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Increased intracranial pressure is the source of most critical symptoms in
patientswith glioma, and often themain cause of death. Clinical interventions
could benefit from non-invasive estimates of the pressure distribution in
the patient’s parenchyma provided by computationalmodels. However, exist-
ing gliomamodels do not simulate the pressure distribution and they rely on a
large number of model parameters, which complicates their calibration from
available patient data. Here we present a novel model for glioma growth,
pressure distribution and corresponding brain deformation. The distinct fea-
ture of our approach is that the pressure is directly derived from tumour
dynamics and patient-specific anatomy, providing non-invasive insights
into the patient’s state. The model predictions allow estimation of critical
conditions such as intracranial hypertension, brain midline shift or neurologi-
cal and cognitive impairments. A diffuse-domain formalism is employed
to allow for efficient numerical implementation of the model in the
patient-specific brain anatomy. The model is tested on synthetic and clinical
cases. To facilitate clinical deployment, a high-performance computing
implementation of the model has been publicly released.
1. Introduction
Glioma is the most common type of primary brain tumour. Gliomas are divided
into low- and high-grade tumours. High-grade gliomas (HGGs) are character-
ized by fast progression and poor prognosis with a median survival between
1 and 5 years, depending on the tumour subtype [1–3]. Low-grade gliomas
(LGGs) progress at a slower pace and have a better prognosis; however, most
LGGs eventually progress to HGGs [4]. In contrast to other primary malignan-
cies, glioma manifests not only as an oncological but also as a neurological
disease. The most common symptoms include: drowsiness (87%), progressive
neurological (51%) and cognitive (33%) deficits, seizures (45%), incontinence
(40%) and headaches (33%) [5–7]. The majority of the symptoms stem from
increased intracranial pressure (ICP), which is also the main cause of death
[8,9]. The corresponding mechanical forces further affect the tumour micro-
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environment and treatment efficacy [10]. The standard-of-
care treatment of gliomas follows the Stupp protocol [1],
which consists of combined surgery and chemo- and radio-
therapy. Despite extensive efforts, gliomas are still
incurable. Tumour management is complicated not only by
the delicate nature of the brain tissue but also by the infiltra-
tive growth of gliomas. In contrast to most cancers, gliomas
do not form solid tumours with well-defined boundaries;
instead, they infiltrate surrounding brain tissue even
beyond the tumour borders visible on medical scans. The
inability of current imaging methods to detect the whole
tumour extent and pressure distribution contribute to the
overall treatment complexity.

Computational tumour models can provide valuable
insights into the patient’s state and forecast the disease pro-
gression to assist clinical interventions. Most glioma models
are based on the Fisher–Kolmogorov equation, which describes
tumour proliferation and infiltration into the surrounding tissue
[11–24]. Such models have been used to simulate spatio-tem-
poral disease progression, response to treatment or transition
from LGGs to HGGs [14,23,25–30]. The models can be further
calibrated to patient-specific conditions to provide estimates
about tumour infiltration pathways beyond the lesion outlines
visible on medical scans [17,24,31–38]. Such estimates were,
for instance, used to design personalized radiotherapy plans
to spare healthy tissue and reduce radiation toxicity [31] or to
predict response to treatment [35]. However, since these
models do not account for the mechanical interactions between
the growing tumour and surrounding brain tissue—the so-
called tumour mass effect—their validity is limited to a short
time scale before the tumour mass effect becomes significant.
The clinical potential of gliomamodels can thus be significantly
increased by accounting for the tumour mass effect and
tumour-induced pressure in the patient’s brain.

Although there is great interest in modelling brain biome-
chanical processes and deformations, not all existing models
are suitable for glioma progression. For instance, a large body
of models focus on modelling intraoperative brain defor-
mations [39–43] or changes caused by traumatic brain
injuries [44–46]. These models, however, consider biomecha-
nical deformations caused by short-term forces acting from
outside the skull, such as surgical loads, craniotomy-induced
brain shift or impact head injury. Early models describing
tumour-induced brain deformations originate from works
by Mohamed et al. [47] and Hogea et al. [48], where brain
tissue is modelled as an elastic material and tumour mechan-
ical forces are approximated by a constant pressure acting on
the tumour boundary. These models were designed for the
construction of statistical brain atlases bearing tumours, and
thus they do not account for tumour proliferation or infiltra-
tion. This issue was overcome by Clatz et al. [49], who
combined the mechanical model with the Fisher–Kolmo-
gorov equation describing tumour progression. The model
was further updated by Abler et al. [50], who included
additional linear coupling between tumour cell density and
the growth-induced strain. In these models [49,50], however,
the tumour dynamics is decoupled from the tissue defor-
mation equation, which can lead to discrepancies, especially
in the case of large deformations. A further improvement
came from work by Hogea at al. [51,52], who used a non-
linear reaction–advection–diffusion equation to couple the
tumour growth with brain tissue deformation, enabling
simulations of large brain deformations. The model has
been used in several simulation studies as well as medical
image-processing tasks [33,53–56]. Recently, the model has
been extended to account for different tumour components,
such as proliferating, invasive and necrotic tumour cells,
along with tumour-induced brain oedema, resulting in
realistically appearing simulated tumours [57].

