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Extensive investigations have identified two cellular proteins in humans that potently inhibit
HIV type 1 (HIV-1) replication and are widely accepted as “restriction factors.” APOBEC3G
was identified as a restriction factor that diminishes HIV-1 replication by inducing G-to-A
hypermutation in the viral genome, while BST2 has been identified as another restric-
tion factor that impairs the release of nascent virions by tethering them on the surface
of infected cells. To counter these restriction factors, HIV-1 has equipped itself with its
own weapons: viral infectivity factor (Vif) degrades APOBEC3G, while viral protein U (Vpu)
antagonizes BST2. These findings have allowed us to further our understanding of virus–
host interaction, namely, the interplay between viral factors versus host restriction factors.
In the first case, the interplay between APOBEC3G and Vif is clear: vif -deficient HIV-1 is
incapable of replicating in APOBEC3G-expressing cells. This insight directly indicates that
APOBEC3G is a bona fide restriction factor and has intrinsic immunity against HIV-1, and
thatVif is a prerequisite for HIV-1 infection. In other words, the relationship betweenVif and
APOBEC3G has already “matured,” and Vif has highly evolved to overcome APOBEC3G.
On the other hand, although BST2 drastically impairs the release of vpu-deficient HIV-1 viri-
ons, it is puzzling that vpu-deficient HIV-1 is still able to replicate in BST2-expressing cells.
These insights imply that BST2-mediated anti-HIV-1 activity is vulnerable, and that Vpu is
dispensable for HIV-1 infection. If so, why has Vpu acquired the counteracting potential
against BST2? Was it necessary or important for HIV-1? Or is the relationship between Vpu
and BST2 still “immature”? In this review, we particularly focus on the interplay between
Vpu and BST2. We discuss the possibility that Vpu has evolved as a potent antagonist
against BST2, and finally, propose a hypothesis that Vpu has evolved as a promoter of
human-to-human HIV-1 transmission. Since the first report of acquired immunodeficiency
syndrome patients in 1981, HIV-1 has spread explosively worldwide and is currently a pan-
demic. This review proposes a concept suggesting that the current HIV-1 pandemic may
be partly attributed by Vpu.
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INTRODUCTION
Primate lentiviruses have co-evolved and co-diversified with pri-
mate hosts including humans for a myriad of years. During
their long history, it is conceivable that hosts have evolved the
genes necessary to counteract lentivirus infections, whereas viruses
have developed weapons to eliminate these host obstacles. The
continuous “cat-and-mouse games” have driven the virus–host
co-evolution.

During the last 100 years, human immunodeficiency virus
(HIV; particularly HIV type 1, HIV-1), a highly evolved primate
lentivirus, has emerged, and has infiltrated the human popula-
tion (Worobey et al., 2008). HIV-1 was identified as the causative
agent of acquired immunodeficiency syndrome (AIDS) in 1983–
1984 (Barre-Sinoussi et al., 1983; Gallo et al., 1983; Kitchen et al.,
1984), and now, HIV-1 infection is a worldwide pandemic. In 2009,
UNAIDS (Joint United Nations Programme on HIV and AIDS)
estimated that more than 33 million people worldwide are infected
with HIV-1, out of which, more than 2.8 million people are
newly infected and approximately 1.8 million people annually die

of AIDS (http://www.unaids.org/globalreport/). Since the HIV-1
outbreak has been one of the most urgent issues for mankind,
scientists have invested a great deal of effort to reveal the molec-
ular mechanism of HIV-1 replication, which can provide clues to
elucidate HIV-1 infection and AIDS.

In the past 10 years, two proteins capable of robustly coun-
teracting HIV-1 infection and encoded in the human genome
were identified: apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like 3G (APOBEC3G), and bone marrow stromal
antigen 2 (BST2, also known as tetherin, CD317, and HM1.24).
APOBEC3G and its homologs in humans (APOBEC3A, B, C, DE,
F, and H; APOBEC3s) are cellular cytidine deaminases and cer-
tain APOBEC3s, particularly APOBEC3G and APOBEC3F, induce
G-to-A hypermutation in HIV-1 proviral DNA resulting in dimin-
ished HIV-1 replication (Sheehy et al., 2002; Harris and Lid-
dament, 2004). BST2 is a type II transmembrane glycoprotein
and tethers nascent HIV-1 particles on the plasma membrane of
infected cells resulting in the impairment of virus release (Neil
et al., 2008; Van Damme et al., 2008). The identification of these
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two genes has provided us with a concept of “intrinsic immunity”
or “restriction factors” which means that hosts possess innate con-
genital factors potently capable of restricting viral replication. In
parallel, HIV-1 encodes genes that antagonize cellular restriction
factors and have given rise to two proteins, also known as accessory
proteins, viral infectivity factor (Vif), and viral protein U (Vpu)
which counteract the actions of APOBEC3s and BST2, respec-
tively. Taken together, the battle between HIV-1 and humans can
be interpreted as the interplay between viral factors (Vif and Vpu)
and host factors (APOBEC3s and BST2), which has been a hot
topic in the field of HIV-1 virology.

