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A B S T R A C T   

Despite global vaccination efforts, COVID-19 breakthrough infections caused by variant virus continue to occur 
frequently, long-term sequelae of COVID-19 infection like neuronal dysfunction emerge as a noteworthy issue. 
Neuroimmune disorder induced by Inflammatory factor storm was considered as a possible reason, however, 
little was known about the functional factors affecting neuroimmune response to this virus. 

Here, using medial prefrontal cortex single cell data of COVID-19 patients, expression pattern analysis indi-
cated that some immune-related pathway genes expressed specifically, including genes associated with T cell 
receptor, TNF signaling in microglia and Cytokine-cytokine receptor interaction and HIF-1 signaling pathway 
genes in astrocytes. Besides the well-known immune-related cell type microglia, we also observed immune- 
related factors like IL17D, TNFRSF1A and TLR4 expressed in Astrocytes. Based on the ligand-receptor rela-
tionship of immune-related factors, crosstalk landscape among cell clusters were analyzed. The findings indi-
cated that astrocytes collaborated with microglia and affect excitatory neurons, participating in the process of 
immune response and neuronal dysfunction. Moreover, subset of astrocytes specific immune factors (hinged 
neuroimmune genes) were proved to correlate with Covid-19 infection and ventilator-associated pneumonia 
using multi-tissue RNA-seq and scRNA-seq data. Function characterization clarified that hinged neuroimmune 
genes were involved in activation of inflammation and hypoxia signaling pathways, which could lead to hyper- 
responses related neurological sequelae. Finally, a risk model was constructed and testified in RNA-seq and 
scRNA data of peripheral blood.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) has affected more than 432 
million people (February 25th, 2022), causing more than 5.94 million 
people to die [1]. Besides acute damage of lung, increasing reports have 
shown that neurological sequelae was also frequently appeared in pa-
tients hospitalized with COVID-19(2–4). The symptoms were including 
loss of smell and taste, and some people may later struggle with head-
aches, fatigue, weakness and confusion [3,5]. It is a remarkable fact that 
neuron disorder could also lead to long-term neurological sequelae such 

as insomnia, depression and encephalitis, up to 33.62% of COVID-19 
patients were diagnosed with neurological or psychiatric disorder 
within six months of cure [6,7]. Previously, our data also demonstrated 
the landscape of immune disorders with COVID-19 infected [8,9]. 
However, little was known about the molecular changes of 
neuroimmune. 

It is speculated that similar with other coronaviruses like SARS and 
MERS, the neurological sequelae might be due to the direct penetration 
of COVID-19 virus on central nervous system [10–12]. Cytokine storms 
induced by infection were also considered to affect central nervous 
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system function [13]. Severe cytokine storm has been reported in 
COVID-19 severity with high level of serum cytokine factors like inter-
leukin and TNF-α(14). In infectious disease, such factors have been 
observed to directly across the blood-brain barrier (BBB) and active 
microglia and astrocytes secreting inflammatory mediators [15]. 
Moreover, the cytokines also compromised the BBB increasing the influx 
of leukocytes into brain and facilitate neuronal damage [10]. Microglia, 
the CNS-resident innate immune cells, Verkhratsk’s review pointed out 
it to be in a chronic immunologically active alert state presenting low 
BBB protection and high vulnerability to SARS-CoV-2 infection [16]. 
However, it is still lack of knowledge about the landscape of microglia 
dysfunction involving in COVID-19 induced neuronal dysfunction, and 
the interactions among the cell types should be clearly charactered, 
especially proper molecular model for neurological sequelae prediction. 

To address these questions, brain single cell data from severe COVID- 
19 patients were analyzed and cell clusters were identified. Through 
neuroimmune related ligand-receptor interaction, astrocytes were 
showed to cross-talk with microglia in the process of immune response, 
and affect excitatory neuron which contributed to neuronal disorders. 
The neuroimmune related hinged genes that specially expressed in as-
trocytes were classified and proved to correlate with Covid-19 infection 
and ventilator-associated pneumonia (VAP) in multi-tissues. Functional 
analysis clarified the hinged genes were involved in neuroimmune 
related pathways like activation of inflammation and hypoxia signaling 
pathways which further supported their significant roles in neuro-
immune and neuronal dysfunction. Additionally, a risk model was 
conducted to predict neuronal disorders and ventilator-associated 
pneumonia (VAP) based on these neuroimmune hinged genes. 