Despite considerable theoretical contributions, these
models suffer from twomain limitations. First, none of the pre-
vious models simulates the pressure distribution in the
patient’s brain. The existing models either do not consider
the pressure term at all or the pressure is modelled as a con-
stant increment, uniform in the whole brain, regardless of
the tumour size or location. As a consequence, these models
cannot provide any estimates of the pressure distribution or
pressure-related symptoms, such as intracranial hypertension.
Second, the models rely on a large number of parameters,
which complicates their calibration to patient-specific con-
ditions. Many parameters can be rendered patient- or
disease-specific; however, inferring their values from the lim-
ited amount of non-invasive patient data is a challenging
task. For instance, although medical scans reveal compression
of brain tissues, this information might not be sufficient to
identify the mechanical properties of individual tissue con-
stituents as described by Young’s modulus, Poisson’s ratio
and other model parameters. Computational simulations
thus usually rely on parameter values obtained from in vivo
animal experiments or post-mortem studies. However, several
studies have demonstrated large intra-species variations as
well as rapid changes in brain tissue properties even a few
minutes after death [58]. This in turn leads to a large variation
in parameter values used across the literature [47,49,51], which
further affects the ability of the computational models to pro-
vide patient-specific predictions.

To address these limitations, herein, we propose a novel
glioma model that couples tumour dynamics, brain tissue
deformation and corresponding ICP changes in the patient-
specific anatomy. The model assumes that the growing
tumour exerts pressure on the surrounding brain tissue,
which is treated as a viscoelastic material. The brain tissues
partially relax the pressure, depending on the tissue-specific
properties, while the remaining pressure results in the defor-
mation force. ICP is directly derived from the growing
tumour, and it is constrained by patient-specific anatomy,
enabling estimation of the pressure distribution in the whole
patient parenchyma. The model predictions can be used to
assess neurological and cognitive impairments caused by
increased pressure in the patient-specific brain centres as
well as predict onset of critical conditions such as intracranial
hypertension (table 1) or brain midline shift [9,69]—a con-
dition in which the brain moves towards one side of
parenchyma, where a displacement above 5mm usually
requires immediate surgical intervention [70,71]. The estimated
ICP distribution can help identify the regions with the highest
pressure accumulation, which holds the potential to assist
surgical interventions aiming to release the ICP.

To facilitate model calibration for patient-specific predic-
tions, the model uses a small number of parameters, as
listed in table 2. Alongside the proposed model we present
an efficient numerical formulation to facilitate the model
implementation. The model is solved directly in the patient’s
medical scans using the finite-difference (FD) method. In com-
parison, previous works used mainly finite-element methods
since the FD approach often results in a large system of



Table 1. Relations between ICP values and corresponding pathological
conditions [59–64]. While there are rare cases [65,66] with survival
reported in patients with ICP >50 (mmHg), increased ICP is consistently
associated with high mortality [62,67,68].

ICP (mmHg) ICP (Pa) condition

7–15 933–1999 normal

20–25 2666–3333 onset of hypertension

25–40 3333–5332 hypertension

40–50 5332–6666 loss of consciousness

>50 >6666 brain infraction

and brain death

Table 2. An overview of the model parameters and their units. The
parameters T (day), L (cm) and M (g) denote the characteristic time, length
and mass, respectively. The growing tumour u proliferates at rate ρ and
infiltrates the surrounding brain tissue with tissue-specific infiltration rate
D. As the tumour grows it exerts pressure p on the surrounding brain
tissue. The hydraulic conductivity M describes the ease with which the
pressure passes through the brain tissues. Individual brain tissues partially
relax the pressure, depending on the tissue-specific relaxation properties
given by k, while the resulting pressure leads to tissue translation and
compression described by the deformation rate v!.

variable units description

u M/L3 tumour cell density

v M/L3 brain tissue cell density

D L2/T tumour infiltration rate

ρ 1/T tumour proliferation rate

p M/LT2 tumour-induced pressure

k T/L2 pressure relaxation

v! L/T deformation rate

M L3/TM hydraulic conductivity
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linear equations with a non-symmetric matrix, which complica-
tes the numerical implementation [51]. The symmetry of the
system isbrokenby theboundary conditions applied to the com-
plex brain anatomy. To overcome this issue, we deploy the
diffuse domainmethod (DDM) [72], which significantly reduces
the numerical and computational complexity of the system. To
further ease the model deployment, a high-performance model
implementation is publicly released.1

The rest of the paper is structured as follows: the pro-
posed model is introduced in §2, followed by a description
of the numerical implementation and the DDM formalism.
The results are presented in §3, where the model is applied
to synthetic and clinical cases. The relationship between
ICP elevation and neurological symptoms is explored. The
conclusion is presented in §4.
2. Methods
2.1. Biomechanical model
This section describes the proposed biomechanical model for
glioma progression, mass effect and ICP dynamics in the
patient-specific brain anatomy. The physics of the underlying
process can be summarized as follows. The tumour proliferates
and infiltrates the surrounding brain tissue, which consists of
white matter, grey matter and cerebrospinal fluid (CSF). The
brain tissue is assumed to consist of viscoelastic materials,
where distinct tissue constituents are characterized by different
mechanical properties. The growing tumour exerts pressure on
the surrounding brain tissue. The pressure is partially relaxed
by the brain tissue, depending on the tissue-specific mechanical
properties, while the remaining pressure results in tissue defor-
mation and compression. This mechanism entails three coupled
processes: (i) tumour dynamics, (ii) pressure dynamics, and (iii)
tissue dynamics; these represent the three main components of
the model described in the following subsections.