Here, we first provide a brief introduction on the interplay
between Vif and APOBEC3s as an excellent example of virus–host
interaction. Then, by comparing the Vpu and BST2 relationship
with the Vif–APOBEC3s interaction, we summarize and discuss
the significance of their interplay from the views of (1) virology, (2)
molecular biology, (3) evolutionary biology, and (4) epidemiology.

VIROLOGY
Vif VERSUS APOBEC3s
Certain cell lines (e.g., CEM-SS cells, 293T cells, and HeLa cells) are
permissive to vif-deficient HIV-1 replication and are called “per-
missive cells,” whereas some cell lines (e.g., CEM cells, HUT78
cells, and H9 cells) are not. Two studies using heterokaryons
of permissive cells and non-permissive cells suggested that non-
permissive cells such as CEM cells express a factor which potently
restricts HIV-1 replication and is counteracted by Vif (Madani
and Kabat, 1998; Simon et al., 1998). Sheehy et al. (2002) identi-
fied APOBEC3G by a subtraction screening assay using CEM cells
and CEM-SS cells. Subsequent investigations revealed that certain
APOBEC3s including APOBEC3G are incorporated into released
virions and mutate viral complementary DNA in newly infected
cells, while Vif impedes the incorporation of certain APOBEC3s
into progeny virions by degrading these proteins through the
ubiquitin–proteasome pathway (Harris and Liddament, 2004;
Izumi et al., 2008). Importantly, endogenous APOBEC3s are
expressed in primary human CD4-positive T cells and monocyte-
derived macrophages (MDMs), which are the primary targets for
HIV-1 infection in vivo, and that vif-deficient HIV-1 is not able
to replicate in in vitro cultures of these cells. More strikingly,
vif-deficient HIV-1 is unable to infect and replicate in a SCID-
hu mouse model (Aldrovandi and Zack, 1996) and a humanized
mouse model (Sato et al., 2010). These reports indicate that
endogenous APOBEC3s are potent restriction factors for HIV-1
infection in vitro and in vivo, and that Vif is absolutely essential
for HIV-1 replication.

Vpu VERSUS BST2
Certain cell lines such as HEK293 cells and Cos-7 cells are able
to produce nascent virions of vpu-deficient HIV-1, whereas HeLa
cells are not. An experiment using heterokaryons of HeLa cells and
Cos-7 cells suggested that HeLa cells exclusively express a factor
which potently impairs virus production and is counteracted by
Vpu (Varthakavi et al., 2003). Neil et al. (2008) identified BST2
by microarray analyses using HEK293 cells and HeLa cells. The
authors revealed that BST2 robustly inhibits the release of bud-
ding virions and that Vpu antagonizes the anti-viral action of

BST2, leading to the proposal that BST2 tethers nascent virions
(Neil et al., 2008). In addition, Van Damme et al. (2008) revealed
that BST2 expressed on the surface of HIV-1-producing cells is
down-regulated by Vpu.

