors, we 

uncovered 110582 DMRs positing within 1st exon or 

1Kb upstream of genes and rigorously screened out 

4978 DMRs (53627 DMCpGs) which included at least 

5 synclastic DMCpGs. Correlation analysis showed 

7361 DMCpGs and 5197 DMCpGs were negatively and 

positively correlated with genes’ expression, 

respectively (mean correlation coefficient was -0.59, 

P<0.05 and 0.57, P<0.05). The methylation status of 

DMRs in adult tissues may have positive and negative 

effects on the expression levels of 8% and 11% of genes 

(Supplementary Figure 3). DMRs of 1362 genes were 

detected to be significantly differentially expressed 

between two tissues (Wilcoxon signed rank test, P<0.01, 

Supplementary Table 2), among which DMRs locating 

in genes’ promoters displayed higher differential 

expression tendency (Fisher’s exact test, odds 

ratio=1.27, P=2.82E-12). There were no significant 

differences in expression of the remaining 3616  

genes. These results implied that a part of DMRs 

continuously regulated the tissue-related function 

through all adulthood, and others might be of 

spatiotemporal characteristics or other unknown 

regulatory mechanisms. 

 

 
 

Figure 1. The distribution of CpGs. (A) The global distribution of CpGs and dynamic CpGs. From outside to inside, density plot show the 

global DMCpGs between tissues, dynamic CpGs with age (muscle and testis), and DMCpGs between breeds. (B) The intergenic and intragenic 
CpGs. (C) Positions of CpGs relative to CGI. (D) The distribution of CpG methylation levels. (E) Mean global methylation level of 20 samples.  
(F) The distribution of methylation levels in different genome regions. 
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For the known functional and significantly differentially 

expressed 873 genes, we performed Gene ontology 

(GO) analysis and found that 549 genes were enriched 

into 101 GO terms (P<0.05) in three categories 

including biological process (65 terms), cellular 

component (19 terms) and molecular function (17 

terms). Muscle tissue-related function term includes 

muscle contraction, muscle filament sliding, myofibril 

assembly and skeletal muscle cell differentiation. Testis 

specific functional ontology includes meiotic DNA 

double-strand break formation, sister chromatid 

cohesion, spermatid development and acrosomal 

membrane (Supplementary Table 3). In addition, 70 

genes were enriched into a biological process of 

positive regulation of transcription from RNA 

polymerase II promoter (GO:0006936). The results 

showed that DMCpGs were associated with tissue-

specific cell differentiation and gene expression. 

 

The mechanisms of DNA methylation in regulating 

gene expression are very complex and diverse. Herein 

we report three different DMRs in promotor whose 

methylation levels are negatively correlated with gene 

expression (Figure 2A–2C), including DMR co-

localized with CGI (SPACA1), differential DNA 

methylation valley nearby the transcriptional start site 

(MEI1), and DMR co-localized with conservative 

sequence (TNNT3). Besides, we also detected a certain 

number of positive correlations between methylation in 

upstream proximal DMRs (TCEA3) and its expression 

(Figure 2D). It supports the current research results that 

methylated regulatory elements activate gene 

expression [10, 11]. 

 

Normally, gene expression is regulated by gene 

promotor methylation. Interestingly, DMR on 

chromosome 2 (chr2:1301111-1301408) correlated with 

expression was located in TNNT3 rather than in its 

promotor region (Supplementary Figure 2). This region 

is probably not the transcription initiation site in 

muscles based on RNA-seq data (Figure 2C). 

Conservative analysis for 21 eutherian mammals 

revealed an 83bp constrained EPO-low-coverage 

element (chr2:1301181-1301263) was co-localized in 

the DMR, and the methylation levels of CpGs between 

constrained region and the ~100bp flanking region were 

significantly different in two tissues. Thus, the 83nt core 

sequence has been browsed to AnimalTFDB3.0 

(http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/), and 

64 pieces of information was retrieved (P<10
-4

). 

However only five expressing predicted transcription 

factor genes (including NFATC2, NFATC4, RBPJ, RB1 

and TEAD4) were identified in the two tissues (Figure 

2E). The results showed the constrained element is an 

alternative promotor or tissue-specific enhancer in 

TNNT3 of pig. 