To facilitate the model description, the rest of this paragraph
outlines the notation and assumptions. The model is solved in
the patient-specific brain anatomy reconstructed from magnetic
resonance imaging (MRI) scans, where each image voxel corre-
sponds to one simulation grid point. The letter i∈ {1, …, N}
denotes an index across all N voxels of the MRI scan. It is
assumed that the tumour cells infiltrate only white and grey
matter, whereas the pressure affects all the tissues in the brain
parenchyma. According to this assumption, we consider three
distinct simulation domains: V1ðtÞ [ R3, a domain consisting
of white and grey matter only; V2 [ R3, a domain including
white matter, grey matter and CSF (i.e. the whole brain parench-
yma); V3 [ R3, a regular domain containing the brain
parenchyma and skull (e.g. whole brain scan). Figure 1 shows
the three simulation domains, and it is assumed that Ω1(t) ,
Ω2 , Ω3. We note that the border of the domain Ω1(t) changes
over time t as a result of the tumour-induced changes, such as
tissue displacement. On the other hand, the borders of the
domains Ω2 and Ω3 are constant over time, since Ω2 is con-
strained by a rigid skull and Ω3 is defined as a fixed domain.
To distinguish the different scopes of model variables, the fol-
lowing labelling is used: the field variables defined at every
voxel, such as tumour cell density, are marked by bold letters,
e.g. x; the vectors of field variables, such as deformation rate,
are denoted by bold letters with an arrow, e.g. x!; scalar vari-
ables, such as the proliferation rate, are marked by non-bold
letters, e.g. x. An overview of the model parameters is provided
in table 2.
2.1.1. Tumour dynamics
The glioma dynamic consists of tumour proliferation and infiltra-
tion into the surrounding brain tissue. Let ui(t)∈ [0, 1] be a
normalized tumour cell density at time t and voxel i∈ {1, …,
N} at location (ix, iy, iz)∈Ω1(t). The dynamics of the tumour cell
density u : ¼ fuiðtÞgNi¼1 in the brain tissue Ω1(t) is modelled as:

@u
@t

¼ r � (Dru)þ ruð1� uÞ � v!� ru in V1ðtÞ, ð2:1Þ
ru � n!¼ 0 in @V1ðtÞ; ð2:2Þ

uðt ¼ 0Þ ¼ u0 in V1ðt ¼ 0Þ: ð2:3Þ
The first term on the right-hand side of equation (2.1) describes
tumour infiltration into the surrounding brain tissue, where
D ¼ fDiðtÞ IgNi¼1 is a tissue-dependent tensor, I is a 3 × 3 identity
matrix and

DiðtÞ ¼ pwi ðtÞDw þ pgiðtÞDg for i [ V1ðtÞ,
0 for i � V1ðtÞ,

�
ð2:4Þ

where pwi ðtÞ and pgi ðtÞ denote the percentage of the white and
grey matter at voxel i at time t. The constants Dw and Dg

describe the tumour infiltration rate in white and grey matter,
respectively. Since the tumour cells infiltrate the white
matter faster than the grey matter, it is assumed that
Dw ¼ 10Dg ðcm2 day�1Þ [24,73]. Let us note that the tissue
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Figure 1. An overview of the simulation domains and the phase-field function. Three distinct simulation domains V1 , V2 , V3 [ R3 are considered to
capture different processes. It is assumed that the tumour infiltrates only white and grey matter, which together constitute the domain Ω1 shown in blue. The
tumour mass effect and pressure affect the whole-brain parenchyma; this is captured by domain Ω2, displayed in purple. A regular domain used for DDM for-
mulation, Ω3, is portrayed in green. The last subplot shows the phase-field function c used to capture the relation between domains Ω2 and Ω3.
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percentages pwi ðtÞ and pgi ðtÞ change over time owing to the
tumour-induced tissue displacement. The second term on the
right-hand side of equation (2.1) describes self-limiting tumour
proliferation, where ρ (1/day) is the proliferation rate. As the
tumour grows, it exerts pressure on the surrounding tissue,
which is deformed and displaced in response. The brain tissue
displacement also causes displacement of the tumour cells
infiltrated inside that tissue. This is modelled by the last
term on the right-hand side of equation (2.1), where
v! : ¼ fðvxi ðtÞ, vyi ðtÞ, vzi ðtÞ ÞgNi¼1 is the rate of displacement. The
skull and CSF (including ventricles) are not infiltrated by the
tumour and act as a domain boundary with an imposed no-
flux boundary condition given by equation (2.2), where n! is
the unit outward normal to ∂Ω1(t). The tumour is initialized as
a point source at voxel iic∈Ω1(t = 0) and its growth is modelled
from the initial time t = 0 until the final time t = T (day).
2.1.2. Pressure dynamics
The pressure dynamics are determined by the growing tumour
pressing on the surrounding brain tissue and the mechanical
properties of the individual tissue constituents. The brain tissue
acts as a viscoelastic material that partially relaxes the pressure
from the tumour. The pressure relaxation is proportional to the
tissue-specific mechanical properties—the softer the material
the more pressure it relaxes. The remaining pressure results in
tissue deformation. The deformation rate can be computed
from the pressure gradient using Darcy’s law. Let v! denote
the deformation rate. For the pressure term, we will assume
that pðt ¼ 0Þ is the patient’s normal pressure before the onset
of the tumour and p0ðtÞ is the patient’s pressure with the
tumour at time t. The tumour-induced pressure pðtÞ is then
given as pðtÞ ¼ p0ðtÞ � pðt ¼ 0Þ. Since the exact values of the
patient’s normal pressure are not known, we will assume
pðt ¼ 0Þ ¼ 0 and use the following equations to simulate the
dynamics of the tumour-induced pressure pðtÞ in the domain Ω2:

v!¼ �M � rp in V2, ð2:5Þ
r � v!¼ r uð1� uÞ � 5 p in V2, ð2:6Þ

v!¼ 0 on @V2: ð2:7Þ
The parameter M, sometimes referred to as hydraulic conduc-
tivity, describes the ease with which the pressure passes
through the tissue. The pressure relaxation is described by the
parameter 5 : ¼ f5iðtÞgNi¼1, where