2. Materials and methods 

2.1. Data source 

We obtained the latest single-cell RNA (scRNA-seq) data of medial 
prefrontal cortex from post-mortem data of severe COVID-19 patients 
(GSE159812) [17], and got the peripheral blood RNA sequencing data of 
COVID-19 patients from the GEO database (GSE166253), which 
included COVID-19 patients and healthy subjects. Next, we got the 
tracheal aspirate RNA-Seq sequencing data from the GEO database 
(GSE168017), including severe VAP COVID-19 and non-VAP COVID-19 
patients. Finally, we used data of COVID-19 brain tissue (GSE164332) 
[18] and the scRNA-seq data from 196 COVID-19 patients with severe 
acute of peripheral blood and lung (GSE158055) to verify the classifi-
cation efficiency of risk model. The cited information is shown in the 
table below. Table 1. 

2.2. Single-cell data analysis of COVID-19 patients 

In order to ensure high reliability and comparability of data, quality 
control was carried out. The process could be briefly summarized as 
follows [19]:  

1) Filtered out cells that expressed fewer than 200 genes, because these 
cells might be empty droplets or formed by other abnormal causes;  

2) Filtered out genes that were only expressed in less than three cells 
and reduced unnecessary dimensions of data;  

3) Filtered the cells with significantly higher number of genes than 
normal value, generally filtered the top 1% of data; 

4) A high proportion of mitochondria might indicate that the cell in-
ternal structure had been damaged before a single cell could build a 
library [20]. So filtered the cells which had more than 10% mito-
chondrial genes. 

After the above quality control process, data was analyzed according 
to the standard procedure of R package “Seurat”: 

1) Normalized the data to eliminate the influence of library size be-
tween different cells;  

2) Selected highly variable genes for analysis, generally selected the 
first 2000 highly variable genes.  

3) PCA was used to determine the most obvious biological signals in the 
data set, and the first N dimension of PCA results was selected for 
analysis (generally n was 20);  

4) Graph-based clustering method was used to divide different cells into 
different clusters according to cell distance matrix; 

5) SFRP1(secreted frizzled related protein 1), NEUROD2(neuronal dif-
ferentiation 2), GAD1(glutamate decarboxylase 1), PDGFRA(platelet 
derived growth factor receptor alpha), AQP4(aquaporin 4) and 
PTPRC(protein tyrosine phosphatase receptor type C) were used as 
markers to identify the major cell types in the brain: neural pro-
genitor cells, excitatory neurons, interneurons, oligodendrocyte 
progenitor cells, astrocytes and microglia, respectively [19]. 

2.3. Functional annotation 

Used the R package “clusterProfiler” to perform GO function anno-
tation and KEGG enrichment analysis with BH-corrected p < 0.05 to 
select the main functional and biological pathways of genes were 
enriched. Similarly, we carried out functional enrichment analysis on 
the genes in the functional module ME-turquoise, and selected five 
biological pathways for display using R-package “GOplot”. 

2.4. Identification of differentially expressed genes 

To identify genes which differentially expressed between COVID-19 
patients and normal groups, we used t-test model with BH-corrected p <
0.05 and |log (FC)| > 1 to select. In addition, R-package “ggplot” was 
used to demonstrate the differential expression patterns of genes. 

2.5. Construction of functional modules 

WGCNA (WGCNA, weighted gene co-expression network analysis) 
could quickly extract gene co-expression modules related to sample 
characteristics from complex data (N multi-groups) for subsequent 
analysis. R packet “WGCNA” was used to construct a weight gene co- 
expression network. 0.85 was selected as the threshold of correlation 
coefficient, the optimal soft threshold was 6, and the mini mum number 
of module genes was selected 30 by dynamic shear tree. 

2.6. Recognition of hinged genes 

Based on peripheral blood data, differently expressed genes in 
functional module were defined as hinged genes. Cox-regression anal-
ysis was used for identifying the genes whose expression were associated 
with the patients’ VAP. The genes with p-value for expression less than 
0.05 were identified as COVID-19 VAP-related genes. Genes with hazard 
ratio (HR) greater than 1 were identified as risk genes and those with HR 
less than 1 were identified as protective genes. 

Table 1 
Data reference information.  