Dynamic CpGs with age 

 

In order to clarify the physiological tendency in LD and 

testis under three age status, the sections of muscles and 

testes were stained with ATPase and HE, respectively 

(Figure 3A, 3B). Histological sections of LDs showed 

reducing of slow muscle fiber ratio and hypertrophic 

multinucleated muscle cells with age (Figure 3B). 

Histological sections of testes showed a decrease in the 

number of germ cells and Sertoli cells, and a shrinkage in 

seminiferous tubules with aging (Figure 3A). the 9Y testes 

showed typical histological aging characteristics [28]. 

 

We herein compared the methylation level among ages 

to see that if the distinct phenotype was regulated by 

methylation. Our methylomic data showed no 

significant difference in methylomic entropy and global 

methylation level across age groups (ANOVA, P>0.05), 

but weak decreasing tendency of methylation level was 

observed (methylome level in 1Y, 4Y, and 9Y age 

groups were 72.94%, 70.95%, 69.72%, respectively). 

 

Focusing on some specific CpGs, we detected 9821 and 

9759 dynamic CpGs with age using BGLMM in LDs and 

testes respectively. The dynamic CpGs are unevenly 

distributed on the genome, of which 766 (~7.8%) have 

been found in both tissues. The CpGs varied consistently 

in both tissues, which suggested methylation hotspot with 

ageing (Figure 1A). The dynamic CpGs showed more 

hypomethylation with age (57%) than hypermethylation 

(43%), and 69% of shared dynamic CpGs were 

hypomethylated with age. The Short Time-series 

Expression Miner (STEM) analysis revealed several 

differentially dynamic patterns in CpG methylation with 

age (Supplementary Figure 4). 

 

Using methylation difference threshold algorithm 

(minimum methylation difference ≥0.3), we identified 

147159 and 294439 dynamic CpGs varying with age in 

LD and testis, respectively (Figure 3C, 3D). We 

validated 56% dynamic CpGs identified by BGLMM 

algorithm. A total of 43,655 dynamic CpGs were shared 

in the two tissues and more hypermethylation with age 

than hypomethylation was showed. The lack of regular 

MDCpGs supports the previous hypothesis of stochastic 

epigenetic drift with aging. However, we captured a 

gene set including 93 genes which harbored at least 50 

intragenic DMCpGs in both tissues. The shared genes 

enriched into 14 biology process terms which refer to 

neuron migration and development, signal transduction, 

and cell adhesion (Figure 3E). Among them, at least 16 

homologous genes (including AKT3, ARNT, 

CDC42BPA, CDH4, COL11A1, CTNNBL1, MYO1D, 

PRKCE, PSD3, PTPN4, RAD51B, RGS7, SLC24A3, 

TGFB2, TMEM117, UNC5D) are listed in the aging 

gene database (http://genomics.senescence.info/genes/). 

http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/
http://genomics.senescence.info/genes/
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Figure 2. Differentially methylated regions and expression. (A, B) The DMR located in promotors and expression of SPACA1 and MEI1, 
respectively. (C) The differential transcription levels and methylation levels of TNNT3 in muscles and testes. Bar plot shows the reads 
coverage of RNA-seq data from muscles (top), line chart shows the methylation levels of TNNT3 in both tissues (middle), the scatter plot 
shows the methylation levels and distribution of DMCpGs in TNNT3, and box plot shows the transcription levels of TNNT3 in both tissues 
(bottom). (D) Methylation level in DMR of TCEA3’s upstream was positively correlated with expression. (E) Prediction of transcription factor 
binding sites for conserved sequences. 
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Figure 3. Differences among age groups. (A, B) Testis and muscle tissue sections with HE and ATPase staining, respectively. (C, D) The 
distribution of autosomal DMCpGs between any two age groups. From outside to inside, density plot show the results of six differential 
analyses under 9vs1Ymuscle, 9vs1Ytestis, 9vs4Ymuscle, 9vs4Ytestis, 4vs1Ymuscle, and 4vs1Ytestis, respectively. (E) GO terms for genes with 
highly dynamic CpGs which were shared in two tissue. 
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Differentially methylated CpGs in LD between 