5iðtÞ ¼ pwiðtÞ5w þ pgi ðtÞ 5g þ pci ðtÞ 5c for i [ V2,
0 for i � V2:

�
ð2:8Þ

The terms pwi ðtÞ, pgi ðtÞ, pci ðtÞ denote the percentage of white
matter, grey matter and CSF at voxel i at time t, while 5w, 5g
and 5c denote the relaxation rate of the corresponding tissues.
The softer the material is, the more pressure it relaxes; thus, it
is assumed that 5c . 5w . 5g. For simplicity, we assume constant
hydraulic conductivity M ¼ 8:53� 10�9 ðcm2 �mmHg�1 � s�1Þ,
as reported in [74]. This means that the tumour exerts the same
pressure on all surrounding tissues, but distinct tissues respond
differently depending on their mechanical properties. By substi-
tuting equation (2.5) into both equations (2.6) and (2.7) we obtain
a Helmholtz-like equation, which allows the computation of the
pressure field as

�r � (M � rp) ¼ r uð1� uÞ � 5 p in V2, ð2:9Þ

r p � n!¼ 0 on @V2: ð2:10Þ
The pressure p obtained by solving equations (2.9) and (2.10) is
used to compute the deformation rate v! from (2.5), which is con-
sequently used to model the tissue deformation.
2.1.3. Tissue dynamics
The growing tumour compresses and displaces the surrounding
brain tissue. Let vwi ðtÞ, vgi ðtÞ and vci ðtÞ denote the cell density of
white matter, grey matter and CSF, respectively, at voxel i∈Ω2 at
time t. The dynamics of each tissue constituent vs :¼ fvsi ðtÞgNi¼1,
s∈ {w, g, c} is modelled by the following advection–convection
equation:

@vs

@t
¼ � v!� rvs � vsr � v! in V2, ð2:11Þ

rvs � n!¼ 0 on @V2, ð2:12Þ
vsðt ¼ 0Þ ¼ vs0 in V2: ð2:13Þ

The cell density of each tissue component in equation (2.13) is
initialized from the tissue segmentation, which can be computed
with the provided open-source software.2 The advection term
describes tissue displacement, while the convection term
models tissue compression. After each simulation time step, the
percentage of each tissue component must be recomputed
accordingly, i.e. for 8i [ V2 and s∈ {w, g, c}

psiðtÞ ¼
vsi ðtÞ

vwiðtÞ þ vgi ðtÞ þ vci ðtÞ
: ð2:14Þ

This ensures that the tissue percentage at each voxel is compati-
ble with the tissue density maps and that
pwi ðtÞ þ pgi ðtÞ þ pci ðtÞ ¼ 1 for 8i [ V2.

Let us note that in equation (2.1) the tumour is only subject to
displacement, not compression. The reason for this assumption is
that gliomas, in contrast to other solid tumours, infiltrate the sur-
rounding tissue, and thus the pressure acting from the tissue on
the tumour is minimal. However, if tumour compression is of
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interest, this can be achieved by including the convection term
(i.e. �ur � v!) on the right-hand side of equation (2.1).

2.1.4. Further considerations
The model can be further updated to account for the anisotropic
tumour cell migration along the fibres in the white matter. This
can be achieved by replacing the identity matrix I by a tensor
constructed based on the water diffusion tensor obtained
through diffusion tensor imaging (DTI), as done in previous
works [49,75–78]. Patient-specific DTI scans have the potential
to inform the speed and direction of the tumour infiltration in
the white matter. There are, however, two reasons why DTI-
based infiltration is not considered in our model. First, since
DTI measures water diffusion, the DTI signal is corrupted in
the oedematous regions owing to increased water content,
which can have an adverse effect on the simulated infiltration
in the tumour region and its proximity. Second, it is not clear
how the orientation of the tissue fibres is affected during tissue
compression and deformation caused by the growing tumour.
Therefore, in this paper, the tumour infiltration is only con-
strained by anatomical structures, whereas the deployment of
DTI in the presence of the tumour mass effect might require
further studies.

Additional model updates can be achieved by including a
damping effect in the diffusion term informed by von Mises
stress, as presented in [35,79]. This approach accounts for the
inhibition in tumour expansion caused by local tissue stress, as
observed experimentally for solid tumours [80]. However, in
the case of diffusive glioblastomas [81,82] and some other
cancers [83,84], experiments suggest increased tumour invasive-
ness in response to elevated local pressure and compression.
More studies are thus required to fully understand the tumour
behaviour in relation to its micro-environment and compu-
tational models such as [35,79] can assist such studies. In this
paper, we consider only tissue-dependent tumour infiltration to
keep the number of model parameters minimal.

2.2. Numerical formulation
This section presents how the DDM can be deployed to reduce
the computational intensity of the proposed model. Details of
the numerical implementation are discussed afterwards.

