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Abstract
With the increasing size of datasets used in medical imaging research, the need for automated data curation is arising. One
important data curation task is the structured organization of a dataset for preserving integrity and ensuring reusability.
Therefore, we investigated whether this data organization step can be automated. To this end, we designed a convolutional
neural network (CNN) that automatically recognizes eight different brain magnetic resonance imaging (MRI) scan types
based on visual appearance. Thus, our method is unaffected by inconsistent or missing scan metadata. It can recognize pre-
contrast T1-weighted (T1w), post-contrast T1-weighted (T1wC), T2-weighted (T2w), proton density-weighted (PDw) and
derived maps (e.g. apparent diffusion coefficient and cerebral blood flow). In a first experiment, we used scans of subjects
with brain tumors: 11065 scans of 719 subjects for training, and 2369 scans of 192 subjects for testing. The CNN achieved
an overall accuracy of 98.7%. In a second experiment, we trained the CNN on all 13434 scans from the first experiment and
tested it on 7227 scans of 1318 Alzheimer’s subjects. Here, the CNN achieved an overall accuracy of 98.5%. In conclusion,
our method can accurately predict scan type, and can quickly and automatically sort a brain MRI dataset virtually without
the need for manual verification. In this way, our method can assist with properly organizing a dataset, which maximizes the
shareability and integrity of the data.
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Introduction

With the rising popularity of machine learning, deep
learning, and automatic pipelines in the medical imaging
field, the demand for large datasets is increasing. To satisfy
this hunger for data, the amount of imaging data collected at
healthcare institutes keeps growing, as is the amount of data
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that is shared in public repositories (Greenspan et al. 2016;
Lundervold and Lundervold 2019). However, this increase
in available data also means that proper data curation, the
management of data throughout its life cycle, is needed to
keep the data manageable and workable (Prevedello et al.
2019; van Ooijen 2019). One essential data curation step
is organizing a dataset such that it can easily be used
and reused. Properly organizing the dataset maximizes the
shareability and preserves the full integrity of the dataset,
ensuring repeatability of an experiment and reuse of the
dataset in other experiments.

Unfortunately, the organization of medical imaging data
is not standardized, and the format in which a dataset is pro-
vided often differs between sources (Lambin et al. 2017;
van Ooijen 2019). Efforts such as the brain imaging data
structure (BIDS) (Gorgolewski et al. 2016) propose a stan-
dardized data structure, to which some public data repos-
itories adhere (e.g. OpenNeuro Gorgolewski et al. 2017,
ABIDE Martino et al. 2017 and OASIS LaMontagne et al.
2018). However, other repositories do not conform to this
standard (e.g. The Cancer Imaging Archive (TCIA) Clark
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et al. 2013, Alzheimer’s Disease Neuroimaging Initiative
(ADNI), and PPMI Marek et al. 2018). Furthermore, similar
to some prospectively collected research data, retrospec-
tively collected data from clinical practice usually do not
follow a standardized format either (van Ooijen 2019).
Thus, the challenge of structuring a dataset, either into a
BIDS compliant dataset or a different format, remains.

When using a medical imaging dataset in a research
project, one needs to select the scan types that are relevant
to the research question (Montagnon et al. 2020; Lambin
et al. 2017). Thus, it is essential to identify the scan type of
each scan when sorting a medical imaging dataset. Different
data sources do not use consistent naming conventions
in the metadata of a scan (e.g. the series description),
which complicates the automatic identification of the scan
type (van Ooijen 2019; Wang et al. 2011). Moreover, in
some cases, this metadata is not consistently stored (e.g.
contrast administration Hirsch et al. 2015) and might even
be partially or entirely missing, as can be the case for
anonymized data (Moore et al. 2015). As a result, the sorting
is frequently done manually, by looking at each scan and
labeling it according to the perceived scan type. This manual
labeling can be a very time-consuming task, which hampers
scientific progress; thus, it is highly desirable to automate
this step of the data curation pipeline. Similar arguments
concerning the complexity of medical imaging data and the
importance of data structuring also motivated the creation
of the BIDS standard (Gorgolewski et al. 2016).

