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Bronchial asthma is one of the most chronic pulmonary diseases and major public health
problems. In general, asthma prevails in developed countries than developing countries,
and its prevalence is increasing in the latter. For instance, the hygiene hypothesis
demonstrated that this phenomenon resulted from higher household hygienic
standards that decreased the chances of infections, which would subsequently
increase the occurrence of allergy. In this review, we attempted to integrate our
knowledge with the hygiene hypothesis into beneficial preventive approaches for
allergic asthma. Therefore, we highlighted the studies that investigated the correlation
between allergic asthma and the two different types of infections that induce the two major
antagonizing arms of T cells. This elucidation reflects the association between various
types of natural infections and the immune system, which is predicted to support the main
objective of the current research on investigating of the benefits of natural infections,
regardless their immune pathways for the prevention of allergic asthma. We demonstrated
that natural infection withMycobacterium tuberculosis (Mtb) prevents the development of
allergic asthma, thus Bacille Calmette-Guérin (BCG) vaccine is suggested at early age to
mediate the same prevention particularly with increasing its efficiency through genetic
engineering-based modifications. Likewise, natural helminth infections might inhabit the
allergic asthma development. Therefore, helminth-derived proteins at early age are good
candidates for designing vaccines for allergic asthma and it requires further investigation.
Finally, we recommend imitation of natural infections as a general strategy for preventing
allergic asthma that increased dramatically over the past decades.
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BACKGROUND

Bronchial asthma is regarded as the most chronic pulmonary
disease and a major public health problem, affecting more than
350 million people worldwide with a high mortality rate in severe
cases. Also, it is likely to afflict an additional 100 million by 2025.
Among the various forms of asthma (minor forms due to air
pollution, exercise, aspirin and cold), allergic or atopic asthma is
the most prevalent (1, 2). T helper 2 (Th2) cells are the major
effector cells in the pathogenesis of allergic asthma. Upon allergic
exposure and via their signature cytokines, they stimulate
Eosinophils and IgE-producing B cells with subsequent mast
cells degranulation, resulting in the characteristic airway
narrowing and airway hyperreactivity (AHR) (2). Generally,
asthma is more prevalent in developed countries (range
between 8.5% to 32%) than in developing countries (range
between 4.1% to 4.2%) and its prevalence is increasing in the
developing countries as they become more westernized (1, 3).
The first study investigated this phenomenon was in 1976, when
the authors found that allergic diseases increase more in urban
areas than in rural areas, which resulted from less exposure to
viruses, bacteria and helminths in urban areas (4). In 1989, a
study reported similar findings, and concluded that higher
household hygienic standards lead to decreased chances of
infections, which may subsequently increase the occurrence of
allergy, and it has been referred as the hygiene hypothesis (5).
This hypothesis suggest that the removal of the regulatory effects
of infectious microorganisms from populations tended to lead to
an imbalance in the immune system (6), which acts through two
patterns of acquired immune response: Th1 and Th2 immune
responses (7). In addition, over the past 20–30 years, it has
become increasingly clear that, in Western countries, a strong
correlation exists between improved sanitation and hygiene and
a dramatic increase in atopic disorders (8). Moreover, this
hypothesis was supported by the global rise in allergy
associated with a decreased infection burden (1, 6, 9–11). This
hypothesis has been extended to include different autoimmune
diseases, such as type I diabetes mellitus, inflammatory bowel
disease, and multiple sclerosis (8, 11, 12). Moreover, there is
another hypothesis derived from the hygiene hypothesis and
called old friends that implies the relationship between various
types of infections and chronic inflammatory diseases (13).
Furthermore, the biodiversity hypothesis, another hypothesis
Abbreviations: A. lumbricoides, Ascaris lumbricoides; A. suum, Ascaris suum; A.
viteae, Acanthocheilonema viteae; Ag85A, Antigen 85A; Ag85B, Antigen 85B;
AHR, Airway hyperreactivity; AIP-2, anti-inflammatory protein-2; APC, Antigen
presenting cell; BCG, Bacille Calmette-Guérin; DCs, Dendritic cells; E.
vermicularis, Entrobius vermicularis; ES, Excretory/secretory protein; H.
polygyrus, Heligosomoides polygyrus; i.d., Intradermal; i.n., Intranasal; IL,
Interleukin; ISAAC, International Study of Asthma and Allergies in Childhood;
M. bovis, Mycobacterium bovis; Mtb, Mycobacterium tuberculosis bacteria; N.
americanus, Necator americanus; N. brasiliensis, Nippostrongylus brasiliensis;
OVA, Ovalbumin; RD, Region of difference; S. japonicum, Schistosoma
japonicum; S. mansoni, Schistosoma mansoni; S. stercoralis, Strongyloides
stercoralis; Smteg, schistosomula tegument; T. canis, Toxocara canis; T. spiralis,
Trichinella spiralis; T. trichiura, Trichuris trichiura; TB, Tuberculosis; TGF,
Transforming growth factor; Th, T helper; TLR, Toll-like receptor; TNF, Tumor
necrosis factor; TP, Total protein; Tregs, T regulatory cells.
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derived from the hygiene hypothesis, demonstrates that reduced
natural environmental biodiversity adversely affects human
commensal microbiota, which is consequently associated with
higher prevalence of atopy (14). In general, these illustrations
indicate the significance of the hygiene hypothesis to gain further
knowledge concerning allergic asthma.

The main attempt of the current study was to integrate existing
knowledge with the hygiene hypothesis to attain beneficial
preventive approaches for allergic asthma. Therefore, we
highlighted the studies that illustrated the correlation between
allergic asthma and two different types of infections (mycobacteria
and helminths) that induce the two major antagonizing arms of T
cells (Th1 and Th2). This elucidation reflects the relationship
between various types of natural infections and the immune
system, which consequently supports our main attempt to
investigate the potential advantages of various natural infections
and the practical applications of these benefits for developing
efficient approaches to control allergic asthma.
MYCOBACTERIUM TUBERCULOSIS
AND ALLERGIC ASTHMA

Tuberculosis (TB) is a highly infectious granulomatous lung
disease induced by Mtb, affects 10 million new cases annually
with 1.5 million associated deaths predominantly in developing
countries, representing the most lethal pathogenic organism
worldwide (15). Mtb is a potent Th1 response inducer. After
Mtb reaches the respiratory tract, it is deposited within the
alveoli, to which the immune system responds by releasing pro-
inflammatory cytokines that recruit monocytes and macrophages.
Mtb begins to multiply within alveolar macrophages secreting
interleukin (IL)-12, the latter activates IFN-g-secreted Th1, and
thus activates macrophages and enhances its intracellular killing of
phagocytosed Mtb. This immune response can control the
infection in 90% of cases. However, Mtb are not completely
eradicated and their intracellular persistence inside macrophages
induces Th1 hypersensitivity, that stimulate the formation of
chronic granuloma, which is a structure consisting of a central
zone of multinucleated giant cells containing the organisms, in
addition to the peripheral zone of fibroblasts, lymphocytes and
monocytes to limit bacterial spread (15). Th1-directed response is
mainly induced by certain antigenic structures of cell wall ofMtb,
such as the mycolyl arabinogalactan peptidoglycan complex and
their associated lipoarabinomannan. These structures give Mtb
their acidic stability and prolong their survival inside macrophages
(16). Notably, T-regulatory cells (Tregs) are involved in the
immune response to Mtb via potentially suppressing the
pathogenic hyperactivation of Th1 cells (17, 18).