The ability of BST2 to restrict the release of nascent virions
is not limited to HIV-1. BST2 can impair the release of various
enveloped viruses belonging to Retroviridae [HIV type 2 (HIV-2),
simian immunodeficiency viruses (SIVs), equine infectious ane-
mia virus (EIAV), feline immunodeficiency virus (FIV), prototype
foamy virus (PFV), Mason-Pfizer monkey virus (MPMV), human
T-cell leukemia virus type 1 (HTLV-1), Rous sarcoma virus (RSV),
and murine leukemia virus (MLV; Douglas et al., 2009; Jia et al.,
2009; Jouvenet et al., 2009; Le Tortorec and Neil, 2009; Sauter
et al., 2009; Zhang et al., 2009; Yang et al., 2010], Filoviridae
[Ebola virus (EBOV) and Marburg virus; Jouvenet et al., 2009;
Kaletsky et al., 2009; Sakuma et al., 2009], Arenaviridae (Lassa
fever virus; Kaletsky et al., 2009; Sakuma et al., 2009), Herpesviri-
dae (Kaposi’s sarcoma-associated herpesvirus, KSHV; Mansouri
et al., 2009; Pardieu et al., 2010), Rhabdoviridae (vesicular stom-
atitis virus; Weidner et al., 2010), Orthomyxoviridae (influenza A
virus; Watanabe et al., 2011), and Paramyxoviridae (Nipah virus;
Radoshitzky et al., 2010). On the other hand, the suppression of
virus release can be elicited by not only human BST2 but also its
orthologs in several mammalians including chimpanzees (McNatt
et al., 2009; Sauter et al., 2009), gorillas (Sauter et al., 2009; Lim
et al., 2010), rhesus macaques (McNatt et al., 2009), cats (Diet-
rich et al., 2011; Fukuma et al., 2011), and mice (McNatt et al.,
2009; Kobayashi et al., 2011). Since ectopically expressed human
BST2 impairs HIV-1 release from cells derived from a broad range
of species including potoroo and quail, human BST2 can func-
tion without any co-factors exclusively expressed in primates (Sato
et al., 2009).

Like HIV-1 Vpu, certain viruses possess their own counterparts
to antagonize BST2. For example, HIV-2 envelope glycoprotein
(Env), which has been known as the enhancer of virus release
(Bour and Strebel, 1996; Bour et al., 1996), counteracts human
BST2 (Douglas et al., 2009; Jia et al., 2009; Le Tortorec and Neil,
2009; Hauser et al., 2010). On the other hand, certain SIVs from
chimpanzees (SIVcpz), sooty mangabeys (SIVsmm), and gorillas
(SIVgor) impair simian BST2 by their commonly shared accessory
protein, negative factor (Nef; Douglas et al., 2009; Jia et al., 2009;
Sauter et al., 2009; Zhang et al., 2009; Lim et al., 2010). EBOV
glycoprotein (GP; Kaletsky et al., 2009) and KSHV K5/MIR2 pro-
tein (Mansouri et al., 2009; Pardieu et al., 2010) also possess the
potential to counteract human BST2. Given these findings, it is
reasonable to assume that the ability of BST2 to impair the release
of a broad spectrum of viruses plays a crucial role in host immu-
nity, and that various viruses have evolved a way to counteract the
anti-viral action of BST2.

Despite the fact that endogenously and ectopically expressed
BST2 proteins are prominent in restricting the release of a broad
range of viruses, its capacity to control virus replication remains
questionable. In the case of HIV-1, vpu-deficient virus is able to
replicate in in vitro cultures of BST2-expressing cells such as pri-
mary human CD4-positive T cells (Schubert et al., 1995, 1996,
1999; Neil et al., 2007) and MDMs (Schubert et al., 1995, 1999;
Theodore et al., 1996; Neil et al., 2007) and in vivo in a humanized

Frontiers in Microbiology | Virology April 2012 | Volume 3 | Article 131 | 2

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Virology
http://www.frontiersin.org/Virology/archive


Sato et al. Co-evolution of viruses and hosts

mouse model (Sato et al., in press). Furthermore, SIVagm [an
SIV from African green monkey (AGM)] does not encode any
accessory factors to antagonize AGM BST2 (Lim and Emerman,
2009), yet naturally infects AGM. Moreover, although human
BST2 can impair the release of influenza A virus and EBOV, it
does not suppress the spread of these viruses in in vitro cell cultures
(Radoshitzky et al., 2010; Watanabe et al., 2011). These findings
imply a limitation in BST2’s anti-viral function.

Why is BST2 unable to “restrict” the replication of viruses
despite its robust ability to impair the release of virions? One pos-
sible explanation is the effect of BST2 on cell-to-cell transmission
of viruses. Viruses are usually propagated by at least two modes:
cell-free virus-mediated transmission and cell-to-cell transmis-
sion (Sattentau, 2008; Martin and Sattentau, 2009). In fact, one
study has clearly shown that cell-to-cell HIV-1 transmission over-
comes BST2-mediated restriction (Jolly et al., 2010), although it
remains controversial (Casartelli et al., 2010; Kuhl et al., 2010).
In addition, it has been suggested that Vpu is not required for
efficient cell-to-cell spread of HIV-1 in the culture of Jurkat cells
(Gummuluru et al., 2000), which express endogenous BST2. Inter-
estingly, feline BST2 can impair the release of FIV but enhances the
spread of FIV (Dietrich et al., 2011). Moreover, the entry of human
cytomegalovirus is promoted by human BST2 (Viswanathan et al.,
2011). Therefore, it is conceivable that BST2 does not diminish the
cell-to-cell spread of viruses even if the cell-free virus-mediated
infection of these viruses is severely restricted.