Previous research has focused on modality recognition
(Dimitrovski et al. 2015; Yu et al. 2015; Arias et al. 2016),
as well as on distinguishing different modalities of (MRI)
scans (Srinivas and Mohan 2014; Remedios et al. 2018).
Only one of these studies (Remedios et al. 2018) considered
the prediction of the scan type of magnetic resonance
imaging MRI scans, who predicted 4 scan types, namely
precontrast T1-weighted (T1w), post-contrast T1-weighted
(T1wC), fluid-attenuated inversion recovery (FLAIR) and
T2-weighted (T2w) scans. However, with the increasing
popularity of multi-parametric MRI in machine learning
algorithms and automatic pipelines (Li et al. 2017; Akkus
et al. 2017; Nie et al. 2016; Pereira et al. 2015), the need to
recognize more scan types is arising.

In this research, we propose a method, called DeepDi-
comSort, that recognizes eight different scan types of brain
MRI scans, and facilitates sorting into a structured format.
DeepDicomSort is a pipeline consisting of a pre-processing
step to prepare scans as inputs for a convolutional neu-
ral network (CNN), a scan type recognition step using
a CNN, and a post-processing step to sort the identified
scan types into a structured format. Our method identi-
fies T1w, T1wC, T2w, proton density-weighted (PDw),
T2-weighted fluid-attenuated inversion recovery (T2w-
FLAIR), diffusion-weighted imaging (DWI) (including

trace/isotropic images), perfusion-weighted dynamic sus-
ceptibility contrast (PWI-DSC) scans, and diffusion-
weighted and perfusion-weighted derived maps (including,
for example, apparent diffusion coefficient (ADC), frac-
tional anisotropy, and relative cerebral blood flow). Once
the scan types have been identified, DeepDicomSort can
organize the dataset into a structured, user-defined layout or
turn the dataset into a BIDS compliant dataset. We made all
our source code, including code for the pre-processing and
post-processing, and pre-trained models publicly available,
to facilitate reuse by the community.1

Materials &Methods

Terminology

Since the exact meaning of specific terms can differ
depending on one’s background, we have provided an
overview of the terminology as it is used in this paper
in Table 1. We have tried to adhere to the terminology
used by BIDS as much as possible, and have provided
the equivalent BIDS terminology in Table 1 as well. We
differ from the BIDS terminology regarding two terms:
scan and scan type. Scan type is referred to as modality in
BIDS, but to avoid confusion with the more common use of
modality to indicate different types of equipment (e.g. MRI
and computed tomography (CT)), we instead use scan type.
Scan is used instead of “data acquisition” or “run” as used
in BIDS, to be more in line with common terminology and
to avoid confusion with other types of data acquisition. We
define a structured dataset as a dataset where all the data
for the different subjects and scans is provided in the same
way. For example, a folder structure with a folder for each
subject, session and scan with a consistent naming format
for the different folders and scan types. A standardized
dataset is a dataset where the data has been structured
according to a specific, public standard, for example BIDS.

Data

An extensive collection of data from multiple different
sources was used to construct our method and evaluate its
performance. We used MRI scans of subjects with brain
tumors, as well as scans of subjects without brain tumors.

To ensure sufficient heterogeneity in our dataset, we
included scans from multiple different sources, and we
only excluded scans if their scan type did not fall into one
of the eight categories that we aimed at predicting with
our method. Thus, no scans were excluded based on other
criteria such as low image quality, the occurrence of imaging
artifacts, scanner settings, or disease state of the subject.