In an asthmatic mice model, Mtb infection alleviates allergic
inflammation and reduces Th2 cytokines. These effects were
suggested to be mediated through the conversion of the allergen-
specific Th2 into Th1 cells, which was supported by increased
IFN-g secretion of allergen-specific T cells, and not by Mtb-
stimulated expanded T cells. In addition, this switch was induced
by IL-12, which is the classical cytokine associated with Mtb
August 2021 | Volume 12 | Article 696734
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infection (15, 19). These findings indicate an inverse correlation
between murine experimental allergic asthma andMtb infection.
Concurrently, for human allergic asthma, an international
ecological study was conducted by the International Study of
Asthma and Allergies in Childhood (ISAAC), using data from 23
countries in Europe, USA, Canada, Australia and New Zealand,
and found that childhood Mtb infection may protect against the
subsequent development of allergic asthma (20). Another
ecological study included world health organization and
ISAAC program data for standardized asthma symptoms and
TB prevalence collected from Asian, central and south American,
and African countries. This study concluded a preventive effect
of Mtb infection against the development of asthma through the
induction of strong Th1 immune response (21). Moreover, the
protective role of Mtb was concluded by other studies (22–24).
Interestingly, as reported in mice, this effect might be induced by
the switching of allergen specific Th2 into Th1 cells in human
(23). Furthermore, there was an inverse association between
tuberculin test positivity and the incidence of allergic asthma (25,
26). In general, early childhood Mtb infection can prevent the
subsequent development of allergic asthma.

BCG and Allergic Asthma
The protective role of Mtb infection against allergic asthma
indicates the elucidation of the potential role of the TB vaccine
in preventing asthma. The only licensed vaccine for TB is the
BCG that is named after Albert Calmette and Camille Guérin
who in 1908 attenuated the living virulent mycobacterium bovis
(M. bovis) through continuous passages (231 passages) on
culture media that lost the virulence and maintained the
antigenicity of the organism. This vaccine was made throughout
13 years at the Institute Pasteur in Lille, France, and was used for
the first time in humans in 1921 for TB prevention, with more
than 100 million children vaccinated annually worldwide (27, 28).
However, the protective efficacy of BCG is variable, ranging from
0% to 80% in different countries. Nonetheless, the exact reason for
this variation remains unclear (27, 29, 30).

Interestingly, BCG is not a single strain, as the original strain
in Pasteur institute generated several offspring strains via
continuous passages in the countries that received the vaccine
that reached 60 countries by 1927. For example, the Danish
strain originated in 1931 in the name of 423rd transfer, whereas
the Glaxo strain was derived from the 1077th transfer of the
Danish strain. Many other strains were used, for instance;
Pasteur, Tokyo, Prague, Russian, Moreau, …etc. (30, 31). The
mechanism of the attenuation process ofM. bovis resulting from
the serial passages is not well interpreted. Nevertheless, it may
involve deletion of a chromosomal region, called region of
difference 1 (RD1), which is found only in virulent
mycobacteria and absent in BCG, containing the encoding
genes for ESAT-6 and CFP-10 and their secretion apparatus
which are two fundamental virulence factors for M. bovis.
Furthermore, other RD regions such as RD2, RD3 and RD14
to RD16 may be omitted. Moreover, single nucleotide
polymorphisms are also involved in chromosomal changes (27,
28). Therefore, the genetic variability between the various BCG
Frontiers in Immunology | www.frontiersin.org 3
vaccine strains may explain the variable protection. Also, they
induced different degrees of immune cell responses in vitro.
However, there is no clear evidence that one strain produces
more protection against pulmonary TB than the remaining
strains (30). Another variable for the efficacy of BCG is the
prior exposure to environmental mycobacteria, which are
distributed differently among countries. These mycobacteria
affect the efficacy of BCG through its pre-existing immune
response that may block BCG replication, hence called the
blocking hypothesis. In addition, it may induce a certain level of
protection against TB, which masks any protective effect of
subsequent BCG, thus called the masking hypothesis (28, 32).

BCG is considered very safe and the following reactions
following intradermal (i.d.) administration are mild in the form
of erythema and papule or ulceration that develops into scar, and
generally do not require any treatment (33). BCG stimulates the
immune response via binding its antigenic structures, such as
lipoarabinomannan, phosphatidylinositol mannoside and
trehalose 6,60-dimycolate, to toll-like receptor (TLR)2 and
TLR4 on innate immune cells as macrophages that secrete IL-
12 to induce Th1 cells polarization. The latter cells secrete IFN-g
that activates macrophages in a positive feedback loop (34, 35).
Consequently, BCG is a potent inducer of Th1 cells which is, also,
converted intomemory cells to maintain life-long protection against
Mtb infection. However, BCG, also, stimulates polarization of Tregs,
as the response to Mtb infection, to prevent an exaggerated Th1
response (34). Due to the immunostimulatory effects of BCG, it is
used as an immunotherapy for bladder cancer, multiple sclerosis
and type 1 diabetes mellitus, and it also used as an adjuvant (35).

In experimental murine allergic asthma, we divided the
potential effects of BCG into three categories (Table 1):
1) preventive, 2) preventive and/or therapeutic, and 3)
therapeutic, according to three time sets of vaccine
administration: 1) before allergen sensitization (36–43), 2) with
allergen sensitization (44–46), and 3) with/after aerosol allergen
challenge (47, 48), respectively. In several studies, administration
of BCG after birth or at an early age prevents the subsequent
development of murine allergic asthma regardless of strain, route
and number of doses (36–46). In addition, the BCG protective
response is supported by the ability of BCG adoptive transferred
stimulated dendritic cells (DCs) with different subsets to suppress
the established allergic inflammation in murine asthma (37, 49–
51). Moreover, the BCG administration after the establishment of
allergic asthma still has the potential to suppress allergic
inflammation and AHR (47, 48), indicating that BCG is not
only a preventive agent, but also a therapeutic candidate for
allergic asthma. Correspondingly, for human allergic asthma
(Table 2), several epidemiological studies with various study
designs concluded that early BCG vaccination significantly
decreases the subsequent development of asthma in different
countries, such as England, France, Turkey, Germany and
Spain in Europe, and Japan, Thailand and India in Asia (25,
52–57). Moreover, this conclusion was supported by the inverse
correlation between BCG scar dimeter and atopic asthma in
Brazil and Korea (65, 66). Interestingly, BCG scar diameter is a
significant reflection of the immune response to BCG as a Th1
August 2021 | Volume 12 | Article 696734
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TABLE 1 | Impact of BCG vaccination on experimental murine allergic asthma.

Proposed immune mechanisms
compared to asthmatic mice

Study
year

Reference

osinophilia, pulmonary inflammation
d AHR

o change in IFN-g

2001 (36)

osinophilia, pulmonary inflammation,
A-specific IgE and AHR

he action depended on DCs-induced
gs

2014 (37)

N-g/IL-5 ratio 2005 (38)
osinophilia, IL-5 and AHR

N-g/IL-5 ratio

-10
osinophilia

N-g/IL-5 ratio
osinophilia
osinophilia, pulmonary inflammation,
way remodeling, IL-4, IL-5, IL-13
d AHR

regs and IL-10

2013 (39)

osinophilia, pulmonary inflammation,
4, IL-5, IL-25

d OVA-specific IgE

-12

ulmonary DCs and its expression
TLR-2, TLR-4 and PD-L1

-10 and TGF-b

2017 (40)

osinophilia IL-4, IL-5 and
A-specific IgE

N-g

-10

1998 (41)

osinophilia, pulmonary inflammation,
cus overproduction
4, IL-5 and AHR

N-g

2008 (42)

osinophilia, pulmonary inflammation
d AHR

o changes in IL-4 nor IL-5

(Continued)
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Type of BCG strain Strain
condition

Animal
type

Animal
age

BCG
administration

route

Study times The proposed effects

Time of
BCG

vaccination

Asthma induction
times

Pasteur strain 1173P2 Live
attenuated

BP2
mice

10 days
(newborns)

i.n. Day 0 - OVA sensitization:
days 98 and 105

- Challenge: day 112

Preventive ↓
an

- N
Day 28 No suppressive effects
Day 56

Tokyo 172, Japan Freeze-
dried living

BALB/c
mice

6 weeks i.p. Day 0 - OVA sensitization:
days 5 and 12

- Challenge: days
19-21

Preventive ↓
O

- T
Tr

Pasteur F1173P2, Korea Live
attenuated

BALB/c
mice

6 weeks i.p. Day 0 - OVA sensitization:
days 7 and 21

- Challenge: days
28-30

Weak preventive effect ↑
Tokyo 172, Korea preventive ↓

↑

↓
Tice, Netherlands Mild preventive ↓

↑
Connaught, Canada ↓
Moreau, Brazil lyophilized BALB/c

mice
Newly
weaned

i.d. Day 0 or 30 - OVA sensitization:
days 60, 67, 74,
81, 88 and 95

- Challenge: days
100-102

Preventive ↓
ai
an

↑

i.n.