breeds 
 

Focusing initially on our muscle samples of two pig 

breeds, we captured 1147591 dynamic CpGs, of which 

63.31% are distributed within 25959 genes. We 

detected 7876 co-directional methylated CpGs in 605 

genes which were significantly differential expressed 

(Wilcoxon signed rank test, P<0.01) in LDs between 

two breeds. The HOXC gene cluster (ssc12:24764000-
2489000) exhibited rich differential methylation sites 

and 38.77% of which were located in CGIs. Further 

analysis of RNA-seq data indicated 6 out of 9 HOXC 

family genes were differentially expressed (Figure 4), 

the expression levels of HOXC4-6, HOXC8, HOXC9 in 

LD of LW were higher than that of BMX, and the 

HOXC11 was in opposite in LD of two breeds (Figure 

4). This results suggested that intragenic and intergenic 

DMRs may affect expression of the host gene. We 

focused on HOXC8 which was highly expressed in LD 

of LW. Muscles may require HOXC8 protein for full 

activation of muscle-specific gene expression [29]. Up 

regulation of HOXC8 in LD suggests its role in lineage 

development of muscle satellite cell (MSC) into trunk 

muscles [30]. 

Other two genes, ZIC1 and BMP5, were highly 

expressed in LD of LW. BMP signaling regulates MSC-

dependent postnatal muscle growth [31], and ZIC1 is a 

marker of adipose tissue browning in humans, which is 

defined as the conversion of white fat into brown fat 

[32]. Compared with LW pigs, BMX pigs have lower 

eye muscle area (13.63 cm
2 

vs 51.47 cm
2
) and higher 

intramuscular fat content (IMF, 2.93% vs 1.89%) [33, 

34]. The results suggested a set of highly specific-

expressed genes with hypomethylation in LD of LW are 

beneficial for LD hypertrophy and maintenance and are 

not conducive to the deposition of IMF. 

 

DMRs between two pedigrees 

 

The breed-specific methylomic pattern suggested that 

partial DNA methylation characteristics were stably 

transmitted within single breed. To verify 

intergenerational inheritance, we further compared the 

methylation levels between two pedigrees, and a total of 

64 and 17 inheritable DMRs were identified in testes 

and muscles, respectively (Adjusted false positive 

<0.01, Methods, Supplementary Table 4). The parental 

methylation patterns in genome regions are transmitted 

to the offspring, strongly supporting the heritability of

 

 
 

Figure 4. DMCpGs in HOXC gene cluster and differentially expressed HOXC genes. 
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partial methylated or demethylated sites in adult tissues 

(Figure 5). We carefully analyzed an about 130bp DMR 

on SSC9 in testes which harbored 14 DMCpGs. After 

correcting the effect of sequencing depth on methylation 

level by the posterior probability of beta distribution [14], 

the methylation pattern differences between pedigrees  

are more than 0.3, suggesting intergenerational or 

transgenerational epigenetic inheritance. 

 

Dynamic CpGs between genders 
 

We found that 155211 of CpG sites (567289 DMRs) in 

these experiments are strongly differentially methylated 

between genders (Minimum methylation difference 

≥0.3), of which 69 are located in gene promotor DMR 

and 3419 are intragenic. Differential expression tests for 

DMR genes suggest no significant or weak differences 

(Wilcoxon signed rank test, P>0.05) in expression level 

whether they are in the promoter or intragenic regions. 

 

DISCUSSION 
 

Meat quality and fecundity are both important economic 

traits in farm animals. Their heritabilities are relatively 

low, and they often differ significantly between breeds. 

To better understand the genetic mechanisms behind 

these traits, we conducted epigenetic studies on their 

related tissues including muscles and testes. In this 

study, the precious pig samples were acquired with 

broad age spanning from 1Y to 9Y under the same 

feeding condition. We systematically surveyed dynamic 

methylomes in a group of tissues, breeds, ages and 

genders throughout pig adulthood. Emphasis was placed 

on the DMRs that continued to affect gene expression 

and regulate specific function with age. 