Data Data Sources 

Brain single cell RNA-seq GSE159812 
peripheral blood RNA-seq GSE166253 
tracheal aspirate RNA-Seq GSE168017 
Brain RNA-seq GSE164332 
blood and lung single cell RNA-seq GSE158055  
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2.7. Multi-factorial regulatory networks and functional characterization 
for hinged genes 

The R package “RCircos” was used to characterize the positions of 

hinged genes. The STRING online database (https://string-db.org/) was 
used to analyze the interactions among hinged genes, and the relation-
ships with an interaction score greater than 0.7 were screened and dis-
played in the circos diagram. We obtained lncRNAs from lnc2target- 

Fig. 1. Analysis of brain single cell. (A) Visualization of major cell clusters using UMAP, which included six cell categories (Excitatory Neurons, Oligodendrocyte, 
Neural Progenitor Cells, Astrocytes, Microglia and Interneurons through cell annotation). Dots, individual cells, colors, cell clusters. (B) The proportion of the cells 
number of each cell type. (C) Violin plots displaying the expression of IL17D, TNFRSF1A and TLR4 across the cell clusters identified. The y axis showed the 
normalized read count. (D) Differential expression of cytokines and the related biological processes in each cell cluster. The color contours of each cluster were 
consistent with Fig. 1-A. 
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v2.0, miRNA from miRTarBase and transcription factor (TF) targeting 
gene relationships from Trustv2.0 database, and used Cytoscape to 
construct a multi-factor regulatory network of hinged genes. Subse-
quently, we used GSEA software to perform GSEA enrichment analysis 
on the hinged genes. 

2.8. Construction and evaluation of the risk model 

Multivariate cox regression model was used for constructing the risk 
model, in which the age, sex, and race status were taken into account. 
Then for each patient, we calculated a risk score based on the cox 
regression coefficient and the expression of the gene in the multivariate 
cox result with p-value less than 0.05. 

Risk score (i)=
∑n

k=1
βk * eki 

Where the β is the cox regression coefficient, n is the number of genes 
in the module, eki is the expression level of gene k in patient i. Patients 
were divided into two groups based on the risk scores and log-rank test 
was used to evaluate the VAP difference between two groups. 

2.9. Statistics and visualization of networks 

All the statistical analyses were performed using R Statistical 
Software(V-4.0), and biological networks were visualized by Cytoscape. 

3. Results 

3.1. Identification cell clusters in medial prefrontal cortex of COVID-19 
patients 

We used scRNA-seq data of medial prefrontal cortex of COVID-19 
patients to investigate the molecular pathology features. 19,481 genes 
expressed in 5566 cells (Supplementary Figure S1) were generated by 
using single RNA-seq and integrated quality control pipelines 
(Methods), and top 5 genes of each cell were classified to get the cluster 
heat map (Supplementary Figure S2-A). After employing the known and 
universal markers [19] to authenticate neural cell populations (Sup-
plementary Figure S2-B), six cell clusters were annotated including 
excitatory neurons, astrocytes, microglia, neural progenitor cells, in-
terneurons and oligodendrocyte progenitor cells(Fig. 1-A). The propor-
tion of excitatory neurons was the largest with 77.67%, astrocytes with 
4.08% and microglia with 2.96%(Fig. 1-B). The top 20 genes in each cell 
cluster were mainly involved in regulation of trans-synaptic signaling, 
neurotransmitter transport, regulation of blood circulation, and multi-
cellular organismal signaling. Among which we were more interested in 
astrocytes that were related to regulate blood circulation and multicel-
lular organismic signaling (Supplementary Figure S3-A). In addition, 
some lncRNAs existed in the top 10 characteristic genes of some cell 
clusters, for instance EMX2OS and NEAT1 (Supplementary Figure S3-B). 
And it was found that lncRNAs accounted for a certain proportion in 
each cell cluster (Supplementary Figure S3-C), including microglia and 
oligodendrocyte, whose number of lncRNAs exceeded 300. 

Previous studies had suggested that immune hyperactive inflam-
matory response was typical character of COVID-19, and cytokines 
storm were the main cause of multiple organ dysfunction syndrome. 
Interestingly, IL17D, TNFRSF1A and TLR4 expressed specifically in as-
trocytes (Fig. 1-C). Therefore, to further gain the functional view of these 
specially expressed cytokines among different cell clusters, GO analysis 
showed that their related receptors were associated with viral infection 
response signaling pathways. There were T cell, TNF and MAPK 
signaling pathway in Microglia, Sphingolipid and PI3K-Akt signaling 
pathway in Excitatory Neurons and Neural Progenitor Cells, Cytokine- 
cytokine receptor interaction and HIF-1 signaling pathway in Astro-
cytes as showed in Fig. 1-D. Notably, Hypoxia-inducible factor could 

regulate transcription factor of innate immunity. 
According to the results, 6 main cell clusters were divided from 

medial prefrontal cortex of patients with COVID-19, of which excitatory 
neurons account for the largest proportion. Specific expression of 
immune-related factors was observed in different cell clusters that were 
functionally linked to each other, which suggests the interdependence of 
cell types in neuroimmune response. Interestingly, in addition to 
microglia as known immune cells, there were large number of immune- 
related factors in astrocytes, which might be a crucial cell type for 
neuroimmune regulation. 