Moreau sub strain, Brazil Live
attenuated

BALB/c
mice

10 days i.n. Day 0 - OVA sensitization:
day 3

- Challenge: days
16, 17, 23 and
24

Preventive ↓
IL

An

↑

↑
of

↑
Strains were obtained from;
Behring, Marburg, Germany

Live
attenuated

BALB/c
mice

6 -8
weeks

i.v. Day 0 - OVA sensitization:
days 14, 28 and
35

- Challenge: days 40
and 41

Preventive ↓
O

↑

↓

D2‐BP302, shanghai, China Freeze‐
dried living

C57BL/6
mice

Neonates i.d. Days 0, 7
and 14

- OVA sensitization:
days 35 and 49

- Challenge: day 63

Preventive ↓
m
IL

↑
- OVA sensitization:

days 35 and 49

- Challenge: day 315

↓
an

- N
E

E
V

e
IF
E

IF

IL
E

IF
E
E
r

T

E
-

IL

p

IL
E
V

IF

IL

E
u
-

IF
E
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TABLE 1 | Continued

The proposed effects Proposed immune mechanisms
compared to asthmatic mice

Study
year

Reference

n:

s

preventive ↓ Eosinophilia, pulmonary inflammation

↑ IFN-g

↑ Th1 cells migration to the lung

2013 (43)

n:

s

Preventive and/or
therapeutic effects with
s.c. more than IN route

↓ Eosinophilia and AHR

↑ IFN-g and IFN-g/IL-5 ratio

2007 (44)

n:

s

Preventive and/or
therapeutic

↓ Eosinophilia, AHR

↓ IL-17A

↑ IFN-g/IL-5 ratio

2010 (45)

Weak suppressive effects Weak changes
n:

5,

6

Preventive and/or
therapeutic

↓ pulmonary inflammation, airway re-
modeling and AHR

↑ Tregs, TGF-b and CTLA-4 expression

2016 (46)

n:

2

Therapeutic ↓ Eosinophilia, IL-5 and AHR

↑ IFN-g

2002 (47)

Weak suppressive effects Weak changes

n:

s

Therapeutic ↓ Eosinophilia, pulmonary inflammation,
IL-4, IL-13 and OVA-specific IgE

↑ IFN-g

↑ Tregs, IL-10 (by CD8+) and TGF-b

2012 (48)
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Type of BCG strain Strain
condition

Animal
type

Animal
age

BCG
administration

route

Study times

Time of
BCG

vaccination

Asthma inductio
times

D2-BP302, Shanghai, China Freeze-
dried living

C57BL/6
mice

Neonates s.c. Days 0, 7
and 14

- OVA sensitizatio
days 56 and 70

- Challenge: da
80-82

Tokyo 172 live
attenuated

BALB/c
mice

6 weeks i.n. Day 0 - OVA sensitizatio
days 0, 7, 14
and 21

- Challenge: da
28-30

s.c.

Tokyo 172, Korea Live
attenuated

BALB/c
mice

6 weeks i.p. Day 0 - OVA sensitizatio
days 0 and 14

- Challenge: da
21-23Heat killed

Strains obtained from
Shanghai Research
Laboratory of Biological
Products

Inactivated Sprague‐
Dawley
rats

4 weeks i.d. - Days 0

- continued
2 times
each

week, for a
total of
9 weeks

- OVA sensitizatio
days 3 and 18

- Challenge: day 2
then 3 times
each

week, for a total of
weeks

Tice; Organon, West Orange,
NJ)

Lyophilized BALB/c
mice

4-5 weeks i.n. Day 33 - OVA sensitizatio
days 0, 14 and
28-30

- Challenge: days 3
and 40

i.p.

Moreau sub-strain, Brazil Live
attenuated

BALB/c
mice

6-8 weeks i.n. Days 35
and 42

- OVA sensitizatio
days 0 and 14

- Challenge: da
28-30, 34, 41,
63

OVA, Ovalbumin; DCs, dendritic cells; i.d., intradermal; i.n., intranasal; i.p., Intraperitoneal; S.C., Subcutaneous.
n

y

y

y

y
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TABLE 2 | Impact of BCG vaccination on human allergic asthma.

Country Study design Type of strain Age of BCG
vaccination

No. of
vaccinated
subjects/

total
subjects

Age asthma
diagnosis

Proposed
effect
against
asthma

Notes Study
year

References

Japan Retrospective Tokyo 172 strain At birth 867/867 12-13 years Preventive No significant
difference between
studied groups
regarding family
history

1997 (25)

Thailand Prospective
cohort

Strains were obtained
from Thai Red Cross
Society (Queen
Soavabha Memorial
Institute, Bangkok,
Thailand)

Within the
first 2 months

550/550 9-12 months
-follow up at age
of 2 years

Preventive 2004 (52)

Turkey Freeze-dried, Pasteur
Merieux (Lyon, France)

604/604

France Population
based cohort

Not reported First month 694/718 12-15 years Preventive 2005 (53)

England Retrospective
cohort

Not reported Before the
age of 12
weeks
(neonatal
period)

1900/5086 6-11 years Preventive Family history of
asthma significantly
associated with an
increased prevalence
of asthma in children

2007 (54)

India Cross-
sectional

Not reporter Early infancy 9492/10028 7-14 years Preventive 2013 (55)

Germany Cross-
sectional

Copenhagen strain 1331 At neonatal
period

20 383/
38808

Mean age 6 years Weak
protective
but
significant

2002 (56)

Spain Retrospective
cohort

Copenhagen strain
1331, Pharmacia Upjohn

At birth 6762/9590 6-7 years Weak
protective
but
significant

2005 (57)

Sweden retrospective
cohort

Copenhagen strain
1331, Denmark

17-21 days
(mean age)

216/574 5.5 years (mean
age)

No
correlation

No significant
difference between
vaccinated and
control group
regarding family
history

1997 (58)

Sweden cohort Not reported within first
year of life

294/6497 4-9 years No
correlation

1998 (59)

Germany Prospective
cohort

Copenhagen strain
1331, Germany

Median age
30 days

92/774 Physical
examination and
history at 3, 6, 12,
18, 24, 36, 48, 60,
72 and 84 months

No
correlation

- protection during
first 2 years only

- No significant
difference
between
vaccinated and
non-vaccinated
group according
to family history

2001 (60)

Germany
and
Netherlands

nested case-
control

Not reported At Infancy
period

75/510 7-8 years No
correlation

BCG increase risk for
HDM sensitization

2004 (61)

Germany cross-
sectional
study

Not reported Not reported 1219/1673 5-7 years No
correlation

2007 (62)

Netherland randomized,
prospective,
single-blind
study

Danish strain 1331 6 weeks 62/121 6 weeks, 4, 18
months

No
correlation

No significant
difference between
studied groups
regarding family
history

2008 (63)

(Continued)
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enhanced response with the subsequent increase of IFN-g (66).
Furthermore, BCG administration to asthmatic patients
demonstrated therapeutic efficiency in the form of improved
pulmonary functions and reduced medications. This occurs via
the attenuation of Th2 response (67, 68), which proved the
inhibitory effects of BCG even after developing atopic asthma.