MOLECULAR BIOLOGY
BST2 directly interacts with various anti-BST2 proteins through
distinct manners and is subsequently antagonized. For instance,
BST2 and HIV-1 Vpu interact through their transmembrane
domains (Dube et al., 2010b; Vigan and Neil, 2010; Kobayashi
et al., 2011; Skasko et al., 2012). On the other hand, BST2 interacts
with HIV-2 Env (Gupta et al., 2009) and EBOV GP (Kaletsky et al.,
2009; Lopez et al., 2010) through an extracellular domain, whereas
SIVs Nef interacts with the cytoplasmic domain of BST2 (Sauter
et al., 2009; Lim et al., 2010). Since KSHV K5/MIR2 is an E3 ubiq-
uitin ligase, this protein ubiquitinates the lysine residues in the
cytoplasmic domain of BST2 (Mansouri et al., 2009; Pardieu et al.,
2010). The molecular mechanisms for BST2 antagonization by
these viral proteins are dependent on each protein, but most likely
occur through (i) degradation by the ubiquitin–proteasome path-
way and/or lysosome, (ii) sequestration from the functional site,
or (iii) enhancement of down-regulation. However, these mecha-
nisms remain controversial. For more details on this topic, please
see the following review papers available elsewhere (Douglas et al.,
2010; Dube et al., 2010a; Evans et al., 2010; Arias et al., 2011;
Martin-Serrano and Neil, 2011).

Given the role of BST2 in restricting virus release, is BST2
physiologically tethering something other than enveloped viruses?
Human BST2 was first cloned as one of the candidates for the
surface molecules involved in pre-B cell development (Ishikawa
et al., 1995). It is known that BST2 is localized in lipid rafts on the
plasma membrane of the apical side and is internalized by clathrin
(Kupzig et al., 2003; Rollason et al., 2007, 2009). BST2 provides
a physical link between lipid rafts and the apical actin network,
which is crucial for the maintenance of microvilli in polarized

epithelial cells (Rollason et al., 2009). However, it is unlikely that
BST2 plays a role as a natural “tethering” factor in our cells. If this
is the case, it is important to understand what BST2 is doing in
addition to its anti-viral function.

Human BST2 and murine Bst2 (the ortholog of human BST2 in
mouse) are interferon-stimulated genes (ISGs) and their expres-
sion is augmented by stimulation with type I interferons (IFNs;
Blasius et al., 2006; Neil et al., 2008; Miyagi et al., 2009). How-
ever, their expression patterns in cell lineages are different between
humans and mice. Human BST2 is expressed in broad lineages of
hematopoietic cells (Homann et al., 2011) and certain epithelial
cell lines such as HeLa cells (Neil et al., 2008; Van Damme et al.,
2008). On the other hand, murine Bst2 is exclusively expressed
in plasmacytoid dendritic cells (pDCs), a potent producer of type
I IFNs, in naïve mice, and therefore, is used as a specific marker
of pDCs (Blasius et al., 2006). Human BST2 expressed on pDCs
negatively regulates the production of type I IFNs and inflamma-
tory cytokines by interacting with immunoglobulin-like transcript
7 (ILT7; Cao et al., 2009). Although murine Bst2 is expressed in
murine pDCs, a direct ortholog of human ILT7 is absent in mice
(Brown et al., 2004). Therefore, the function of BST2 as a negative
regulator of type I IFN signaling may have evolved recently (Cao
et al., 2009).

EVOLUTIONARY BIOLOGY
So, why has HIV-1 acquired the weapons to counteract the abilities
of APOBEC3s and BST2 in its limited genome space (approxi-
mately 10 kb)? From an evolutionary point of view, here we shed
light on the interplay of cellular factors and viral factors, illustrated
in Figure 1.