 

A large quantity of DMRs located in promoter region 

significantly negatively or positively correlated with gene 

expression. We speculated that a part of transcription 

factors bind to an hypomethylation environment and the 

others prefer to an hypermethylation environment. 

Several mechanisms of DNA methylation repressing 

transcription have been clarified [1]. Recent studies  

have reported a class of TFs that prefer to bind to  

some methylated sequences over the corresponding 

unmethylated sequence [10]. Homeodomain factors 

including HOCX11 and HOXB13 bind to the methylated 

recognition sequences, which lead to an increase in 

 

 
 

Figure 5. The DMR on SSC9 between two pedigrees. The arrows indicate the parent-child relationship. 
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transcription [10]. SUVH proteins bind to methylated 

DNA and recruit the DNAJ proteins to enhance proximal 

gene expression [11]. The results illustrate the positive 

correlation between methylation and expression as TFs 

preferably bind to methylated motif. 

 

CGIs occupy two thirds of all mammalian promoters, 

they are rarely methylated, which is a signature of 

active promoters [35, 36], and they display higher 

transcriptional activity than non-CGI promoters [37]. 

Our results showed that CGI in promoters may affect 

transcriptional activity through methylation or 

demethylation in themselves (APACA1 and TOPAZ1) or 

flanking sequences (MEI1). However, CGIs located 

within gene bodies show the greatest number of DNA 

methylation differences between different somatic cells 

and tissues [38]. The CpG sites in introns of particular 

genes often play a role of their secondary enhancers 

[39]. The methylation levels of intergenic and intragenic 

DMRs in HOXC gene cluster co-located with CGI were 

negatively correlated with gene expression. The results 

indicated that the methylation of “orphan” CGIs are 

associated with gene’s expression. Interestingly, we 

found that 5' UTR-CGI regions had an extremely low 

methylation level. These hypomethylated CpGs were 

located in 923 genes, of which only 206 had expression 

levels (FPKM) of more than 1, and the other 717 genes 

were at low expression or silenced in all samples. The 

results suggest that demethylation of 5' UTR-CGI 

regions cannot independently activate or inhibit gene 

expression. We speculate that it may provide a flanking 

environment for the promoter, or that it may play an 

important role in high-dimensional interaction or long-

distance regulation. 

 

DNA sequence alone cannot explain hundreds of cell 

types in a complex multi-cellular organism. Cell-

specific expression genes and epigenetic status provide 

a measure to estimate the number and proportion of cell 

types. Combining tissue-specific expression data with 

differentially methylated status in different samples, we 

could infer the number of opening DNA molecules in 

bulk genomes. We successfully found marker regions 

and corresponding genes (APACA1 and TNNT3) by 

analysis of the methylation status of tissue-specific 

genes. Although the methylation levels are consistent 

with the phenotypes, higher-depth WGBS data and 

more samples are still required for accurately 

calculating the proportion of functional cells. 

Meanwhile, the two marker genes are associated with 

important human diseases. SPACA1-deficient male 

human and mice are infertile with abnormally shaped 

sperm heads reminiscent of globozoospermia [40, 41]. 

TNNT3 is associated with nemaline myopathy and distal 

arthrogryposis [42]. Understanding the epigenetic 

regulatory mechanisms are beneficial for research or 

medical treatment of human diseases. Thus, dynamic 

DNA methylation level in cell-specific expressed genes 

reflects the changes of cell composition and function in 

tissues and helps reshape the trajectories of growth, 

development, aging, and disease. In addition, disease 

model pigs are widely studied for human diseases and 

are even considered as donors for human organ 

transplants. Understanding the epigenetic mechanism of 

pigs is bound to lay a biological foundation for the 

treatment of human diseases. At the same time, it can 

provide an insight into complex quantitative traits from 

the perspective of epigenetics. 