The protective effect of BCG against allergic asthma can be
mediated through two potential pathways (Figure 1A). First,
promoted Th1 cells polarization with the subsequent increase in
Th1/Th2 homeostasis along with their signature cytokines as
IFN-g/IL-5 ratio. This promotion could be induced by either
polarization of naïve CD4+ to Th1 cells or switching of allergen
specific Th2 into Th1 cells (38, 41–43). Another pathway is the
upregulation of Tregs differentiation with the subsequent
increase of IL-10, which is induced by interaction with
stimulated TLR2, TLR4 and PD-1 that was expressed in DCs
(37, 39, 40, 46). Interestingly, BCG can stimulate differentiation
of naïve DCs into different subsets as CD8a+ and CD8a- DCs
that can induce both Tregs and Th1 cells through secretion of IL-
10 and IL-12, respectively (37, 49–51). These two pathways
provide protection in the form of suppression of Th2 cytokines
secretion, eosinophilia, allergic inflammation, allergen specific-
IgE and AHR (36–48). Moreover, BCG protected against asthma
through reduced IL-17 production, the signature cytokine of
Th17, that played a critical role in inducing neutrophilia and
airway inflammation and correlated with AHR and disease
severity (45, 69, 70). However, the complex action of Th17 in
eosinophilic airway inflammation requires further elucidations.

On the contrary, several epidemiological studies found that
early BCG vaccination did not decrease the risk of subsequent
development of atopic asthma, these studies were performed in
European countries such as Germany, Sweden, Netherland and a
North American country; Canada (Table 2) (58–64). However,
there weren’t adequate animal research that supported this claim
unlike the BCG protective effects that were reinforced by several
animal studies as mentioned previously. The discrepancy
between the preventive role of BCG vaccination in the
development of human asthma reported in different countries
is attributed to some factors. First, BCG strains contrasted with
different immunogenicity (28); however, as was shown in
Table 2, the lack of information about the specific strains used
in six of the 14 studies that supported (53–55) or did not support
(59, 61, 62) the negative association between asthma and BCG,
resulted in a severe difficulty to interpret the role of strains.
Frontiers in Immunology | www.frontiersin.org 7
Nonetheless, four of seven studies (Table 2) supported the
protective role of BCG against asthma and reported strains, such
as Pasteur (52), Tokyo 172 (25) and Copenhagen 1331 strains
(56, 57), while the latter induced poor protective effects.
Interestingly, for the seven studies that did not support the
protective role of BCG (Table 2), Copenhagen strain 1331 was
utilized in three studies in Germany (60), the Netherlands (63)
and Sweden (58). However, the other three studies, which did not
mention the strain were also performed in the same three
countries (59, 61, 62), with some potential to use the
Copenhagen strain. The effect of this particular strain has not
been investigated through animal research regarding its effect on
murine allergic asthma unlike other strains shown in Table 1.
Thus, among the different BCG strains, Copenhagen strain may
not induce protection against allergic asthma, and this requires
further investigations. In addition, the seventh non-supportive
study used the Pasteur strain and was conducted in Canada (64).
However, the study did not exclude the subjects who received the
vaccine after the neonatal period. Consequently, this leads to the
second point of the controversy, which is that late administration
of BCG during the neonatal period may increase the chances of
prior exposure to environmental mycobacteria, that might
decrease the efficacy of BCG as previously mentioned. In same
context, another study was implemented in Sweden that did not
exclude receivers (59).

Atopic hereditary can potentially interfere with the effects of
BCG, particularly in the seven studies that did not support the
protective function. Four of these seven studies did not detect a
significant difference between vaccinated and non-vaccinated or
asthmatic and non-asthmatic subjects regarding family history of
atopy (58, 60, 63, 64). Three other studies did not apply this
comparison, which weakens the potential interference of the
genetic background with the BCG effects in those studies. In
contrast, studies demonstrating the protective effects of BCG on
allergic asthma in developed countries such as England and
France (53, 54), which consequently contradicts the assumption
that the preventive effects of BCG against asthma are mediated
by the natural infection withMtb in developing countries, where
the incidence of tuberculosis is high, and not by the BCG itself
(58). However, the preventive role of Mtb infection against the
development of asthma, which was previously mentioned, is not
controversial as BCG. Interestingly,Mtb infection generates four
times more IFN-g than BCG (45). Despite the widespread use of
BCG as a TB vaccine, TB remains the leading cause of death from
TABLE 2 | Continued

Country Study design Type of strain Age of BCG
vaccination

No. of
vaccinated
subjects/

total
subjects

Age asthma
diagnosis

Proposed
effect
against
asthma

Notes Study
year

References

Canada retrospective
population-
based birth
cohort

Pasteur strain 568-571 32900
received at
first year of
life 2712
children
received later

35612/
76623

Followed until age
of 20 years

No
correlation

No significant
difference between
asthmatic and non-
asthmatic subjects
regarding family
history

2017 (64)
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an infectious agent worldwide (71). Therefore, imitating natural
Mtb infection through enhancing the efficacy of BCG and its
administration at the neonatal period may induce protection
against asthma and end this controversy.

In general, the conventional method to increase the efficacy of
vaccines is the booster dosing (72), since repeated exposure to both
antigen and polarizing cytokine is required for an effective immune
response (73). In this regard, the BCG efficacy ranges between 0-
80% and wanes over time (29), and it is classified as moderately
effective vaccine (74). In addition, repeated intradermal injection of
live attenuated vaccine is not acceptable due to the associated
adverse effects. Thus, intranasal administration of recombinant
immunodominant proteins is a better option (75). Antigen 85A
Frontiers in Immunology | www.frontiersin.org 8
(Ag85A) is a major immunodominant secretory protein in both
Mtb and BCG (76), and can be incorporated with Mtb32 protein
(an immunodominant mycobacterial protein) into an adenoviral
vector, as its intranasal administration to asthmatic mice
significantly suppresses allergic airway inflammation compared to
BCG effect. This suppression occurs via increased IFN-g and IL-10
and decreased IL-4, IL-5, IL-13 and IL-33 (77). In addition, antigen
85B (Ag85B), which is another major secretory mycobacterial
protein, was recombined with pMG plasmid and administrated
nasally to asthmatic mice inducing a protective effect by increasing
IFN-g/IL-4 ratio (75). Moreover, general Mtb secretory proteins,
particularly Ag85A, have showed promising results for TB
prevention in animals and humans and may replace the primary
A