3.2. Molecule characterization of Neuroimmune involving in neuronal 
dysfunction 

Due to the frequent signal transmissions among brain cell types, we 
explored the interaction events between ligands and receptors from 
different cell types, especially focus on excitatory neurons. The results 
indicated that there were wide crosstalks among the main excitatory 
neurons, astrocytes and microglia cells (Fig. 2-A). To reveal the molec-
ular characteristics of excitatory neurons after COVID-19 infection, we 
analyzed the specific expression of receptors in excitatory neurons and 
the corresponding ligands in astrocytes and microglia. The data showed 
that there was a strong crosstalk between receptor in excited neurons 
and ligand in astrocytes as well as microglia (Fig. 2-B). Among them, the 
cytokines related genes ANGPTL4, FN1 and TGFB2 acted as ligands to 
affect the receptors in the excitatory neurons. We found that Hypoxia 
Inducible Factor 1 Subunit Alpha, HIF1A and hypoxia-related factor 
ANGPTL4 was highly expressed in astrocytes, and ANGPTL4 receptor 
immune factors ITGB1 and CDH11 were widely present in neurons 
(Fig. 2-C). PRR5 as adaptive immune factor interacted with AKT1 and 
SGK1 is related to apoptosis, DNA repair and regulation of cell cycle. It 
meant that the increasing of PRR5 might promote interaction with AKT1 
and SGK1, which might be factors and pathways of causing neuron 
disorder (Fig. 2-D). As shown in Fig. 2-D, SGK1 was up regulated in 
microglia, neural progenitor and interneuron cells beside excitatory 
neurons, involving in multi-cell types. Fig. 2-E showed transforming 
growth factor-beta2 (TGFB2) highly expressed in astrocytes, which 
could network with ACVR1B as well as ACVR1C in other cell types. 
ACVR1B was widely expressed in neurons, but ACVR1C was expressed 
in part of excitatory neurons. And then, comparing the changes of KEGG 
data in excitatory neurons with ACVR1C expression or none, we found 
the obvious differences between the two cell sub-types (Supplementary 
Table S1 and S2). It got our attention that HIF-1, Inflammatory, and 
Long-term depression had specifically in excitatory neurons with 
ACVR1C expression, as shown in Table 2. Additionally, Laminin family 
genes (LAMC1/LAMB2/LAMA1/LAMA4) affected the function of SV2B 
mainly in excitatory neurons (Fig. 2-F), which was responsible for 
increasing the performance of synaptic vesicles and may function in the 
regulation of vesicle trafficking and exocytosis [21]. While another gene 
regulated by LAMA1, ITGA2 was rarely distributed in excited neurons 
(Fig. 2-F). In short, dysregulation of the ligands specifically expressed in 
astrocytes affected dysfunction of the corresponding receptors in neu-
rons, which should be crucial molecular incident for neurological 
sequelae. 

Table 2 Microglia were the first and primary immune defense cells in 
the central nervous system (CNS) [22]. Therefore, we analyzed the in-
teractions between astrocytes and microglia. Our results showed that the 
ligands and receptors specifically expressed in astrocytes had extensive 
connections with microglia (Fig. 3-A). BAG3 was specifically expressed 
in astrocytes, and it regulated factors HSPA9 and HSPA4 widely pre-
sented in all of cell types (Fig. 3-B). Similarly, specifically expressed li-
gands DLL1 (Fig. 3-C) and SPP1 (Fig. 3-D) were found in microglia cells. 
The factors regulated by these ligands played an important role in cell 
differentiation, apoptosis, and proliferation. Interestingly, these factors 
were rarely found in neurons, but more widely distributed in astrocytes. 
These results suggested that through immune related ligand-receptor 
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interactions, astrocytes could cross-talk with microglia and functionally 
be involved in the process of neuroimmune disorder and neuronal 
dysfunction after Covid-19 infection. 