 

Modern breeding techniques rely on mutation 

information at a genomic level. Differences in 

epigenetic status have a direct effect on expression and 

even phenotypes. It is difficult to detect the results of 

high-dimensional interactions between genes at the 

high-density chips and resequencing levels. Thus large-

scale epigenetics data facilitates the analysis of complex 

quantitative traits and helps to achieve epigenetic 

breeding. Our data showed differential methylation and 

expression in LD between LW and BMX. The results 

supported that HOXC gene cluster plays an important 

role in maintaining and regulating specific muscle 

functions between breeds. HOXC cluster displayed 

myogenic hypermethylation bordering a central region 

containing many genes preferentially expressed in 

myogenic progenitor cells [43]. A subset of muscles 

may require HOXC8 protein for full activation of 

muscle-specific gene expression [29]. HOXC8, ZIC1, 

and BMP5 are highly expressed in LD of LW pigs. The 

genes’ functions are not beneficial for accumulating 

IMF, but increasing trunk muscle mass which 

corresponds with lower IMF content and larger eye 

muscle area in LW pigs. Epigenetic differences between 

breeds are important factors that contribute to breed 

differentiation, synergistic effect or opposite causality. 

There is a stable difference in methylation levels 

between breeds, and clearly there is a stable genetic 

mechanism to maintain this feature. Clear mechanisms 

will bring about a qualitative change in breeding field. 

In addition, the differences between breeds imply that 

part of methylation characteristics which are present in 

tissue can be stably inherited within breed. 

 

Although population genetics indicates that DNA 

methylation levels have moderate heritability [27], rare 

studies indicate that methylation levels are inherited or 

reproduced in future generations [25, 26]. The 

mammalian genome undergoes two extensive waves of 

reprogramming of CpG methylation during 

embryogenesis [1], but a fraction of mammalian 

genomes might potentially bypass the removal of DNA 

methylation [25]. Whereas de novo DNA methylation 

can occur in any sequence context, only symmetrical 



 

www.aging-us.com 25421 AGING 

CpG methylation is maintained upon DNA replication 

[1]. We identified dozens of DMRs between breeds or 

pedigrees, which provided direct evidences that the 

methylation pattern is passed on to or reproduced  

in future generations. We propose two different 

hypotheses for tissue-specific DMRs between pedigrees. 

First, partial paternal genomes bypass the removal of 

DNA methylation, and it will be preserved in special 

differentiated tissues. Second, recurring DNA 

methylation in offspring does not depend on parental 

gamete methylation, it may be mediated by other 

unknown genetic mechanisms. The mechanism of 

intergenerational or transgenerational heritability needs to 

be further studied. We speculate the similar methylation 

pattern across generations are left markers from the 

progenitor and maybe play some biological roles. 

 

CONCLUSIONS AND PERSPECTIVE 
 

The systematic exploration of dynamic methylomic 

landscapes has laid an important theoretical foundation 

for medical models. In this study, we drew dynamic 

methylome atlas using WGBS for different breeds, 

tissues, ages and genders. There are negative or positive 

correlation between methylation in DMRs and gene 

expression which are involved in tissue specific 

functions. DNA methylation modification plays an 

important regulatory role in different tissues and breeds 

and even brings about qualitative changes in phenotypes 

(HOXC8 and HOXC11). The results of this study not 

only comprehensively investigated pig genome wide 

dynamic CpGs, but also established links between 

epigenetic, transcriptional, and phenotypic data. 

Importantly, personalized methylated or demethylated 

features can be passed on to future generations. The 

information will be useful for pig breeding and human 

disease. Rapid update of single molecule and single cell 

sequencing technologies make it possible to combine 

chromatin accessibility, methylome, and transcriptome 

in the same cell. It provides essential means for a 

further insight into the effect of DNA methylation on 

expression and phenotypes. 

 

MATERIALS AND METHODS 
 

Animals and sampling 
 

All procedures involving animals are in compliance 

with guidelines for the care and use of experimental 

animals established by the Ministry of Agriculture of 

China, and the trial was approved by the Animal ethics 

committee at Jiangxi Agricultural University (No. 

JXAULL-2016001). 