APOBEC3s AND Vif
The orthologs of human (Homo sapiens) APOBEC3s are encoded
in the genomes of chimpanzees (Pan troglodytes) and mice (Mus
musculus). Although mice have a sole ortholog, Apobec3, which is
located on chromosome 15, it is of interest that there are seven
paralogs of murine Apobec3 in the genomes of humans and chim-
panzees (designated to APOBEC3A, B, C, DE, F, G, and H ), which
are located on chromosome 22 (Harris and Liddament, 2004).
Since gene duplication is strong evidence that the duplicated genes
have been exposed to selective pressures, these findings indicate
that murine Apobec3 had been subjected to selective pressures and
was duplicated during the evolutionary process of rodents and
primates. Apobec3/APOBEC3 family proteins have functioned
to potently inhibit the replication of retroviruses and retroele-
ments (Harris and Liddament, 2004) suggesting that they have
played a role as the selective pressure on Apobec3. On the other
hand, although MLV does not encode vif, murine Apobec3 can
be degraded by viral protease (Abudu et al., 2006). These findings
strongly suggest that the conflict between retroviruses (e.g., the
MLV and its ancestors) and their hosts had also taken place in
rodents. In the case of monkeys including primates, it has been
suggested that primates have been infected by retroviruses for
over 30 million years (Belshaw et al., 2004). In addition, it has
been suggested that APOBEC3G has been subjected to strong pos-
itive selection throughout the history of primate evolution for at
least 33 million years (Sawyer et al., 2004) and has rapidly evolved
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FIGURE 1 |The pedigree chart of the interplay between viral factors (Vif

and Vpu) and host factors (APOBEC3s and BST2) during co-evolution

and co-divergence of retroviruses, lentiviruses, and hosts. Note that the
timescales of hosts (top, shown in black ) and viruses (middle, shown in
green) are not parallel. (Top) The pedigree chart of hosts. Rodents including
mice (Mus musculus) brunched almost 70 million years ago (Eizirik et al.,
2001), and gray mouse lemurs (GML; Microcebus murinus) then came into
existence. After the divergence of old world monkeys [e.g., African green
monkey (AGM), red-capped mangabey (RCM; Cercopithecus torquatus),
greater spot-nosed monkey (GSN; Cercopithecus nictitans), mona monkey
(MON; Cercopithecus mona), and mustached monkey (MUS; Cercopithecus
cephus)], chimpanzees (Pan troglodytes) evolved almost 5 million years ago
(Chen and Li, 2001). Two hominids, Neanderthal (Homo neanderthalensis) and
Denisovan (Denisova hominin), brunched around 800,000 years ago (Krause
et al., 2010; Reich et al., 2010), and then, humans (Homo sapiens) appeared.
Regarding host factors, the duplication of APOBEC3 occurred before the
divergence of old world monkeys (AGM, RCM, GSN, MON, and MUS; it is
unclear whether multiple APOBEC3s are encoded in the genome of GML).
On the other hand, after the divergence of chimpanzees, the 5-aa deletion
was inserted in the cytoplasmic tail of BST2. Note that BST2/Bst2 is able to
impair the release of viruses while it is unable to completely restrict their
replication (indicated by asterisks). (Middle) The pedigree chart of retroviruses
including lentiviruses. MLV, a retrovirus, counteracts murine Apobec3 (A3) by
its protease (PR). Since PSIVgml, a common ancestor of all primate
lentiviruses, had already acquired the ancestor of vif [although it is unclear
whether the Vif ancestor of PSIVgml is able to antagonize APOBEC3(s) in
GML or not], vif would be acquired by lentiviruses at least 4.2 million years
ago. All primate lentiviruses including SIVs possess vif and its homologs, and

Vifs of all SIVs antagonize certain APOBEC3s (APOBEC3A, B, C, DE, F, G, and
H; A3s) of their natural hosts. In contrast to vif, vpu would have been acquired
in the lineage of SIVgsn/mon/mus after the divergence of SIVs (e.g., SIVagm,
SIVrcm, and the common ancestor of SIVgsn/mon/mus), which had started
about 75,000 years ago. Note that SIVagm and SIVrcm do not possess vpu. It
has been demonstrated that the other factors of SIVagm (e.g., Nef) are unable
to antagonize AGM BST2, while it has been hypothesized that SIVrcm Nef has
the potential to counteract RCM BST2. On the other hand, Vpus of SIVgsn,
SIVmon, and SIVmus counteract BST2s of their natural hosts. By the evolution
and/or the zoonotic swapping between SIVrcm and SIVgsn/mon/mus, SIVcpz
has emerged approximately 500 years ago (Wertheim and Worobey, 2009). It
is noteworthy that SIVcpz Nef, but not Vpu, is able to counteract chimpanzee
BST2. However, HIV-1, particularly HIV-1 group M which infiltrated the human
population around 1900s and is the current pandemic virus, antagonizes
human BST2 by its Vpu. (Bottom) The pedigree chart of viral factors
antagonizing host factors. In the case of the anti-APOBEC3(s) factor, PR
might have been the original APOBEC3-antagonizing factor since MLV PR
antagonizes murine A3. After the acquisition of vif in the lineage of primate
lentiviruses (around 4.2 million years ago by PSIVgml), vif would be turned
into a dominant restriction factor that antagonizes APOBEC3s of their natural
hosts. On the other hand, in the case of the anti-BST2 factor, certain lineages
of primate lentiviruses (e.g., the common ancestor of SIVgsn/mon/mus)
would acquire vpu after the initiation of SIV divergence (about 75,000 years
ago). It is also of importance that all Vpus of SIVs do not necessarily
counteract BST2s of their natural hosts, and that some SIVs (e.g., SIVrcm and
SIVcpz) counteract BST2s of their natural hosts by Nef. In the twentieth
century, SIVcpz infiltrated the human population as HIV-1, and vpu took over
the role of antagonizing BST2 of human.