3.3. Recognition of hinged Neuroimmune genes across mutli-tissues RNA- 
seq data 

According to above analysis, neuroimmune-related genes involved in 
neuronal dysfunction were obtained. To investigate whether these genes 
had responsiveness changes in other tissues of COVID-19 patients, we 
collected the peripheral blood RNA sequencing data and found 2324 

Fig. 2. Cell crosstalk based on ligand and receptor. (A) The ligand-receptor interaction in each cell cluster, and the crosstalk between classified nerve cells. (B) 
The crosstalk among Astrocytes, Microglia and Excitatory Neurons consists of ligands and receptors. (C) ANGPTL4 was specifically expressed in Astrocytes, and it 
regulated receptors ITGB1 and CDH11. (D) Astrocytes expressed specifically factor PRR5, which interacted with ITGB1 and CDH11. (E) TGFB2 was specifically 
expressed in Astrocytes, and it regulated receptors ACVR1B and ACVR1C. (F) LAMA1 was specifically expressed in Astrocytes, and it regulated receptors SV2B 
and ITGA2. 
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genes were differentially expressed between COVID-19 patients and 
healthy subjects (Supplementary Figure S4-A). Among them, 143 genes 
had differential expression pattern in astrocytes cluster, involving in 
neuroimmune regulation and function of excitatory neurons, which 
could be a cluster related to neuronal -dysfunction (Supplementary 
Table S3). Some of these genes were confirmed to participated in the 
development and therapy of COVID-19, such as DPP4 was the potential 
treatment target to prevent COVID-19 vascular complications [23], and 
MARK3 affected the COVID-19 development by intervening in immune 
response [24]. Moreover, both lncRNA NNT-AS1(25) and PRKCQ-AS1 
(26) could regulate cell proliferation, apoptosis and migration. Some 
differentially expressed genes such as TLR4 were considered be imper-
ative for inflammatory response [27], which was down-regulated in 
peripheral blood compared to healthy individuals (Supplementary 
Figure S4-B) and specifically in astrocytes of COVID-19 patients 
(Fig. 1-C). We also found that some genes were differentially expressed 
in the peripheral blood data, and they were also differentially present in 
different cell types of the brain (Supplementary Figure S4-C). The ob-
servations supported that the neuroimmune genes could participate in 
the immune response of Covid-19 infection, which further suggested 
their functional roles in subsequent neuronal disorders. 

Meanwhile, to investigate whether such functional genes could 
predict COVID-19 severity, co-expression network module was con-
structed by the WGCNA method (Methods) based on RNA-Seq 
sequencing data from the tracheal aspirate of severe patients. Among 
them, the module ME-turquoise was prominently correlated with the 
severity (VAP) of COVID-19 patients (r = 0.34, p = 8E-04), so we defined 
ME-turquoise as the VAP developing module (Fig. 4-A). Functional 
enrichment analysis showed that they were significantly associated with 
ion transport, apoptotic signaling, and blood clotting function (Fig. 4-B). 
Subsequently, 14 genes were identified to correlate with VAP pro-
gressing (Methods) in Fig. 4-C. In particular, PRR5 as an immune-related 
factor (Fig. 4-D), sleep regulator gene-GEM (Fig. 4-D), and KCTD15 as a 
regulator of synaptic signal transduction (Supplementary Figure S5-F) 
had more significance. Next, we found that a group of genes in VAP 
developing module also had obvious expressional difference between 
patients and healthy subjects in peripheral blood transcriptome, what’s 
more exhibited directly interaction with each other (Fig. 5-A). 

Accordingly, immune factors in astrocytes could predict the devel-
opment of infection and VAP in patients with peripheral blood and 
tracheal aspirate data. This finding supported their functional roles in 
COVID-19 immune response and displayed the potential involvement in 

neuronal injury response in the brain. Therefore, these group genes were 
defined as hinged neuroimmune genes of COVID-19, which should be 
critical factors related to neuronal dysfunction. 

3.4. Multi-factorial regulatory networks and functional characterization 
for hinged Neuroimmune genes of COVID-19 

A multi-factor regulatory network was constructed (Supplementary 
Figure S6-A) including transcription factors (TFs), micRNAs and 
lncRNAs according to method of Multi-factorial regulatory networks 
construction (Methods). We observed some famous regulators appearing 
in the hinged gene regulation network, for instance the transcription 
factor STAT3 acted as a transcriptional activator to affect the expression 
of cytokines and growth factors [28,29]. We performed GSEA (Methods) 
on hinged genes. Hypoxia pathway was significantly enriched (Fig. 5-B), 
which would cause neuronal dysfunction [30–32]. And the markedly 
enriched gene ANGPTL4 was involved in the regulation by the expres-
sion of ncRNA LAST and transcription factors including PPARA, PPARD 
and SMAD3 (Fig. 5-C). Besides, these genes were significantly enriched 
in the inflammatory related pathway-TNF-α signaling via NF-kB 
(Fig. 5-D), the pathway was proved to modulate viral infection 
response [33]. Atypical Chemokine Receptor 3, ACKR3 in TNF-α 
pathway was also included in the regulation network that we found 
above (Fig. 5-E). In addition, these hinged genes were also enriched in 
IL-2/STAT5 and mTORC1 signaling pathways dramatically (Supple-
mentary Figure S6-B, C). Overall, these results suggested that hinged 
neuroimmune genes and the related regulation factors were correlated 
with significant biological process of COVID-19. 