 

This study involved two pig breeds with dramatic 

genetic differences, one is western commercial purebred 

of Large White (LW) and the other is Chinese 

indigenous purebred of Bamaxing (BMX). Four LW 

pigs (about seven months, two virgin female and two 

male pigs) and eight male BMX pigs (including three 

nine-year-old (9Y), three four-year-old (4Y), and two 

one-year-old (1Y) pigs). They were raised at the farm 

and were fed on a similar diet, and they could access 

water and food ad libitum under a standardized feeding 

and management regimen. The pedigree information of 

BMX is showed in Supplementary Figure 1. After 

slaughting within postmortem 45 min, about 1 gram (g) 

portion of Longissimus dorsi (LD) muscle at the 1st-2nd 

lumbar vertebra on the left side of the carcass and about 

1g testis at central position of left testis were sampled 

and rapidly stored in −80 °C refrigerator for DNA 

extraction. 

 

Whole genome bisulfite sequencing 

 

A total of 2.26 Tb (average 113.20 Gb) WGBS data 

were generated using Hiseq X10 platform for twelve 

skeletal muscles and eight testes. The average mapping 

coverage and depth rate were 2.43 Gb and 46.49X per 

sample, respectively. The clean reads were aligned to 

the Sus scrofa 11.1 using bwa-meth-master, and an 

average of 96.92% reads were uniquely aligned to the 

reference genome. MethylDackel0.3.0 was used to 

summary methylation state and a total of 55,685,213 

autosomal CpGs have been identified in at least one of 

twenty samples. These CpGs were annotated using 

Sus_scrofa.Sscrofa11.1.98.gtf which was downloaded 

from Ensembl (http://asia.ensembl.org/index.html). 

 

RNAseq 

 

An average of 10G RNA-seq clean reads using 

NovaSeq5000 platform from 20 samples were mapped 

to Sus scrofa 11.1 with hisat2.1.0. The mapped reads 

were further analyzed by StringTie1.3.6 and 

subread1.6.5, and the expression levels for each 

transcript were quantified as fragments per kilobase of 

transcript per million mapped reads (FPKM). 

 

Differential analysis 
 

CpGs with the coverage of less than 10 and greater than 

300, and CpGs with individual missing rate less than 

50% were filtered out. Three methods including 

MACAU [44], MALAX [45], and PQLseq [46] have 

been introduced for differential analysis. These methods 

adopted a binomial generalized linear mixed model 

(BGLMM) for count-based bisulfite sequencing data, 

but they used different algorithms including markov 

chain mote carlo (MCMC) sampling-based strategy [44], 

Laplace approximation [45], and penalized quasi-

likelihood approach [46], respectively. The model treats 

http://asia.ensembl.org/index.html
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age as a covariate and considers the covariance among 

individuals due to individual relatedness (Supplementary 

Table 5). The significant threshold was set as 0.01, the 

intersection result of three methods was used as 

DMCpGs. DMR was defined as combined sites within 

500 bp of one another [15]. 

 

We also adopted a previously published method [14] 

which is based on the beta distribution to model single 

CpG methylation levels and exhibited a minimum 

methylation level difference of ≥0.3 at a significant 

level of P≤0.01. We estimated the posterior distribution 

of methylation levels in both genders from LW and 

three age groups from BMX [14], and we tested the 

minimum methylation level differences. 

 

Functional annotation 
 

Pig methylation sites were annotated using 

Sus_scrofa.Sscrofa11.1.98.gtf, and the annotation of 

CGIs of Sus scrofa 11.1 reference sequence was 

downloaded from the University of California Santa 

Cruz (UCSC) Genome Browser. It was annotated 

following a criterion of segment length >200 bp, CG 

content >50%, and observed/expected ratio of CpG 

sites >0.6 [47]. CGI-shores are defined as the ~2 kb 

regions near CGI, and CpG shelves are further 2kb 

extension regions of CGI-shore. Differentially 

methylated gene lists were submitted to online tool 

DAVID (https://david.ncifcrf.gov/). We utilized homo 
sapiens set as “background” and selected GO terms 

and KEGG terms based on the statistical significant 

level (P<0.05). 