(Zhang and Webb, 2004). Therefore, it is reasonable to consider
that the expansion of APOBEC3s in primates was attributed to
repeated retrovirus infections and has been further promoted by
their antagonists, Vif, and its ancestors.

When was vif acquired by primate lentiviruses? In 2008, a
unique “molecular fossil record,” an endogenous lentivirus named
gray mouse lemur prosimian immunodeficiency virus (PSIVgml),
was identified in the genome of gray mouse lemur (Microce-
bus murinus), which is a strepsirrhine primate from Madagascar
(Gifford et al., 2008). Gifford et al. (2008) demonstrated that
PSIVgml is the putative common ancestor of all known pri-
mate lentiviruses. Of particular importance, PSIVgml had already

acquired the putative ancestor gene of vif. In addition, one study
has estimated that gray mouse lemurs were infected with PSIVgml
at least 4.2 million years ago (Mya; Gilbert et al., 2009), suggesting
that the vif ancestor had already existed in primate lentiviruses dur-
ing this period. Moreover, it has also been estimated that Carnivora
introduced the PSIV ancestor(s) from Africa to Madagascar at least
19 Mya, which would lead to the establishment of lentiviruses in
primates (Yoder et al., 2003; Gifford, 2012). Although it is still
unknown whether the PSIV ancestor(s) had already possessed a
putative vif ancestor, it seems convincing that primates and their
ancestors have co-existed and co-evolved with primate lentiviruses
encoding vif for more than several million years.
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In summary, the interplay between APOBEC3(s) and retro-
viruses in terms of evolutionary biology, a scenario in which
APOBEC3s have co-evolved with retroelements and retroviruses
(including lentiviruses) in hosts for over 30 million years, is rea-
sonable. In parallel, Vif has co-evolved as a masterpiece of pri-
mate lentiviruses with expertise in counteracting APOBEC3s. In
other words, Vif is a consequence of the “Red Queen’s race” with
APOBEC3s.

BST2 AND Vpu
As in the case of human APOBEC3s, has human BST2 been
exposed to selective pressures by its counteracting agents such
as HIV-1 Vpu? In sharp contrast to APOBEC3s, BST2 duplica-
tion is not observed. BST2 is encoded in the genomes of human
and chimpanzee located on chromosome 19, while murine Bst2
is located on chromosome 8. Although it has been suggested that
BST2 is a consequence of positive selection (McNatt et al., 2009),
others have implied that human BST2 is in an intermediate stage
in transition to adaptive evolution (Liu et al., 2010). Therefore,
it seems feasible to consider that BST2 has been not undergone
extensive selective pressure compared to APOBEC3s. However, it
is of note that Nefs of SIVcpz and SIVgor are able to antagonize
BST2s of both chimpanzees and gorillas but not that of humans
(Lim et al., 2010). By comparing the amino acid (aa) sequences
of BST2s in these three species, the absence of a 5-aa motif in
the cytoplasmic tail of human BST2, where Nefs of certain SIVs
(e.g., SIVcpz and SIVgor) target was found (Sauter et al., 2009;
Lim et al., 2010). These findings suggest that the 5-aa deletion
made human BST2 resistant to the counteraction by Nefs of cer-
tain SIVs. Moreover, the 5-aa deletion in BST2 is detected in two
hominids, Neanderthal (Homo neanderthalensis) and Denisovan
(Denisova hominin), suggesting that this deletion occurred at least
0.8 Mya (Sauter et al., 2011b). Therefore, it would be possible
to assume that the selective pressure by Nefs of SIVs, which can
antagonize BST2s of their natural hosts, has resulted in the 5-aa
deletion in BST2. However, as mentioned above, other viruses also
possess anti-BST2 factors such as EBOV GP (Kaletsky et al., 2009)
and KSHV K5/MIR2 (Mansouri et al., 2009; Pardieu et al., 2010).
Therefore, a possibility that the resulting 5-aa deletion in BST2 is
due to selective pressure by these other factors cannot be excluded.