2.2.1. Diffuse domain formulation
The computational cost of the proposed model is largely
determined by the numerical solution of the Helmholtz
equations (2.9) and (2.10). Its numerical discretization with the
FD method leads to a system of linear equations with a non-
symmetric matrix. The non-symmetry is due to the complex
brain anatomy and the imposed no-flux boundary condition
(equation (2.10)). In turn, many efficient numerical methods
such as Jacobi, Gauss–Seidel or conjugate gradient methods
cannot be used since they all require symmetric matrices. How-
ever, this issue can be efficiently overcome by the DDM [72].
The DDM offers a way to replace a system of equations defined
on a complex domain by a new set of equations defined on an
arbitrary regular domain with desired boundary conditions. In
our case, the Helmholtz equation defined at Ω2 can be replaced
by a new set of equations defined on regular domain Ω3 with
a zero Dirichlet boundary condition on ∂Ω3, resulting in a
system of linear equations with a symmetric matrix. The DDM
method uses a so-called phase-field function c :¼ fcigNi¼1 [ V3

to capture the relationship between the domains Ω2 and Ω3.
The phase-field function c is a smoothed version of the charac-
teristic function xjV2

of the domain Ω2, i.e. ψi = 1 for i∈Ω2, ψi =
0 for i [ V3nV2, and ψ varies smoothly at the interface between
the domains Ω2 and Ω3, such that ψ(i) = 0.5 for i∈ ∂Ω2, as shown
in figure 1. Using the DDM, the Helmholtz equation given by
equations (2.9) and (2.10) is reformulated as

�r � (M � crp) ¼ cr uð1� uÞ � c5p in V3, ð2:15Þ
p ¼ 0 on @V3: ð2:16Þ

The FD discretization of the above equations leads to a system of
linear equations with a symmetric matrix, thus reducing signifi-
cantly the numerical complexity of the problem. The phase-field
function c, like Ω2, does not change over time since it is con-
strained by a rigid skull. The pressure computed by the above
equations in domain Ω3 can be easily mapped to domain Ω2

(i.e. brain parenchyma) by multiplication with the characteristic
function xjV2

. The phase-field function can be obtained by
solving the Cahn–Hilliard equation [85,86],

@c

@t
¼ r �

�
AðcÞ � r(g0ðcÞ � 12Dc)

�
[ V3, ð2:17Þ

cðt ¼ 0Þ ¼ 1 on V2,
0 on V3nV2,

�
ð2:18Þ

where gðcÞ ¼ 1
4c

2ð1� cÞ2 is a double-well potential and the
term AðcÞ controls the behaviour of the phase-field function at
the interface, while ε is the prescribed interface thickness.
Taking AðcÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4gðcÞp
limits interface displacement under the

Cahn–Hilliard dynamics. The Cahn–Hilliard equation is solved
in time until the phase-field function reaches a smooth interface
with the prescribed thickness. The desired width of the interface
depends on the application; in this case, the interface width of
3 voxels (i.e. 3 mm) is considered.

Algorithm 1. Implementation of the tumour-induced brain
deformation model.

1. Initialise: t ¼ 0, uðt ¼ 0Þ ¼ u0, vsðt ¼ 0Þ ¼ vs0 for

s [ fw, g, cg
2. Compute tissue percentage by equation (2.14)

3. while ðt � TÞ do
4. Compute time step t ¼ minðt1, t2Þ, where t1 and t2 are time
steps constrained by the numerical stability of equations (2.1)

and (2.11)

5. Compute the pressure pðtÞ by solving equations (2.15) and (2.16)
6. Compute the deformation field v!ðtÞ by solving equations (2.5)
and (2.7)

7. Update the tumour state by solving equations (2.1) and (2.2)

8. Update the brain tissue by solving equations (2.11) and (2.12)

9. Recompute the tissue percentage by equation (2.14)

10. t ¼ t þ t

11. end while

To simplify the process and to avoid re-computation of the
phase-field function for each new patient, affine image regis-
tration can be used instead. More specifically, we provide the
brain MRI atlas with the binary brain mask (i.e. xjV2

) and the cor-
responding phase-field function computed by equation (2.17).1

For each new patient, the patient-specific phase-field function
can be obtained by computing an affine registration, F , that
maps the atlas brain mask to the patient’s brain mask. The result-
ing registration F is then used to map the pre-computed atlas
phase-field function to the patient’s brain, leading to the
patient-specific phase-field function. To ease the process, an
automated image-registration software as well as brain atlas are
provided.2,3
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We remark that the DDM approach is used only for the
Helmholtz equation. In principle, the whole model could
be expressed in the DDM formalism. However, if the simulation
domain contains very fine anatomical structures, it might not
be possible for the phase-field function to have a smooth
interface and preserve the structures at the same time. For
instance, the separation between frontal brain lobes often consists
of only 1–2 voxels in some regions, and thus a phase-field func-
tion with ε of even 1 voxel could distort the separation between
the hemispheres, creating artificial pathways for tumour
infiltration.

2.2.2. Implementation
A numerical implementation of the proposed model is outlined in
algorithm 1, while the software is publicly available.1 The software
uses the FD method for the space discretization together with for-
ward Euler time integration. The Helmholtz equation, given by
equations (2.15) and (2.16), is solved with a multigrid precondi-
tioned conjugate gradient method [87] using the hypre library
[88]. The advection–convection equation (2.11) is solved with the
fifth-order weighted essentially non-oscillatory (WENO5)
scheme [89]. The advantage of theWENO5 scheme is its capability
to achieve highly accurate solutions in smooth regionswhile main-
taining stable, non-oscillatory transitions in regions with sharp
discontinuities [90], which appear for instance at interfaces
between the CSF and brain tissue. A high-performance implemen-
tation is achieved through a hybrid OpenMP and MPI
parallelization. For the software and tutorial, please refer to our
repository.1
3. Results
The proposed model is tested on synthetic and clinical cases.
The synthetic case is used to illustrate the model’s capability
of simulating tumour progression and the corresponding
mass effect. The relation between ICP elevation and neuro-
logical symptoms is explored. The model is then applied to
clinical cases of patients with HGG and LGG lesions. The
HGG cases exhibit significant brain deformations; however,
owing to the aggressive nature of the disease only scans
from a single time point prior to treatment are available.
These cases are used to demonstrate the model’s capability
of reproducing realistic and large brain deformations. After-
wards, data showing tumour progression from LGG to
HGG are used to assess the potential of the model to capture
disease progression over time. The synthetic case uses
healthy brain anatomy obtained from the SRI24 Atlas [91],
while the patient cases are obtained from the Brain Tumour
Segmentation (BraTS) challenge [92,93].