 

Inheritable methylation regions 

 

The heritable region was defined as a 500 bp DMR in 

which at least 5 synclastic DMCpGs were detected for 

all individuals between pedigrees. In statistics, it is a 

very strict threshold (Pfp value after Bonferroni 

correction is 0.01) to exclude random false positive. Pfp 

value was calculated as follows: 

 

The number of DMCpGs (N) within segments (L bp) 

follows a binomial distribution Bin(N, ECG, p/2). 

 

( ) 1
2 2

N ECG N

N
ECG

p p
P X N C


   

     
   

 

 

The expected number of CpGs (ECG): 

 

Number of C Number of G
ECG

L


  

 

The false positive probability by Bonferroni correction: 

( ) 2(1 ( ))fp

GS
P X N P X N

L
     

 

The ratio of DMCpG (p) is less than 0.003 between 

pedigrees in our data; The expected number of CpGs 

(ECG) is about 31 in a 500bp (L) random sequence; Pig 

genome size (GS) is about 2.5G. Under the ECG, the 

Bonferroni correction P value is: 

 

( 5) 0.012fpP X    
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The relationship and ages of BMX samples. 
 

 
 

Supplementary Figure 2. The phylogenetic analyses of ENSSSCG00000031903. 
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Supplementary Figure 3. The percent of genes whose expression levels are significantly correlated with DMCpGs. 
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Supplementary Figure 4. Dynamic methylation patterns with age in muscles and testes. (A) Dynamic CpG patterns in muscles with 
age. (B) Dynamic CpG patterns in testes with age. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2 and 3. 

 

Supplementary Table 1. The distribution of CpGs over ten regions. 

Term All 3' UTR 5' UTR 5’TUR - 

CGI 

CGI CGIshore CGIshelves Off CGI Exon Intron Intergenic 

All autosomal 55685213 1144772 939050 572002 5357203 6480234 2973362 40874414 5074619 28903302 21707292 

Raw ratio 1 0.0206  0.0169  0.0103  0.0962  0.1164  0.0534  0.7340  0.0911  0.5190  0.3898  

Filtered CpGs 34797932 655691 287284 62051 776576 3250115 1753194 29018047 2160187 18411778 14225967 

Filtered ratio 1 0.0188  0.0083  0.0018  0.0223  0.0934  0.0504  0.8339  0.0621  0.5291  0.4088  

lower CpG 1147532  16818  88349  55218  326513  341143  26826  453050  170735  516505  460292  

Ratio 0.0330  0.0147  0.0770  0.0481  0.2845  0.2973  0.0234  0.3948  0.1488  0.4501  0.4011  

higher CpG 5743199  145592  32157  1187  92375  485406  329421  4835997  464017  3754422  1524760  

Ratio 0.1650  0.0254  0.0056  0.0002  0.0161  0.0845  0.0574  0.8420  0.0808  0.6537  0.2655  

tissues  4283350  78915  29870  1575  82321  472590  217902  3510537  269853  2206777  1806720  

Ratio 0.1231  0.1204  0.1040  0.0254  0.1060  0.1454  0.1243  0.1210  0.1249  0.1199  0.1270  

breeds 1147591  20396  7053  746  41244  121052  67001  918294  69177  635685  442729  

Ratio 0.0330  0.0311  0.0246  0.0120  0.0531  0.0372  0.0382  0.0316  0.0320  0.0345  0.0311  

 

Supplementary Table 2. The differentially expressed genes with a promotor DMR between LDs and testes. 

 

Supplementary Table 3. The results of GO analysis for the differentially expressed genes with a promotor DMR 
between LDs and testes. 
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Supplementary Table 4. DMRs between pedigrees in muscle and testis. 