When was vpu acquired by primate lentiviruses? In contrast to
vif, PSIVgml does not encode a putative ancestor of vpu (Gifford
et al., 2008), suggesting that vpu participated in the evolutionary
history of primate lentiviruses after the period of PSIVgml emer-
gence. In addition, although vif and its homologs has been encoded
by a broad range of lentiviruses including caprine arthritis–
encephalitis virus in small ruminants, bovine immunodeficiency
virus in ruminants, FIVs in carnivores, all SIVs in monkeys, and
HIV-1 in humans (Gifford et al., 2008; Gifford, 2012), vpu has
only been encoded in certain primate lentiviruses. Out of all pri-
mate lentiviruses, vpu has only been encoded by SIVcpz, three
SIVs from greater spot-nosed monkeys (SIVgsn), mona monkeys
(SIVmon), and mustached monkeys (SIVmus; Courgnaud et al.,
2002, 2003), and HIV-1. SIVcpz, the origin of HIV-1, emerged
in chimpanzees as a hybrid of SIVgsn/mon/mus and SIVrcm (an
SIV from red-capped mangabeys; Bailes et al., 2003), meaning
that the common ancestor of vpu was acquired by the ancestral

lineage of SIVgsn/mon/mus after the initiation of SIV divergence
(Sharp et al., 2005; Gifford et al., 2008). Since primate lentiviruses
have co-diversified and co-evolved with hosts along with cross-
species swapping during the past millions of years, estimating the
evolutionary history of SIVs has been challenging and it seems dif-
ficult to pinpoint the period when the lineage of SIVgsn/mon/mus
acquired the putative vpu ancestor. However, one study has esti-
mated that the SIV diversification had started about 75,000 years
ago (Worobey et al., 2010), which suggests that vpu was acquired
by the lineage of SIVgsn/mon/mus after this point. Considering
this evidence, it is likely that vpu is much younger than vif in
the evolutionary history of primate lentiviruses (Figure 1). More
importantly, although Vpus of SIVgsn, SIVmon, and SIVmus are
able to antagonize BST2s of their natural hosts, Vpu of SIVcpz (a
chimera of SIVgsn/mon/mus and SIVrcm) appears to have trans-
ferred its BST2 antagonizing ability to Nef (Kirchhoff,2010). These
series of events resulted in a restoration of BST2 antagonism by
Vpu in the only pandemic group of HIV-1 (for more details, see
the next section), which emerged during the past 100 years (esti-
mated in 1908–1933; Worobey et al., 2008). Therefore, in terms
of co-evolution of lentiviruses and hosts, the interplay between
HIV-1 Vpu and BST2 can be considered to be immature and still
in the midst of the “Red Queen’s race.”

BST2 AND OTHER VIRAL FACTORS
As mentioned above, various families of viruses belonging to
Retroviridae (HIV-1 Vpu, HIV-2 Env, and SIV Nef), Filoviridae
(EBOV GP), and Herpesviridae (KSHV K5/MIR2) respectively
possess their own anti-BST2 factor that can antagonize BST2
through different molecular mechanisms of action. Since these
viruses are highly divergent, it should be interpreted that each
anti-BST2 factor has independently acquired its BST2 counter-
acting ability at different periods in time. Therefore, in order
to further understand the interplay between BST2 and viruses,
it is necessary to focus on the evolutionary history of individ-
ual viral anti-BST2 factors. For instance, although EBOV GP is
able to counteract human BST2 (Kaletsky et al., 2009), it is still
unclear whether GP’s function is a common feature in Filoviri-
dae. Given that EBOV GP counteracts the ortholog(s) of BST2 in
its natural host(s), it would be interesting to explore this possi-
bility. In addition, among eight human herpesviruses, it has been
suggested that the gene encoding K5/MIR2 is unique in KSHV
(Russo et al., 1996; Haque et al., 2000), indicating that the antag-
onizing potential of human BST2 has been originally acquired
by KSHV after the divergence of human herpesviruses. Moreover,
since it has been suggested that bovine herpesvirus 4 (BHV4) pos-
sesses the homologous gene to K5/MIR2 in KSHV (Russo et al.,
1996), it would be interesting to address the antagonizing abil-
ity of the protein transcribed by the homologous gene in BHV4
against bovine BST2. Taken together, revealing these insights
would provide clues to understand the evolutionary history of
viruses and BST2.