3.1. Synthetic case
For the synthetic case, brain anatomy from a healthy subject
provided by the SRI24Atlas is used to simulate the disease pro-
gression over time. The brain tissue segmentation is provided
together with the atlas. The tumour is initialized as a point
source in the right frontal lobe and its progression is simulated
over a period of 600 days using the following model par-
ameters: Dw = 1.3 × 10−3 (cm2/day), Dg = 1.3 × 10−4 (cm2/
day), ρ = 1.2 × 10−2 (1/day), 5g ¼ 2:0� 10�3 ðday=cm2Þ,
5w ¼ 2:0� 10�2 ðday=cm2Þ, 5c ¼ 2:0� 10�1 ðday=cm2Þ and
M ¼ 8:53� 10�9 ðcm2 �mmHg�1 � s�1Þ. The values of par-
ameters (Dw, Dg, ρ) were taken from [31,94] and M from [74],
while values of 5w, 5g, 5c were chosen empirically.
Figures 2 and 3 show disease progression over time in
two- and three-dimensional views. The mass effect of the
growing tumour causes brain deformations, including ventri-
cle compression and brain midline displacement, where the
latter is more visible in the three-dimensional visualization
shown in figure 3. The resulting tumour morphology has a
complex pattern compatible with the brain anatomy. The
ICP, shown in figure 2b, is directly derived from the growing
tumour and is constrained by the patient-specific brain anat-
omy. The model identified the highest pressure accumulation
in the frontal lobe, where the growing tumour compresses the
brain tissue against the inner wall of the skull. On the other
hand, the pressure in the ventricles is much lower, which is
consistent with the capability of the CSF to relax the pressure
[95]. The deformation field, shown in figure 2c, is most domi-
nant at the interface between the tumour and the tissues, i.e.
the region where the bulk tumour presses most on the
surrounding tissue, while its effect decreases with increasing
distance from the tumour. The model predictions can be used
to assist clinical interventions, such as ICP management or
surgery planning. The distribution of the ICP can be used
to estimate the neurological symptoms caused by the
increased pressure in the specific brain centres, as shown in
figure 2d. For instance, in the presented case the pressure
elevation in the frontal lobe, as seen in the initial stages of
the disease, can affect the subject’s behaviour and concen-
tration. As the pressure elevation progresses to the motor
cortex, deterioration of motor functions can be expected,
followed by impairment of perception caused by further dis-
ease progression to the sensory cortex in the parietal lobe.
Interestingly, the identified ICP values are also comparable
to the pathological values reported in table 1. The latter
time points show intracranial hypertension, which is also
compatible with the brain midline displacement (shown in
figure 3), both representing critical conditions. For clinically
relevant predictions, however, model calibration to the
patient-specific conditions is needed. This example illustrates
the potential of the model to simulate tumour progression,
together with the brain deformations and ICP increase over
time.
3.2. High-grade glioma cases
To assess the ability of the model to produce realistic
brain deformations, the model is used to reproduce the
tumour mass effect observed in MRI scans of patients diag-
nosed with HGG. Figure 4a,b shows fluid-attenuated
inversion recovery (FLAIR) and T1-weighted (T1w) MRI
scans of two patients at the time of tumour detection. The
FLAIR scan provides good contrast between healthy tissue
and tumour (seen as bright enhancement), while the contrast
between white and grey matter is less pronounced. On the
other hand, the T1w MRI shows lower enhancement in
the lesion but superior contrast between the distinct brain
tissues. The FLAIR scan is therefore used to detect the
tumour extent while the T1w MRI is deployed to estimate the
brain anatomy.

To perform the simulation, we would like to initialize the
tumour in the patient’s tumour-free non-deformed anatomy
and model the disease progression over time, until it reaches
the state visible on the patient’s scans. Since the scans with
the patient’s healthy anatomy are usually not available, we
approximate the initial deformation-free anatomy through
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Figure 2. Simulation of disease progression over 600 days in the synthetic case. The subplot (a) shows a two-dimensional slice of the brain anatomy with the
tumour, while the colour bar indicates the tumour cell density. Tumour progression results in compression of the right ventricle and brain midline displacement in
the frontal lobe, the latter one being more visible in figure 3. The pressure distribution and deformation field, together with the tumour outline, shown as the white
iso-surface given by u = 0.3, are depicted in three dimensions in the subplots (b) and (c), respectively. The pressure values correspond to the tumour-induced
pressure increase over the subject’s ICP before the onset of disease. The subplot (d ) shows neurological brain centres mapped to the patient’s anatomy, followed
by a visualization of the pressure distribution superimposed on the top of the specific neurological centres. For visualization purposes, the last row shows the
pressure distribution from day 300 onwards.
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Figure 3. Visualization of the brain midline displacement over time in the synthetic case. The results correspond to the same subject and simulation depicted in
figure 2. The three-dimensional visualizations, provided in (a) coronal and (b) axial view, show brain midline shift, which is one of the indicators of critical
conditions. For visualization purposes, the CSF is not depicted.
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image registration. More specifically, the T1w MRI scan from
the SRI24 atlas [91] is mapped to the patient’s T1w scan using
affine ANTs [96] registration.3 The approximated healthy
anatomies of both patients are shown in figure 4c. This
approach provides a reasonable approximation of the defor-
mation-free anatomy in most cases. However, the affine
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Figure 4. Simulation of disease progression in two patients with HGG. The subplots (a,b) show FLAIR and T1w MRI scans of each patient from the time of the
tumour detection. Since the scans with patient brain anatomy before the onset of the disease are not available, affine registration of the brain atlas to the patients’
preoperative MRI scans is used to approximate the tumour-free brain anatomy. The resulting tumour-free brain anatomy is shown in subplots (c) and serves as the
initial condition for the simulation. The tumour is initialized as a point source in the centre of mass of the FLAIR-enhancing lesion and its progression is simulated
over time until it reaches a mass comparable to the tumour visible on the patients’ scans. Subplot (d ) shows the simulated tumour and its effect on the surrounding
brain tissue. The colour bar indicates the tumour cell density. The subplots (e,f ) show the simulated pressure distribution and the deformation field overlaid on the
patients’ T1w MRI scans. The predicted brain deformations mimic the state of the disease visible in the patients’ MRI scans. For each patient, the slice across the
tumour centre of mass is shown.
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registration might not be sufficient to capture atypical ana-
tomical morphologies, such as enlarged ventricles, which
might require manual correction. In the simulation, the
tumour is initialized as a point source at the centre of mass
of the FLAIR-enhancing lesion. The time of the tumour
growth, from its onset to detection, is not known in practice.
However, from the simulation perspective, one can obtain the
same tumour morphology with different combinations of
time-dependent parameters, such as T and speed of growth,
i.e. (Dw, ρ), as shown in [31,73]. Since the aim of these
examples is to illustrate the potential of the model to generate
realistic brain deformations, the same parameters as in the
synthetic case are used; except the final time T, which is
chosen manually by comparing the extent of the real and
the predicted tumour.