Order Tissue Number chr Start End 

1 muscle 7 chr14 132993657  132994115  

2 muscle 6 chr8 137555650  137556000  

3 muscle 6 chr14 139325615  139325622  

4 muscle 6 chr14 134435262  134435655  

5 muscle 5 chr9 133567706  133568064  

6 muscle 5 chr6 91043485  91043970  

7 muscle 5 chr2 9089167  9089395  

8 muscle 5 chr2 47019679  47019922  

9 muscle 5 chr17 3180528  3180816  

10 muscle 5 chr14 139177374  139177532  

11 muscle 5 chr14 135865240  135865613  

12 muscle 5 chr12 19603524  19604001  

13 muscle 5 chr12 13733513  13733579  

14 muscle 5 chr11 8690188  8690624  

15 muscle 5 chr11 8539607  8539965  

16 muscle 5 chr11 11704769  11704816  

17 muscle 5 chr10 51583348  51583562  

18 testis 9 chr9 212771  212893  

19 tests 9 chr2 151574805  151575091  

20 testis 7 chr4 106091605  106091699  

21 testis 7 chr14 28641275  28641374  

22 testis 7 chr11 77646658  77646933  

23 testis 7 chr1 272100179  272100279  

24 testis 6 chr6 28480020  28480147  

25 testis 6 chr3 36920813  36921180  

26 testis 6 chr15 56009163  56009234  

27 testis 6 chr14 134435262  134435655  

28 testis 6 chr14 133842967  133843194  

29 testis 6 chr13 199879841  199880019  

30 testis 6 chr13 145939217  145939337  

31 testis 6 chr12 37030932  37031353  

32 testis 6 chr11 51716401  51716819  

33 testis 5 chr9 43645730  43646210  

34 testis 5 chr9 133631712  133632099  

35 testis 5 chr9 130114358  130114527  

36 testis 5 chr8 25277540  25277627  

37 testis 5 chr7 94740385  94740732  

38 testis 5 chr7 4854047  4854157  

39 testis 5 chr7 1120310  1120435  

40 testis 5 chr6 81718383  81718863  

41 testis 5 chr6 461361  461433  

42 testis 5 chr6 43618518  43618845  

43 testis 5 chr6 152254780  152255169  

44 testis 5 chr5 93255108  93255188  

45 testis 5 chr5 9054371  9054615  

46 testis 5 chr5 83501529  83501851  

47 testis 5 chr4 62328215  62328295  

48 testis 5 chr4 41868339  41868461  
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49 testis 5 chr4 129351476  129351937  

50 testis 5 chr3 1702150  1702289  

51 testis 5 chr3 16255470  16255535  

52 testis 5 chr3 110508569  110508776  

53 testis 5 chr2 88990833  88990886  

54 testis 5 chr2 6815401  6815852  

55 testis 5 chr2 59295363  59295652  

56 testis 5 chr2 39226566  39226744  

57 testis 5 chr2 1658708  1658848  

58 testis 5 chr2 140548352  140548438  

59 testis 5 chr18 2505488  2505932  

60 testis 5 chr17 9761541  9761933  

61 testis 5 chr17 29865514  29865914  

62 testis 5 chr16 49558122  49558191  

63 testis 5 chr16 45044933  45045071  

64 testis 5 chr16 3671532  3671693  

65 testis 5 chr14 9907095  9907265  

66 testis 5 chr14 73624262  73624403  

67 testis 5 chr14 138098493  138098957  

68 testis 5 chr14 136637468  136637968  

69 testis 5 chr13 73621572  73621803  

70 testis 5 chr13 207854405  207854841  

71 testis 5 chr12 6090884  6091214  

72 testis 5 chr12 4379572  4379698  

73 testis 5 chr12 18924477  18924618  

74 testis 5 chr12 13967609  13967737  

75 testis 5 chr11 723913  723951  

76 testis 5 chr11 5193167  5193383  

77 testis 5 chr11 4588027  4588100  

78 testis 5 chr11 11668788  11668941  

79 testis 5 chr10 51629956  51630323  

80 testis 5 chr10 20867433  20867532  

81 testis 5 chr1 207728  207779 

 

Supplementary Table 5. Sample size, covariates and covariances in BGLMM. 

Analysis Sample size Covariate Covariance 

Ages (muscle) 8 (2 1Ys, 3 4Ys, and 3 9Ys)  relatedness 

Ages (testis) 8 (2 1Ys, 3 4Ys, and 3 9Ys)  relatedness 

Tissues 8 (muscle) vs 8 (testis) ages relatedness 

Breeds 4 (LW) vs 8 (BMX)   

Pedigrees 2 (BMX) vs 5 (BMX)   

Genders 2 (male LW) vs 2 (female LW)   

 