3.5. Construction and evaluation of a neural injury risk model based on 
hinged neuroimmune genes 

The above results suggested that the hinged neuroimmune genes 
were involved in important biological processes in brain, peripheral 
blood, and tracheal aspirate of COVID-19 patients. In particular, the 
severity progressing of patients could be predicted according to their 
expression. Hence, we constructed a risk model (Fig. 6-A) based on 
hinged genes (Multivariate Cox regression) [34]. The model was further 
confirmed to efficiently predict accumulated risk of neuronal dysregu-
lation and VAP (Fig. 6-B). Subsequently analysis indicated that, it had 
significant differences in risk scores between patients younger than 60 
years and those older than or equal to 60 years (Fig. 6-C). There were 
also obvious differences between male and female. (Fig. 6-D). Paired 
survival status and ethnic again exhibited different risk scores (Fig. 6-E, 
F). There were eight genes in the risk model, including S100A13, PRR5, 
KCTD15, GPC4, GEM, ERLIN2, BAG3 and ANGPTL4 (Fig. 6-A). The 
genes were expressed differently in cell types of COVID-19 patients’ 
medial prefrontal cortex, particularly in Astrocytes and Microglia cells, 
involving in hypoxia and inflammation response. Dysregulation of these 
genes affected the activity of excitatory neurons and caused cell damage 
response. As listed in Supplementary Table S4, the eight genes were 
reported to have nervous related functions and part of which were 
correlated with neuroimmune regulations, even directly neuron disor-
der. We also used RNA-seq data of COVID-19 brain tissue, getting from 
GSE164332 to verify the efficiency of the risk model. The risk scores 
were notably different between patients with COVID-19 and healthy 
subjects (Fig. 6-G). There were 87.5% COVID-19 patients in high-risk 
group and 75% normal groups in low-risk group (Fig. 6-H). 

Finally, we used published single-cell data (including peripheral 
blood and lung tissue) to validate our model [8]. Retrieval the 
GSE158055 dataset, results demonstrated that the genes in our model 
expressed specifically in cell sub-types of innate immunity and adaptive 
immunity which consistent with their functions, We also found that 
these genes had high expression levels in COVID-19 patients with 
severity, but rare expression in healthy subjects (Fig. 7 and Supple-
mentary Fig. S7). The results indicated that through prediction model 

Table 2 
The KEGGs specially in excitatory neurons with ACVR1C expression.  

KEGG 

Aldosterone-regulated sodium reabsorption 
Cardiac muscle contraction 
EGFR tyrosine kinase inhibitor resistance 
Endocrine and other factor-regulated calcium reabsorption 
Endocrine resistance 
Endometrial cancer 
ErbB signaling pathway 
Estrogen signaling pathway 
Fc gamma R-mediated phagocytosis 
Hepatitis B 

HIF-1 signaling pathway 
Inflammatory mediator regulation of TRP channels 

Inositol phosphate metabolism 
Insulin signaling pathway 
Longevity regulating pathway 

Long-term depression 
Neurotrophin signaling pathway 
Oocyte meiosis 
Ras signaling pathway 
Relaxin signaling pathway 
Serotonergic synapse 
Thyroid hormone signaling pathway 
Thyroid hormone synthesis  
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Fig. 3. Mechanisms Characterization of cluster for neuronal dysfunction. (A) The crosstalk between astrocytes and microglia based on ligand and receptor 
interactions. (B) BAG3 was specifically expressed in astrocytes, and it regulated receptors HSPA9 and HSPA4. (C) DLL1 was specifically expressed in microglia, and it 
regulated receptors NCTCH1 and NCTCH1. (D) SPP1 was specifically expressed in microglia, and it regulated receptors ITGB5 and CD44. 
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based on hinged neuroimmune genes, it is possible to predict the 
neuronal dysfunction and severity of patients using expressional data 
from peripheral blood, lung tissue and even tracheal aspirate. 