EPIDEMIOLOGY
What is the significance of Vpu’s potential to antagonize BST2?
One possible explanation has been provided by Sauter et al. (2009),
in which Vpu has contributed to the explosion of HIV-1 infection
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resulting in a pandemic. HIV-1 has been classified into four lin-
eages; group M (main/major), group O (outlier), group N, and
group P. Only HIV-1 group M is pandemic, while the others are
endemic in Africa. Within the four groups, Vpus of HIV-1 groups
M and O are able to antagonize BST2’s tethering ability, while those
of HIV-1 groups N and P are not (Sauter et al., 2009, 2011a; Yang
et al., 2011). Although it is well known that HIV-1 Vpu has another
ability to rapidly degrade CD4 molecules, the primary receptor of
HIV-1, (Willey et al., 1992; Margottin et al., 1998; Schubert et al.,
1998), group O Vpu fails to induce the degradation of CD4 (Sauter
et al., 2009). Taken together, group M Vpu is the only protein able
to antagonize and/or degrade both BST2 and CD4, indicating a
clear correlation between the range of virus epidemicity and the
degree of Vpu-mediated BST2 and CD4 down-regulation. In other
words, these findings suggest that Vpu positively contributes to
the efficiency of inter-individual (i.e., human-to-human) spread
of HIV-1. HIV-1 is predominantly transmitted sexually, and it has
been assumed that HIV-1 transmission can be accomplished by
cell-free virions in genital fluids at a low probability (1 in 200–
3,000; Gray et al., 2001). Therefore, consistent with a hypothesis
proposed by Kirchhoff (2010), it is conceivable that Vpu increases
the amount of cell-free virions in genital fluids by antagonizing
BST2,which can lead to a rise in the efficiency of human-to-human
HIV-1 transmission.

In the field of HIV-1 virology, there is a longstanding unan-
swered question: why has only group M led to a pandemic –
was it just by chance? The hypothesis mentioned above may
be the clue to answer this mystery. Moreover, it has been sug-
gested that each HIV-1 group (M, N, O, and P) was inde-
pendently established through zoonotic transmission of SIVcpz
from chimpanzees to the human population (Gao et al., 1999;
Heeney et al., 2006). However, it is still unclear whether each
HIV-1 group is derived from (1) a single chimpanzee infected
with SIVcpz or (2) separate chimpanzees infected with SIVcpz
as a respective ancestor of each HIV-1 group (Heeney et al.,
2006). Furthermore, as mentioned in the previous section, SIVcpz
was derived from a hybrid of SIVgsn/mon/mus and SIVrcm
in a chimpanzee (Bailes et al., 2003). Has this recombination
event occurred only once in a chimpanzee and the chimpanzee
simultaneously transferred the virus to humans as the origin
of each HIV-1 group? Or was the hybrid SIV first transmitted

to different chimpanzees and then individually transferred from
chimpanzees to humans? Since the phenotype of Vpu is clearly
different among HIV-1 groups and SIVs, the difference in Vpu’s
ability may be an important key to trace the origin of each HIV-1
group.

FUTURE DIRECTIONS
Here, we briefly described the interplay between Vpu and BST2
from four different aspects: virology, molecular biology, evolu-
tionary biology, and epidemiology. It is particularly noteworthy to
consider how Vpu has acquired its anti-BST2 activity during HIV-
1 evolution. In addition, various viral anti-BST2 factors including
HIV-1 Vpu, HIV-2 Env, SIV Nef, EBOV GP, and KSHV K5/MIR2
have respectively procured individual anti-BST2 activity during
viral evolution and diversity since the molecular mechanisms of
action to antagonize BST2 are different among these proteins. If so,
what was/is the advantage for viruses to acquire this activity? On
the other hand, why have human BST2 and its orthologs evolved a
function to “tether” viral particles? Finally, it would be difficult to
conclude that HIV-1, particularly a group of the pandemic HIV-
1, has aimlessly acquired the anti-BST2 activity within its limited
genome space (one would expect that artificially inserted unnec-
essary and/or inadequate portions in HIV-1 genome can be easily
deleted after several passages even in cell cultures), and vice versa,
it would be also difficult to assume that BST2 has accidentally
acquired its activity to tether virions during evolution of hosts.
Understanding how these events occurred will be important and
interesting beyond the field of science.
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