The results of the model simulations for both cases are
shown in figure 4d–f. The predicted tumour mass effect is
in good qualitative agreement with the tumour-induced
deformations observed in the patients’ MRI scans. In the
case of patient 1, the model correctly predicts the midline dis-
placement, while for patient 2 it accurately reproduces the
compression of the ventricles. The simulated tumours have
complex morphology similar to tumour patterns seen in the
patients’ scans. Figure 4e shows the predicted ICP distri-
bution overlaid on the patients’ T1w MRI scans. The
estimated pressure distribution closely follows the mor-
phology of the visible tumour, with the highest pressure
accumulation mainly in the tumour core close to the skull.
The high ICP values imply intracranial hypertension in
both patients (table 1), which is a reasonable estimate given
the large size of the lesions. The deformation field, shown
in figure 4f, is most pronounced at the outlines of the visible
tumour, i.e. the regions where the bulk tumour presses most
on the surrounding tissue. Small deviations can be attributed
to the discrepancies in the approximation of the initial
tumour-free brain anatomy. For instance, the ventricles in
the frontal lobe of patient 2 appear smaller in the approxi-
mated initial anatomy than in the patient’s scans. These
examples demonstrate the feasibility of the model to repro-
duce a realistic tumour mass effect, even in the presence of
large deformations.
3.3. Low-grade glioma case
We test the feasibility of the model to capture the disease pro-
gression over time in a patient case with MRI scans from two
different time points. Figure 5a,b,f,g shows the patient’s scans,
where the first time point T1 corresponds to an LGG lesion
from the time of disease detection, while the second time
point T2 shows the tumour transition to HGG. We note that
the glioma scans, showing tumour progression over multiple
time points, are relatively rare since patients usually undergo
treatment or tumour resection. Since in this case data from
two time points are available, the scan from the first time
point T1 could be used to initialize the simulation, both the
tumour cell density and the brain anatomy, and the model
would simulate the disease progression to the second time
point T2. This approach, however, poses a few challenges.
First, the patient’s brain anatomy below the visible tumour
is not known. Second, since the MRI scan captures only the
tumour morphology, the tumour cell density and the
tumour infiltration beyond the visible tumour borders are
unknown. Such uncertainties in the initial condition would
significantly affect the model prediction. Moreover, since
these scans come from a public database focused on
tumour segmentation, the acquisition time of the scans is
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Figure 5. Simulation of disease progression over time. Subplots (a,b) and ( f,g) show the patient’s T1w and FLAIR MRI scans acquired at two different time points,
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gression is simulated from the time of disease onset (i.e. t = 0 (days)) through time t = T1 to time t = T2. The specific values for parameters T1 and T2 are found
manually by comparing the mass of the simulated and the patient’s tumour visible on the scans. Results of the simulation at T1 = 200 (days) and T2 = 700 (days)
are depicted in (c–e) and (h–j ), respectively. Subplots (c and h) show the simulated tumour and its effect on the surrounding anatomy for each corresponding time
point. The colour bars indicate the tumour cell density. The model correctly predicts a small mass effect at time T1, while at time T2 it correctly captures the
compression of the right ventricle and the midline shift. However, the model did not capture the enlargement of the left ventricle at time T2 (marked by
green arrows), which stems from the changes in CSF circulation. Subplots (d,e) and (i,j ) show the predicted pressure distribution and the deformation field visualized
on top of the patient’s T1w MRI scans from the corresponding time points. At time T1, the model predicts mild hypertension, which is compatible with low-grade
tumours, while more advanced hypertension is estimated as the tumour progresses to an HGG at time T2. The deformation field is most prominent at the borders of
the visible tumour, i.e. the region where the bulk tumour presses most on the surrounding tissue, indicating the deformations towards the brain midline. This
example demonstrates that, except for the changes in the CSF circulation, the model can capture disease progression over time.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210922

9

not provided. But even if the time span between the two time
points were known, the disease most likely does not proceed
at a constant pace owing to treatment. Since the aim of this
example is to assess the ability of the model to capture
tumour progression over time, rather than provide patient-
specific predictions, a similar strategy as in the previous
cases is applied. In particular, the tumour is initialized as a
point source in the deformation-free anatomy and this time
point is considered as the initial time t = 0 (days). The initial
brain anatomy is obtained by mapping the brain atlas to
the patient’s T1w scan from the first time point, i.e. T1. The
initial tumour location is chosen as the centre of mass of
the tumour visible on the FLAIR scan from time T1. The
tumour progression is simulated from the time of disease
onset, i.e. t = 0 (days), through the time of the tumour detec-
tion at t = T1 (days) until the final time t = T2 (days) using the
same parameter values as in the previous cases. The time
points corresponding to the patient’s scans were found
manually by comparing the extent of the simulated and
real tumour, and were estimated as T1 = 200 (days) and
T2 = 700 (days). The additional benefit of this approach is
that the model predictions can be evaluated at two different
time points instead of one.