4. Discussion 

Accumulating evidence suggests that Covid-19 infection could also 
cause long-term neurological sequelae among large percentage of cases 
along with the virus spread and variants in the world [39–41], besides 
multiorgan dysfunction and even subsequently die that caused by VAP 

Fig. 4. Recognition module associated with COVID-19 severity based on tracheal aspirate data. (A) Cluster dendrogram showed correlations between clinical 
features and modules by WGCNA. (B) Functional analysis was implemented basing on genes in ME-turquoise module. Goplot showed that 32 genes were associated 
with top five biological processes. (C) Expression of 14 genes in ME-turquoise module were screened by univariate Cox regression. (D) Cumulative risk of COVID-19 
was analyzed by using expression of PRR5 and GEM. 
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[7,38]. The neurological sequelae is ranging from headache, anosmia 
and ageusia, meningitis, encephalitis to stroke [12]. This may be closely 
related to the immune dysregulation of specific functional brain regions, 
so neurological autoimmune disorders may be consequences of the 
SARS-CoV-2 infection. Some studies showed that cytokine storm was 
considered to be an important cause of COVID-19 infection and 
long-term sequelae and the molecular changes in immune responsive-
ness of the nervous system were crucial to clinical neurological 
dysfunction syndromes [35,36]. Therefore, detailed analysis of the 
neuro-immunological effects in COVID-19 infection is necessary for the 
prediction and treatment of neurological disorder sequelae. 

So herein, we gathered and analyzed the latest GSE159812, 
GSE166253 and GSE168017 data within the medial prefrontal cortex, 
peripheral blood and tracheal aspirate. We relied on the known and 
universal marker genes, NEUROD2, AQP4, PTPRC, SFRP1, GAD1 and 
PDGFRA, to identify the major cell types in the brain: excitatory neu-
rons, astrocytes, microglia, neural progenitor cells, interneurons and 
oligodendrocyte progenitor cells, respectively [19]. We found desired 
discrimination between different cell types. Even though the proportion 
of excitatory neurons was the largest, interest in astrocyte has increased 
dramatically because of their newly discovered roles in cytology, elon-
gation, efficacy and plasticity [37–40]. Physiological activity of neurons 
triggered astrocyte signaling and the signaling from microglia and as-
trocytes to neurons was also sufficient to alter synapses [38]. According 
to ligand-receptor interaction data from scRNA-seq, we revealed that 
astrocytes collaborated with microglia, adjusting neuronal dysfunction 
through neuroimmune for the first time. The alternation of stimulated 
microglia could explain some of the neurological symptoms associated 
with COVID-19, especially fatigue, depression and ‘brain fog’, including 

confusion and forgetfulness. Interestingly, in our study results, in-
teractions between the ligands specifically expressed in astrocytes 
including LAMA family genes and cytokine related genes (ANGPTL4, 
FN1 and TGFB2), and the network factors specifically expressed in the 
largest population of excitatory neurons accelerated the communication 
of brain neurons. The result of affections on excitatory neurons by 
microglia and astrocyte provided the latest evidence of neuronal 
dysfunction. Astrocytes also displayed extensive crosstalk with the 
known microglia during the neurological immune response. Our data 
declared that the response changes of astrocyte as well as microglia were 
key events for neuron complication for COVID-19. 

Moreover, we successfully got a critical appraisal module of COVID- 
19 neurological sequelae which exhibited neuro-immunological 
response associated with cytokines and its receptors, using the RNA- 
and scRNA-seq data from multi-tissue of Covid-19 patients. Comparing 
with scRNA data of medial prefrontal cortex, the specific expressed 
genes in astrocytes were associated with multicellular organismal 
signaling, regulation of blood circulation, trans-synaptic signaling and 
other functions. Marker genes in excitatory neurons were mainly related 
to axon genesis and regulation of cell morphogenesis. Notably, cytokines 
and related genes were annotated to each cluster and performed func-
tional annotation as marker genes. These insights suggested that the 
neurological complications might be induced by hyper-response of cy-
tokines network. And then we verified that cytokines and related genes 
had coherence of changing trend in peripheral blood. Our analysis also 
demonstrated that these genes were associated with hypoxic alterations, 
TGFB2, TNFA signaling via NF-KB and inflammation-related pathways. 
It had been known that neurons dysfunction usually appeared after 
about 4 min with hypoxia. And symptoms such as restlessness and 