B

FIGURE 1 | The immune mechanisms of BCG and helminths protect against allergic asthma (A) The protective effect of neonatal BCG is mediated through two
pathways: the first pathway (left) is induction of Th1 cells polarization by IL-12 secreting macrophages, the resultant IFN-g inhibits Th2 response with subsequent
suppression of asthma. Another pathway (right) is the upregulation of Tregs polarization through interaction with TLR2, TLR4 and PD-1 expressed on DCs, the
resultant IL-10 and TGF-b reduce TH2 response and suppress asthma. (B) The protective effect of chronic helminth infection is mediated through 2 pathways: the
first pathway (left) is the induction of T and Bregs differentiation by IL-10 secreting antigen presenting cells (APCs). Then, Th2 response is inhabited by IL-10 and
TGF-b or the direct contact between Tregs and Th2 cells, which leads to suppressing asthma. The second pathway (right) is the saturation hypothesis in which
helminth infections induce polyclonal IgE (blue) that binds to and saturate high affinity FcϵR on mast cells, preventing binding of allergen-specific IgE (red) and
subsequent blocking of mast cell degranulation.
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vaccine in the near future (76, 78, 79). It is expected that developed
countries will replace the primary BCG vaccine with the
recombinant protein vaccine because they cannot see any
necessity for injecting live attenuated BCG concurrent with their
low TB prevalence (60). However, there is a growing need for
further investigation of intranasal use of Ag85A and Ag85B in
humans. Additionally, intranasal administration of recombinant
BCG producing genetically detoxified S1 subunit of pertussis toxin
can prevent murine allergic asthma by increasing IL-12 and IFN-g
(80). Another method to increase BCG efficacy is the combination
of BCG with CpG oligodeoxynucleotide, which is a synthetic TLR9
agonist that stimulates both macrophages (classical type) and DCs
with subsequent induction of Th1 response. This combination
inhibits allergic inflammation in murine asthma compared to
BCG alone and may be a protective candidate effective for allergic
asthma (34). In addition, it induces more protection against murine
TB compared with BCG alone (81). Likewise, recombinant BCG
strains producing IL-12 or IL-18 can further mediate protection
against murine allergic asthma by switching from a Th2 response to
a Th1 response (82, 83). All these genetic engineering-based
modifications of BCG can improve its efficacy and provide
enhanced protection against murine allergic asthma when
administrated at early age. Thus, their use as boosters or as
primary candidate vaccines for the prevention of human atopic
asthma is promising for preventing one of the most prevalent
chronic disease in the world and must be considered in
future research.
HELMINTHS AND ALLERGIC ASTHMA

Helminths have infected human for thousands of years (84). At
present, it is estimated that approximately 30% of the world is
infected with at least one species of helminths particularly in
poor and less developed communities. There are several types of
helminths; the most common worldwide are intestinal
nematodes including Ascaris lumbricoides (A. lumbricoides),
Trichuris trichiura (T. trichiura) and hookworm and schistosomes
(9). Basically, helminthic infection activates Th2 cells that secrete IL-
4, IL-5 and IL-13, then IL-4 stimulates B cells to produce helminth-
specific Ig-E, which opsonize the helminths and promote binding to
IL-5 activated eosinophils via FcϵR. Eosinophils release their
granular contents including the main primary and cationic
proteins which destroy the helminths, besides binding to FcϵR on
mast cells inducing inflammatory response through the release of
vasoactive amines, the production of inflammatory cytokines e.g.
tumor necrosis factor (TNF) and lipid mediators that contribute to
anti-helminths responses. In addition, IL-4 and IL-13 induce mucus
secretion and peristalsis that promotes the expulsion of helminths
from the mucosal organs (barrier immunity) (10, 85). On the
contrary, helminth infection, also, induces T and B regulatory
cells that suppress the immune response through the secretion of
IL-10, and transforming growth factor (TGF)-b. This process results
in a state of hypo-responsiveness which enables organisms to
overcome host resistance, and allows chronic infections (10, 86).
However, these regulatory mechanisms may protect the host from
Frontiers in Immunology | www.frontiersin.org 9
an excessive immune response against helminths, repair damage
that occurred during migration and feeding of these helminths and
enhance resistance to further colonization (9, 87).

In experimental murine allergic asthma (Table 3), early and
chronic infection of different species of helminths e.g., Schistosoma
mansoni (S. mansoni) (88–91), Schistosoma japonicum (S.
japonicum) (92), Trichinella spiralis (T. spiralis) (93, 94),
Heligosomoides polygyrus (H. polygyrus) (95, 96), Litomosoides
sigmodontis (97), Nippostrongylus brasiliensis (N. brasiliensis) (99)
and Strongyloides stercoralis (S. stercoralis) (98), can prevent
disease progression. Also, administration of helminth eggs,
particularly S. mansoni (90, 100), mediates the same effects. In
addition, adoptive transfer of immune cell from infected animals
such as S. mansoni-induced B regulatory cells (101, 102), S.
japonicum-induced DCs (103) and H. polygyus-induced B cells
(104), can protect against murine asthma. With regard to humans,
in general, variable helminthic infections among different
countries can reduce the risk of developing atopic diseases (105–
112). Furthermore, the increased allergic reactivity following long
term anti-helminths treatment, supports the hypothesis of the
protective role conferred by helminths in atopic diseases (113,
114). Concurrently, there is an inverse correlation between human
allergic asthma and helminth infections (Table 4) of various
species such as S. mansoni (115–117), A. lumbricoides (24, 117–
119), Necator americanus (N. americanus) (hookworm) (117–
120), and Entrobius vermicularis (E. vermicularis) (pinworm)
(121). This reverse association can be attributed to the protective
effect against the development of allergic asthma.

Although the Th2 immune responses to helminths and
allergic asthma seem to be identical, the helminths-induced
responses have different characteristics (9, 10), which may
constitute the protective mechanisms against atopic asthma.
There are two hypotheses for these mechanisms in mice and
human (Figure 1B). First, the regulatory network hypothesis (the
most widely accepted), in which chronic helminth infections
induce regulatory immune response in the form of T and B
regulatory cells that suppress Th2 cell activation and subsequent
allergic inflammation via the production of anti-inflammatory
IL-10 and TGF-b (10, 86, 102, 132–134). The helminths
induction of the adaptive regulatory (T and B) cells may be
mediated by the initial interaction of the helminths with innate
cells as DCs (103) and macrophages (132) to induce regulatory
DCs and M2 macrophages, respectively. Then, the latter cells
secrete IL-10 which induces T and B regulatory cells. In addition,
these regulatory cells, by secreting IL-10 can inhibit DCs,
resulting in an alleviation of allergen presentation by DCs and
further inhibition of Th2 cells polarization (132, 134). Moreover,
via IL-10 and TFG-b, they induce more M2 macrophages (2),
which reflects regulatory feedback mechanisms between adaptive
and innate cells. Since suppressive activities in some studies are
continued with regulatory cells after IL-10 depletion, the
regulatory function of T and B cells does not always depend
on their signature cytokines. Nonetheless, direct interaction with
other immune cells such as Th2 or innate cells may play a
significant role in the suppressive functions (90, 104).
Furthermore, helminth-induced inhibition can occur even with
August 2021 | Volume 12 | Article 696734
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TABLE 3 | Impact of helminths infection on experimental murine allergic asthma.
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TABLE 4 | Impact of helminth infections on human allergic asthma.
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depletion of adaptive regulatory cells, through direct inhibition
of DCs (100), and thus the helminth-induced regulation will find
its way through either adaptive or innate systems. Interestingly,
in allergic asthma, Tregs are dysfunctional with limited
inhibitory activities and may exaggerate the pathogenesis of the
disease (10, 135). Consequently, helminths-induced regulatory
network to mediate the protective effects against atopic asthma is
proposed. The second hypothesis is termed the saturation
hypothesis and it has been proposed earlier than the first
hypothesis, in which helminth infections induce polyclonal IgE
that bind to and saturate high affinity FcϵR on mast cells and
basophils, preventing binding of aeroallergen-specific IgE and
block mast cell and basophils degranulation (Figure 1B). This is
based on the findings that helminth-induced polyclonal IgE is
significantly greater than asthma-induced IgE (11, 98, 132, 133,
136). In addition, helminths may induce specific IgG4 that can
interact and compete with aeroallergen-specific IgE, which
provides another illustration of the saturation hypothesis (136–
138). In general, these two hypotheses provide an explanation of
the protective mechanisms of helminth-induced immune
response against atopic asthma, which also represent the
fundamental differences between Th2 immune response for
helminths and allergic asthma. Therefore, the helminth
response is called the modified immune response type 2 (10,
137, 138). In addition, this protection is associated with chronic
helminth infections, since acute infection may exacerbate the
atopy (100, 132). Interestingly, the immune response to helminth
infections has been hypothesized to be the primary objective of
the evolution of type 2 immune response arm, not the allergy
(139). Therefore, the immune response to helminths represents
the normal side of type 2 arm (sensitivity), while the response to
allergens, represents the pathogenic side (hypersensitivity). One
simple explanation for helminth-induced suppression of allergy
is that the type 2 immune response has a limited capacity to
respond, that could be depleted by helminth immunity or allergy.
In addition, through competition or splitting efforts, the anti-
helminthic response will reduce the allergic reactions (137).