1https://github.com/Svdvoort/DeepDicomSort
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Table 1 Overview of terminology used in this paper, the corresponding BIDS terminology and meaning of each term

Term BIDS term Meaning

Modality Modality Type of technique used to acquire a scan (e.g. MRI, CT)

Subject Subject A person participating in a study

Site Site Institute at which a scan of the subject has been acquired

Session Session A single visit of a subject to a site
in which one or more scans have
been acquired

Scan Data acquisition/run A single 3D image that has been acquired of a subject in a session

Slice N/A A single 2D cross-section that has been extracted from a scan

Scan type Modality Specific visual appearance category of a scan (e.g. T1w, T2w)

Sample N/A A single input for the CNN

Class N/A An output category of the CNN

DICOM DICOM A data format used to store
medical imaging data. In addition
to the imaging data, DICOM files
can also store metadata about the
scanner equipment, the specific
imaging protocol and clinical
information.

NIfTI NIfTI A data format used to store (neuro) medical imaging data.

Brain Tumor Dataset

Our method was initially developed and subsequently tested
on brain MRI scans of subjects with brain tumors. Scans
of subjects with brain tumors were used because the brain
tumor imaging protocols used to acquire these scans usually
span a wide array of scan types, including pre-contrast and
post-contrast scans. The brain tumor dataset consisted of a
train set and an independent test set, which in total included
data from 11 different sources. The subjects were distributed
among the brain tumor train set and brain tumor test set
before starting any experiments, and the data was divided
such that the distribution of the scan types was similar in
the train set and the test set. We chose to put all subjects
that originated from the same dataset in either the train set
or test set to test the generalizability of our algorithm. Thus,
all scans of a subject were either all in the brain tumor train
set or all in the brain tumor test set, and no data leak could
take place, precluding an overly optimistic estimation of the
performance of our method. In this way, a good performance
of our method on the test set could not be the result of
the algorithm having learned features that are specific to a
particular site or scanner.

The brain tumor train set contained 11065 scans of 1347
different sessions from 719 subjects. These scans were
included from the Brain-Tumor-Progression (Schmainda
and Prah 2018), Ivy Glioblastoma Atlas Project (Ivy GAP)
(Shah et al. 2016), LGG-1p19qDeletion (Erickson et al.
2016; Akkus et al. 2017), TCGA-GBM (Scarpace et al.

2016) and TCGA-LGG (Pedano et al. 2016) collections
from TCIA (Clark et al. 2013). Two datasets from The
Norwegian National Advisory Unit for Ultrasound and
Image Guided Therapy (USIGT) (Fyllingen et al. 2016;
Xiao et al. 2017) were also included in the brain tumor
train set. In total, the data originated from 17 different sites,
and the scans were acquired on at least 29 different scanner
models from 4 different vendors (GE, Hitachi, Philips, and
Siemens).

The brain tumor test set contained 2369 scans of 302
different sessions from 192 subjects. These scans were
included from the brain images of tumors for evaluation
(BITE) dataset (Mercier et al. 2012) as well as the Clinical
Proteomic Tumor Analysis Consortium Glioblastoma Mul-
tiforme (CPTAC-GBM) (National Cancer Institute Clinical
Proteomic Tumor Analysis Consortium (CPTAC) 2018),
Repository of Molecular Brain Neoplasia Data (REM-
BRANDT) (Scarpace et al. 2015), and Reference Image
Database to Evaluate Therapy Response: Neuro MRI
(RIDER Neuro MRI) (Barboriak 2015) collections from the
TCIA. In total, the data originated from 8 different sites,
and the scans were acquired on at least 15 different scanner
models from 4 different vendors (GE, Philips, Siemens, and
Toshiba).

For some scans, the scanner type was not available in
the DICOM tags (DICOM tag (0008, 1090)); thus, the data
variation in the number of scanners could be even larger.