The results of the simulation at time points T1 and T2 are
shown in figure 5. The model accurately predicts a small
tumour mass effect at the first time point, which is consistent
with the LGG visible on the patient’s first scan. The estimated
pressure distribution and the deformation field follow the
morphology of the actual tumour. The moderate elevation
in the ICP implies the onset of intracranial hypertension
(table 1). At the second time point, the model correctly cap-
tures the disease progression, including the compression of
the right ventricle and the brain midline shift. The increased
ICP indicates advanced intracranial hypertension, typical for
HGG, with a high-pressure accumulation in the whole
tumour core. However, the model did not capture the enlar-
gement of the left ventricle in the second time point,
marked by the green arrows in figure 5. Such ventricular
enlargement happens in some patients owing to changes in
CSF circulation, which can be caused either by the tumour
itself or as a response to treatment [97]. Since the model
does not account for the CSF circulation such deformations
are not captured. This example shows that, except for ventri-
cular enlargement, the model can provide realistic predictions
about disease progression over time. Such predictions can
serve as the worst-case scenario estimates about disease pro-
gression in the absence or insufficiency of treatment.
4. Conclusion
This paper proposes a novel model coupling glioma pro-
gression, tumour mass effect and ICP dynamics. Synthetic
and clinical cases are used to illustrate the model’s capability
to capture realistic disease progression and brain defor-
mations and to estimate the ICP distributions. The main
advantage of the proposed approach is that the ICP is directly
derived from the tumour dynamics and the patient-specific
anatomy. This allows for estimates of critical conditions
such as hypertension, brain midline shift or neurological
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impairments caused by high-pressure accumulation in
specific brain areas. The distribution of ICP has further
potential to guide surgical interventions.

The model could also be used to guide deformable image
registration of patients’ brain scans from different time points.
Another interesting application would be to deploy the model
towards the discovery of novel prognostic markers. In particu-
lar, markers such as midline shift [9,98] or lateral ventricle
displacement [99] are often used as indirect measures of
mass effect and they show a strong correlation with survival.
These markers, however, measure only a displacement of a
single point. On the other hand, the model captures the full
deformation field in a three-dimensional context. In this way,
the displacement of multiple brain landmarks can be quanti-
fied and correlated with the patient survival/prognosis,
potentially revealing new predictive markers.

A limitation of the proposed model is that it does not
account for the circulation of CSF within and outside of the
brain. As a consequence, the model cannot capture swelling
of the ventricles, which can happen in some patients
owing to the presence of the tumour or as a response to the
treatment. Future works should thus account for the role of
CSF circulation and its effect on ventricular deformations.
Of particular interest would also be model extension account-
ing for distortion of the brainstem, caused either by CSF
occlusion along the brainstem or by tumour infiltration into
the brainstem itself, which have been recently identified as
characteristic features presented in final-stage glioblastoma
patients [100].

In the future the model can also be extended by incorpor-
ating various factors such as anisotropic tumour infiltration
informed by patient-specific DTI [49,78,101], stress-con-
strained tumour invasion [79], the Allee effect [102] or go-
or-grow principle [103,104]. Another compelling direction is
to model gross tumour resection and consequent changes.
The resection can be modelled by removing the tumour
and the resection path (i.e. the tissue leading from the skull
to the tumour) and by replacing the void with CSF. The resec-
tion cavity can be estimated from the postoperative scans.
The presented model can then be used to simulate the pro-
gression and mass effect of the residual tumour in the
absence of treatment, including tumour-induced compression
of the resection cavity. However, the postoperative brain anat-
omy undergoes significant tumour-unrelated changes such as
tissue decompression, which are not captured by the current
model. The model only considers the tumour-induced
pressure and mass effect. Once the tumour is resected, the
pressure source is removed and the tumour-induced pressure
drops to zero, i.e. to the patient’s normal ICP. Although this is
compatible with the outcome of surgery, the uniform
pressure in the model does not generate the deformation
force to drive the tissue decompression. This could be over-
come by including a sink term for the pressure inside the
resection cavity to drive the tissue relaxation. The relaxation
of residual stresses can also drive tissue decompression
(e.g. [10,105–109]). Further studies are however required
to understand and correctly capture postoperative brain
biomechanical changes.

To facilitate model calibration from patient data, the pro-
posed model relies on a small number of parameters. The
model calibration and accuracy of patient-specific predictions
should be tested on a larger patient cohort in the following
studies. The work presented here serves as a proof of concept
that the proposed model holds the potential to capture
glioma progression and accompanying tissue deformations
and pressure dynamics in the patient’s brain. These results
encourage future studies of patient-specific model predictions
aiming to assist clinical interventions by providing non-
invasive estimates about the patient’s state and the disease
progression over time. Finally, to facilitate deployment of
the proposed methodology, a highly parallel implementation
of the model is publicly released.
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