In contrast, based on human studies in different countries
(Table 4), helminth infections, such as A. lumbricoides,
Hookworm, T. trichiura, E. vermicularis, Toxocara canis (T. canis)
and Ancylostoma duodenale, do not induce any protective effects
against allergic asthma (122–131). Furthermore, A. lumbricoides
(122, 126) and T. canis (129, 130) may increase the risk of
developing asthma. Moreover, in asthmatics, experimental
hookworm infection neither improve bronchial responsiveness nor
other asthma measures (140). Conflicting results concerning the
protective effect of helminth infections against human atopic asthma
can be attributed to several factors. First, the variation of helminth
species among studies (133). However, in the previously mentioned
human studies, there was a controversy about A. lumbricoides (that
showed the most conflicting results), hookworm, T. trichiura and E.
vermicularis, whereas there was no conflict regarding the negative
association between S. mansoni infection and atopic asthma in
human. This may be related to helminth chronicle (the second
factor of conflict) (133), and the associated granulomatous
inflammation and fibrosis (141). In addition, S. mansoni is the
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most studied helminths in mice demonstrating a protective effect
against asthma (88–91, 100, 102). Therefore, acute or light helminth
infections do not protect against asthma and may exacerbate the
allergic inflammation, while chronic infections are more often
associated with protection (100) as previously mentioned in the
regulatory network hypothesis. Thus, the undetermined course of
helminth infections, whether acute or chronic, in the previously
mentioned human studies is one of the reasons for the controversy
concerning the protective effect against atopic asthma. Third, the
undetermined host age when acquiring infection in most human
epidemiological studies, is another cause of conflict (133), because the
infections should occur earlier than the onset of the allergic
sensitization, in order to induce preventive effects. Interestingly, all
the previously mentioned animal studies supported the protective
effects of helminth infections (88–91, 93, 94, 99, 102, 104) (Table 3).
The courses of infection and the host age upon acquisition of
infection, were clearly determined. This indicates that the early and
chronic helminth infections is necessary to protect against the
development of experimental allergic asthma. Fourth, most human
studies did not compare allergic hereditary risk between the infected
and non-infected or asthmatic and non-asthmatic subjects, since the
significant difference in atopic family history between these groups
may interfere with the proposed effects of helminths in human
asthma (130). Only two studies (of non-supportive studies)
performed this comparison and found a significant association of
atopic family historywith the asthmatic group (126, 127).Ultimately,
these adverse outcomes may be because some helminths possess
allergy-inducing and/or anti-allergicmolecules, and thus the effect of
helminth in asthma will depend on the predominant secretory
molecule. For example, Ascaris suum (A. suum) contains both the
allergenic protein of A. suum-3 (APAS-3) that induces/exacerbates
allergic reactions and the suppressive protein of A. suum-1 (PAS-1)
that suppresses asthma (142). This highlights the significance of
identifying thehelmintheffectorproteinsagainst asthma,which is the
next subject of discussion.

Helminth-Derived Proteins
and Allergic Asthma
It is unlikely that infection with live worms or their eggs could be
delivered into children as a vaccine to prevent asthma (132). In
order to solve this prospective issue, identification of helminth
proteins that mediate anti-allergic properties, followed by the
production of similar recombinant proteins that mediate the
same immune responses observed in live worm infection would
be a better option for developing a future vaccine for allergic
asthma (143). Many commercial companies and private entities
have produced and marketed helminth-derived molecules for the
treatment of inflammatory diseases (144). Therefore, several
studies demonstrated the role of different helminthic proteins
in the prevention and therapy of murine allergic asthma
(Table 5). One of these effectual proteins is S. mansoni
schistosomula (Smteg), extracted from the outer layer of the
parasite. Smteg administration reduces eosinophilia, Th2
cytokines and allergen specific-IgE, and these effects can be
mediated by a high level of IL-10 secreted by alveolar M2
macrophages and DCs. This indicates a potential preventive
Frontiers in Immunology | www.frontiersin.org 14
and/or therapeutic effects of Smteg protein in asthmatic mice
(146). In addition, Sm22·6, which is a soluble protein associated
with the tegument of S. mansoni, induces the same suppressive
effects as Smteg through the induction of IL-10 secreted by Tregs.
PIII, also derived from S. mansoni, mediates the same effects, but
without elevation of IL-10. In addition, S. mansoni-derived Sm29
induces suppressive effects; however, lesser than the other two
molecules (145). Another schistosome is S. japonicum containing
the SJMHE1 protein, which is an HSP60‐derived peptide.
SJMHE1 administration suppresses the development of murine
asthma through inhibiting eosinophilia and Th2 cells and
inducing Th1 and Treg cells (149). Likewise, soluble S.
japonicum egg antigen mediates the same effects without
inducing Th1 response (147). While P6, P25, and P30 peptides
in SjP40 protein, which is the dominant protein of S. japonicum
eggs, could prevent murine asthma by activating Th1 and
alleviating Th2 cells (148). For A. lumbricoides, total protein
extracts reduce IL-5 and eosinophilia and induce IL-10 to protect
mice against experimental asthma (150). Another type of ascaris
is A. suum that contains three different components. Each
component can prevent murine asthma, namely; total protein
extracts (151), pseudocoelomic fluid (152) and PAS-1 (142).
They reduce eosinophilic inflammation and Th2 activities
through the induction of Tregs and Th1 (142) or inhibition of
DCs (152). Interestingly, as mentioned previously, A. suum has
allergenic protein that can induce and exacerbate allergic
reaction (142), indicating that identifying effective anti-allergic
components in the worm extracts would be a crucial approach
for developing novel preventive strategies. Moreover, soluble
extracts of adult worms of T. spiralis have more potent suppressive
impact on allergic asthma than those of soluble extracts of the larvae
muscle of the same helminth (11). Another important consideration
is the timing of protein injection, as the effective suppressive action of
some helminth derived protein depends on early administration prior
to developing asthma, which also indicates the importance of
elucidating the preventive and therapeutic potentials of each
candidate protein. The excretory/secretory products of Fasciola
hepatica are a clear example of this indication, the administration
of which during experimental murine asthma development, induces
significant suppressive effects, while their administration after the
establishment of the disease has no apparent effect (165). Another
significant protein derived from helminth is AIP-2 secreted by
Ancylostoma caninum (hookworm). AIP-2 has both preventive and
therapeutic potentials on murine asthma through inhibition of DCs
and induction of Tregs (164). ES-62, another promising molecule
secreted by the filarial nematode Acanthocheilonema viteae (A.
viteae). ES-62 has preventive and/or therapeutic potentials through
the direct inhibition by mast cells FcϵRI-induced release of allergy
mediators through blocking of key signal transduction molecules
(153, 155). Moreover, several proteins derived from different species
of helminths demonstrate preventive or therapeutic abilities against
murine allergic asthma, such as Trichuris suis (162), H. polygyrus
(156, 157), N. brasiliensis (158), Caenorhabditis elegans (161),
Clonorchis sinensis (160), Angiostrongylus cantonensis (163) and
Toxascaris leonine (159) (Table 5). Thus, worm-derived proteins
might be exploited to prevent allergic asthma, since they suppress
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TABLE 5 | Impact of helminth-derived proteins on allergic asthma.