Fig. 5. Recognition of hinged neuronimmune genes associated with COVID-19 severity and functional characterization. The circos plot showed the genes 
positions of functional module in the chromosomes (the outer circle). Differential expressions of genes in the peripheral blood RNA-seq data were displayed in the 
heat map (the middle circle). The inner network demonstrated the interaction between genes, and the darker colors represented stronger interactions. (B) The 
enrichment plot showed the distribution of hinged genes in the regulation of hypoxia response process. (C)The most hinged gene in (B): the expression of ANGPTL4 
was significantly different between COVID-19 (n = 16) and healthy subjects (n = 10) (p < 0.05). Moreover, the transcriptional regulatory network involved ANGPTL4 
was constructed, which was shown in the top right corner. (D) The enrichment plot showed the distribution of hinged genes in the regulation of TNFA signaling via 
NFKB response process. (E) The most hinged gene in (D): the expression of ACKR3 was significantly different between COVID-19 (n = 16) and healthy subjects (n =
10) (p < 0.001). Moreover, the transcriptional regulatory network involved ACKR3 was constructed, which was shown in the top right corner. 
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absentminded-consciousness also would appear, which were consistent 
with the neurological sequelae of patients with COVID-19 [31]. 
Pro-inflammatory cytokine TNF had been shown to be associated with 
increased COVID-19 mortality [41]. Our data provided newly direct 
evidence that the neurological sequelae of COVID-19 were relevant to 
hyper-response of cytokines network. 

Through single cell sequencing data analysis, we identified a group 
of hinged genes which encode a variety of functional factors of neuro- 
immunity. And the connections between changes in neuroimmune 
related factors and neurological disorders were established. Using such 
factors and their alteration pattern, a risk prediction model of neuro-
logical sequelae was built up and verified in multi-tissue data of Covid- 
19 patients. It also was indicated that similar changes of those factors 
were appeared in other infected tissues like peripheral blood and res-
piratory tract. So that, based on our prediction model, such hinged genes 
could be used in the evaluating of immune responses of nervous system, 
as well as in the predicting of neurological sequelae caused by Covid-19 
infection. 

In addition, we explored whether the genes of neuronal-dysfunction 
cluster were deterministic factors of severity and neurological sequelae. 
The constructed risk assessment model included optimal cooperatively 
eight genes involving in function of nervous system and signal 

transduction apart from neuroimmune. Such as, KCTD15 regulated 
neural cell formation by affecting Wnt signaling and the activity of 
transcription factor AP-2 [42], hypoxia-related factor ANGPTL4 acted 
an apoptosis survival factor [43–46], and GEM might be implicated in 
the proliferation of microglia and astrocytes after spinal cord injury 
[47]. The risk model was confirmed to efficiently predict accumulated 
risk of neuronal dysfunction and development of COVID-19, and indi-
cated significant differences in risk scores by age, sex, and race. Finally, 
we assessed and validated this risk module by new brain tissue RNA-seq 
data and the latest scRNA data of peripheral blood. It was found that risk 
scores were different remarkably between the patients and healthy 
subjects, and the proportion of disease and normal samples was signif-
icantly different between the high and low risk groups. 

In conclusion, our research found the crosstalking among astrocyte, 
microglia and excitatory neurons and revealed the molecular charac-
terization of the neuronal dysfunction after COVID-19 infection by 
neural transcriptome analysis. By which, astrocyte and microglia 
participated in COVID-19 induced neuronal dysfunction response via 
hypoxia and inflammation pathways. The enrolled functional factors of 
astrocyte were recognized by multi-tissues transcriptome. Based on 
which, a molecular model was constructed that exhibited efficiently in 
risk prediction of neurological sequelae progressing in COVID-19 

Fig. 6. Construction and evaluation of a risk model. (A) 8 genes were screened by multivariate cox regression method to construct a risk model. (B) Cumulative 
risk of COVID-19 patients was analyzed by using risk module, which had significant classification efficiency with p < 0.01. (C) Risk scores differenced in COVID-19 
patients aged less than 60 years (n = 69) and greater than 60 years (n = 29). (D) Risk scores difference was displayed between female (n = 30) and male (n = 68) with 
COVID-19. (E) Risk scores differenced in COVID-19 patients between the alive (n = 47) and the dead (n = 51). (F) It had the differences between in whether it’s 
Hispanic ethnicity (Yes n = 47, No n = 51). (G) Risk scores were different between COVID-19 patients and normal groups. (H) Proportion differences at high-risk and 
low-risk group was different between COVID-19 patients (n = 9) and normal groups (n = 7), and 87.5% COVID-19 patients were in the high-risk group, in contrast, 
75% normal groups were in the low-risk group. 
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