Proposed immune mechanisms Study
year

References

↓ Allergic inflammation,
eosinophilia, IL-4, IL-5 and OVA
specific-IgE
- No change in IFN-g
↑ Tregs with high IL-10

2010 (145)

↓ Allergic inflammation,
eosinophilia, IL-4, IL-5 and OVA
specific-IgE
- No change in IFN-g
↑ Tregs without increase of IL-10
↓ Allergic inflammation, OVA
specific-IgE without significant
changes in eosinophilia, IL-4, IL-5
↓ IFN-g
↑ Tregs without increase of IL-10
↓ Allergic inflammation,
eosinophilia, IL-5, IL-13 and OVA
specific-IgE
↑ IL-10 by alveolar macrophages
and DCs

2016 (146)

↓ Alergic inflammation, eosinophilia,
IL-4 and IL-5
- No change in IFN-g
↑ Tregs

2007 (147)

↓ Allergic inflammation,
eosinophilia, IL-4, IL-5, IL-13, IL-17
and OVA specific-IgE
↑ Th1 and IFN-g

2016 (148)

↓ Allergic inflammation,
eosinophilia, IL-4 and Th2 cells
↑ Th1 and IFN-g
↑ Tregs, IL-10, IL-35

2019 (149)

↓ Eosinophilia
- No change in IFN-g

2015 (150)

↓ Eosinophilia and IL-5
- No change in IFN-g
↑ IL-10
↓ eosinophilia and IL-5
- No change in IFN-g
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Helminths type Protein type Animal
type

Animal
age

Route of
administration

Study times Proposed effect against
asthma

Time of protein
administration

Asthma
induction
times

S. mansoni Sm22.6 BALB/c
mice

6-8
weeks

S.C. Days 0, 10 and 20 - Sensitization:
days 2 and 17
- Challenge:
days 24-29

preventive

PIII

Sm29 Less preventive than other
proteins

S. mansoni Smteg BALB/c
mice

6-8
weeks

i.p. Day 7 - Sensitization:
days 0 and 14
- Challenge:
days 21-25

preventive and/or therapeutic

S. japonicum Soluble
schistosome egg
antigen

BALB/c
mice

6-8
weeks

i.v. Days 0, 7, 14 and 21 - Sensitization:
days 0, 7 and
14
- Challenge:
days 26-28

Preventive and/or therapeutic

S. japonicum P6, P25, and
P30 peptides in
SjP40 protein

BALB/c
mice

Injection in
footpad and tail
base

Days 0 and 14 - Sensitization:
days 7 and 21
- Challenge:
days 28- 35

Preventive

S. japonicum SJMHE1 peptide BALB/c
mice

6-8
weeks

I.P. Days 0, 14 and 28 - Sensitization:
days 0, 7 and
14
- Challenge:
days 21-27

preventive and/or therapeutic

Angiostrongylus
cantonensis

a crude extract BALB/c
mice

3–8
weeks

i.p. Day 0, 14 or 42 - Sensitization:
days 21 and
35
- Challenge:
days 46-48

More preventive than other
helminths particularly at early
time

A. lumbricoides Day 14 Preventive

Angiostrongylus
costaricensis

C57BL/6
mice

6-8
weeks

Day 14 Preventive

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 5 | Continued

Proposed immune mechanisms Study
year

References

eosinophilia, IL-5, IL-4, OVA
pecific-IgE and AHR

2002 (151)

Eosinophilia, IL-4, IL-5 and
PAS-3 specific-IgE
IFN-g
IL-10

2005 (142)

Allergic inflammation
DCs activation
The effect didn’t depend on IL-10

2006 (152)

Allergic inflammation and AHR
FcϵRI-induced release of allergy
ediators from
ast cells by selectively blocking
ey signal transduction events
ncluding phospholipase D–
oupled, sphingosine
inase–mediated calcium
obilization and nuclear factor-jB
ctivation

2007 (153)

Allergic inflammation,
osinophilia, IL-4, OVA specific-IgE
nd AHR
IL-10 by macrophages

2008 (154)

Mast cell degranulation and its
ytokine production
Allergic inflammation, eosinophilia
nd IL-4

2014 (155)

Neutrophilia, allergic inflammation
nd IL-13
IFN-g
Allergic inflammation,
osinophilia, IL-4, IL-5, IL-13 and
VA specific-IgE
IFN-g and IL-17
Innate lymphoid cells Type II

2012 (156)
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Helminths type Protein type Animal
type

Animal
age

Route of
administration

Study times Proposed effect against
asthma

Time of protein
administration

Asthma
induction
times

A. suum A. suum extract B10.A or
C57BL/6
mice

7-8
weeks

s.c. Day 0 - Sensitization:
day 0
- Challenge:
days 14-17

Preventive and/or therapeutic

A. suum PAS-1 BALB/c
mice and
Wistar
rats

6-8
weeks

i.p. (day 0)
s.c. (day 7)
i.n. (days 14
and 21)

Days 0, 7, 14 and 21 - Sensitization
with APAS-3
protein: days 0
and 7
- Challenge:
days 14 and
21

Preventive and/or therapeutic

A. suum pseudocoelomic
fluid

BALB/c
and
C57BL/6
mice

Not
mentioned

i.p Days 0 and 5 - Sensitization:
days 0 and 5
- Challenge:
days 14 and
15

Preventive and/or therapeutic

A. viteae ES-62 BALB/c
mice

8 weeks s.c. Days 2, 12, 25 and 27 - Sensitization:
days 0 and 14
- Challenge:
days 14, 25,
26 and 27

Preventive and/or therapeutic

A. viteae Cystatin-17 BALB/c
mice

i.p. Days 1, 7, 14 and 21 Sensitization:
days 0 and 14
- Challenge:
days 28 and
29

Preventive and/or therapeutic
Days 21, 23 and 25 Therapeutic

A. viteae 11a and 12b
(small molecule
analogues of ES-
62)

BALB/c
mice

6-8
weeks

s.c. Days 0, 14, 27 and 29 - Sensitization:
days 2 and 16
- Challenge:
days 27-29

preventive

i.n. Days 27, 28 and 29 Therapeutic

H. polygyrus H. polygyrus
excretory-
secretory

BALB/c
mice

Not
mentioned

i.p. Days 0 and 14 - Sensitization:
days 0 and 14
- Challenge:
days 28-30

Preventive

↓
↓

↓
s

↓
A
↑
↑

↓
↓
-

↓
↓
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k
m
a
↓
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a
↑

↓
c
↓
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a
↑
↓
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TABLE 5 | Continued

posed immune mechanisms Study
year

References

2)
change in Tregs
sinophilia, IL-5 and ILC2
changes in Th1 nor Tregs
entive and/or therapeutic ↓ Allergic

lergic inflammation, goblet cell
rplasia, eosinophilia, IL-4, IL-5,
specific-IgE and AHR
changes in IFN-g nor IL-10

2007 (158)

lergic inflammation, IL4, AHR
both ES and TP) and IL-5
TP only)
change in IFN-g (with both ES
TP)
10 (with TP only)

2008 (159)

lergic inflammation and IL-4
TP only)
changes in IL-5, IFN-g nor IL-

with both ES and TP)
R, allergic inflammation,
nophilia, IL-5, IL-13 and OVA
ific-IgE
s activation

egs and IL-10

2011 (160)

lergic inflammation,
nophilia, IL-4, IL-5, IL-13, OVA
ific-IgE and AHR
-g and IL-12
hange in IL-10

2012 (161)

lergic inflammation,
nophilia, IL-4, IL-5, IL-13, OVA
ific-IgE and AHR
e effect was partially mediated
ugh IL‐10

2014 (162)

(Continued)
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Helminths type Protein type Animal
type

Animal
age

Route of
administration

Study times Proposed effect against
asthma

Pro

Time of protein
administration

Asthma
induction
times

(ILC
- N

Intratracheal Days 28-30 Therapeutic ↓ E
- N

H. polygyrus H. polygyrus
excretory-
secretory

BALB/c,
C57BL/6

Not
mentioned

i.n. Day 0 - Sensitization: day 0
- Challenge: days 14-16

Pre

inflammation,
eosinophilia, IL-
4, IL-5 and Th2
cells
↓ IL-33 and
ILC2 functions
- No changes in
IFN-g nor Tregs

2014 (157)

N. brasiliensis excretory–
secretory
products

C57BL/6
mice

6-8
weeks

I.p. Days 0 and 14 - Sensitization:
days 0 and 14
- Challenge:
day 24

Preventive and/or therapeutic ↓ A
hyp
OV
- N

Toxascaris
leonina

ES and TP BALB/
cBY mice

6 weeks i.p. Days 0 and 7 - Sensitization:
days 14 and
21
- Challenge:
days 27, 28,
33, and 34

preventive ↓ A
(wit
(wit
- N
and
↑ IL

days 27, 28, 33, and 34 Weak therapeutic effect ↓ A
(wit
- N
10

Clonorchis
sinensis

Clonorchis
sinensis-derived
total protein

Balb/c
mice

5-6
weeks

i.p. Day 0 - Sensitization:
days 1 and 8
- Challenge:
days 15-18

Preventive ↓ A
eos
spe
↓ D
↑ T

Day 14 therapeutic

Caenorhabditis
elegans

Crude Extracts BALB/c
mice

7 weeks i.p. Days 0 and 7 - Sensitization:
days 0 and 7
- Challenge:
days 14, 15,
21 and 22

Preventive and/or therapeutic ↓ A
eos
spe
↑ IF
No

i.n. 1 dose (50 or 10 mg) at
day 28 or 4 doses (25
mg) at days 28, 35, 42,
and 49

therapeutic

Trichuris suis excretory/
secretory
products

BALB/c
and
C57Bl/6J
mice

8 weeks i.p. days 0, 7, 14 and 21 - Sensitization:
days 0, 14 and
21
- Challenge:

Preventive and/or therapeutic ↓ A
eos
spe
- Th
thro
o
o
o
v

l
e
A
o
l
h
h
o

-
l
h
o
(
H
i
c
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c
N
c
l
i
c
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TABLE 5 | Continued

oposed effect against
asthma

Proposed immune mechanisms Study
year

References

ntive with more
essive action than the
eutic effect through more
ction of IL-10

↓ Allergic inflammation,
eosinophilia, IL-4, IL-5, IL-17 and
OVA specific-IgE
- No change in IFN-g
↑ IL-10

2015 (163)

eutic ↓ Allergic inflammation, IL-4, IL-5
and and OVA specific-IgE
↑ IL-10

ntive ↓ Allergic inflammation, mucus
production, collagen deposition, IL-
5, IL-13, OVA specific-IgE and
AHR
↓ DCs activation and proliferation
↑ Tregs

2016 (164)
peutic

ntive ↓ Allergic inflammation,
eosinophilia, IL-4, IL-5 and IL-13

2017 (165)

fects

ntive ↓ Allergic inflammation,
eosinophilia, IL-4, OVA specific-IgE
and AHR
- No change in IFN-g
↑ TGF-b
- The preventive effect was greater
than the therapeutic through more
reduction of OVA specific-IgE

2019 (11)

ntive and/or therapeutic

suppressive effects than
of the extracts of adult
s

↓ Allergic inflammation and IL-4
↑ TGF-b

utic; according to 3 time sets of vaccine administration: (1) before allergen sensitization, (2) with
. viteae, Acanthocheilonema viteae; AIP-2, anti-inflammatory protein-2; ES, Excretory/secretory
soni, Schistosoma mansoni; Smteg, Schistosomula tegument; T. spiralis, Trichinella spiralis; TP,
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Helminths type Protein type Animal
type

Animal
age

Route of
administration

Study times Pr

Time of protein
administration

Asthma
induction
times

days 28 and
29

Angiostrongylus
cantonensis

Recombinant
AcCystatin
protein

Wistar
rats

8 weeks i.p. Day 0 - Sensitization:
days 1 and 8
- Challenge:
day 15

Preve
supp
thera
prod

Day 14 thera

Ancylostoma
caninum
(hookworm)

anti-inflammatory
protein-2 (AIP-2)

BALB/
c.ARC
and
C57Bl/6
mice

3-12
weeks

i.n. Days 12-15 - Sensitization:
days 0 and 7
- Challenge:
days 18-22

preve
Days 20-24 Thera

Fasciola
hepatica

excretory/
secretory
products

BALB/c
Mice

6-12
weeks

i.p. Days 0 and 14 - Sensitization:
days 0 and 14
- Challenge:
days 24-26

Preve

Days 24-27 No e

T. spiralis soluble extracts
of adult worms

Balb/c
mice

6-8
weeks

i.p. (Group I) Days 0, 7 and
14

- Sensitization:
days 21, 35
and 42
- Challenge:
days 49-51

preve

(Group II) Days 21, 35
and 42

preve

soluble extracts
of muscle larvae

As group I Less
those
worm

As group II

The possible effects of helminth-derived proteins are divided in to 3 categories: (1) preventive, (2) preventive and/or therapeutic and (3) therap
allergen sensitization, (3) with/after aerosol allergen challenge respectively. A. lumbricoides, Ascaris lumbricoides; A. suum, Ascaris suum; A
protein; H. polygyrus, Heligosomoides polygyrus; N. brasiliensis, Nippostrongylus brasiliensis; S. japonicum, Schistosoma japonicum; S. man
Total protein.
r
p
u

p

f

e
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asthma through the same mechanisms that are induced with living
worm infections without entailing their undesired side effects.

There are many studies investigating the protective effects of
helminth-derived proteins in murine allergic asthma. Nevertheless,
there are only few studies that detected these protein actions in
human allergic asthma. S. mansoni antigens, Sm29 and Sm29TSP-2
reduce Th2 cells while inducing Tregs with subsequent high IL-10
production in the cell cultures from asthmatic patients (166). In
same vein, other S. mansoni recombinant antigens as Sm22.6, Sm14,
P24, and PIII antigen increase IL-10 secretion in cell cultures from
subjects with asthma (167). Additionally, AIP-2, from the
hookworm, suppresses human DCs activation and proliferation
from asthmatic subjects in-vitro (164). In addition, ES-62 from A.
viteae when co-cultured with sensitized human mast cells from
healthy subjects, mediates the same effects previously mentioned
with ES-62 with murine mast cells (153). However, these studies
only demonstrate in-vitro therapeutic potentials for human asthma.
Therefore, further research is needed to investigate both in-vitro and
in-vivo preventive potentials of helminth-derived proteins against
the development of human allergic asthma, to design novel
strategies for potential allergic asthma vaccines.
SUMMARY AND CONCLUSIONS

In this study, we discussed the immunomodulatory effects of
different natural infections on the development of asthma, and
the benefits of imitating these phenomena via the use of effective
proteins-based vaccines for future disease control. Natural
infection with Mtb prevents the development of allergic
asthma. Therefore, BCG vaccine is suggested at an early age to
mediate the same prevention particularly with increasing its
efficiency through genetic engineering-based modifications,
which are beneficial for tuberculosis prevention as well.
Similarly, natural helminthic infections may prevent allergic
Frontiers in Immunology | www.frontiersin.org 19
asthma development. Therefore, helminth-derived protein at
early age is an effective candidate for designing allergic asthma
vaccines and requires further investigation. We revealed the
beneficial features of the hygiene hypothesis for preventing
allergic asthma via simulating the natural infections that either
induce Th1 or Th2 cells primarily as nature will find its way
regardless of the immune pathway, and this can also be applied
to other allergic diseases. In addition, since the hygiene hypothesis
also includes autoimmune diseases as mentioned earlier,
imitation of the nature could be the missing key for such
diseases. We, therefore, recommend mimicking nature to be a
general strategy for preventing allergic asthma and other diseases
that increased dramatically over the past decades.
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