All subjects included in the brain tumor dataset had a
(pre-operative or post-operative) brain tumor. The scans in
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the datasets were manually sorted, and T1w, T1wC, T2w,
PDw, T2w-FLAIR, DWI, PWI-DSC, and derived images
were identified. The different types of derived images were
combined into a single category, as the derivation of these
images is often inconsistent among scanners and vendors,
and thus these images need to be rederived from the raw
data (e.g. the original DWI or PWI-DSC scan).

The details of the brain tumor train set and brain tumor
test set are presented in Table 2. An example of the eight
scan types for a single subject from the brain tumor test set
can be seen in Fig. 1.

ADNI Dataset

In order to evaluate the results of the algorithm on non-
tumor brain imaging, we used the ADNI dataset (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging, positron
emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment and
early Alzheimer’s disease. For up-to-date information, see
adni-info.org.

We used the baseline and screening data of 1318 subjects,
resulting in 7227 scans. These scans originated from 67
different sites and were acquired on 23 different scanner
models from 3 different vendors (GE, Philips, and Siemens).
Details of the ADNI dataset are presented in Table 3. Since
no contrast is administered to subjects in the ADNI study,
there are no T1wC or PWI-DSC scans in this dataset. The
ADNI dataset does include arterial spin labeling perfusion-
weighted imaging (PWI-ASL), however since our algorithm
was not designed to recognize these scans, they were
excluded. The derived maps from these PWI-ASL scans

were included since the derived category encompasses all
diffusion and perfusion derived imaging. These PWI-ASL
derived maps explain the 47 3D scans in Table 3.

DeepDicomSort

The pipeline of our proposed method, DeepDicomSort,
consisted of three phases:

1. Pre-processing: prepare the scans as an input for the
CNN

2. Scan type prediction: obtain the predicted scan type
using the CNN

3. Post-processing: use the predictions to sort the dataset

By passing a dataset through this pipeline, it can be
turned into a BIDS compliant dataset, or it can be structured
according to a user-defined layout. If one chooses to create a
BIDS compliant dataset, the scans are stored as NIfTI files;
if a user-defined structure is used, the scans are stored as
DICOM files. An overview of the DeepDicomSort pipeline
is presented in Fig. 2.

Pre-Processing

As a first pre-processing step, all DICOM files were
converted to NIfTI format using dcm2niix (Li et al. 2016),
as this simplifies the further processing of the scans. This
step was skipped for the USIGT and BITE datasets, as these
were already provided in NIfTI format (no DICOM files
were available).

In the next step, the number of dimensions of each scan
was automatically determined. Although most scans were
3-dimensional, some scans happened to be 4-dimensional.
This was the case for some DWI scans, which consisted of
multiple b-values and potentially b-vectors, and for some
PWI-DSC scans, which contained multiple time points. If

Table 2 Overview of data in the brain tumor dataset

Brain tumor train set Brain tumor test set

Scan type Ax Cor Sag 3D Total Ax Cor Sag 3D Total

T1w 580 14 872 454 1920 206 2 202 26 436

T1wC 964 526 298 1040 2828 208 133 97 172 610

T2w 1151 411 23 31 1616 232 46 16 1 295

PDw 413 40 0 0 453 145 36 0 0 181

T2w-FLAIR 991 39 4 50 1084 221 3 0 32 256

DWI 1359 0 0 0 1359 347 0 0 0 347

PWI-DSC 669 0 0 0 669 87 0 0 0 87

Derived 1136 0 0 0 1136 157 0 0 0 157

Total 7263 1030 1197 1575 11065 1603 220 315 231 2369

The number of scans for each scan type and the different spatial orientations (axial, coronal, sagittal and 3D) are specified
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Fig. 1 Examples of the different
scan types for a single subject
from the brain tumor test set

(a) T1w (b) T1wC (c) T2w (d) PDw

(e) T2w-FLAIR (f) DWI (g) PWI-DSC (h) Derived (ADC)

a scan was 4-dimensional, the first (3D) element of the
sequence was extracted and was subsequently used instead
of the full 4-dimensional scan. This extraction was done to
make sure that the CNN would also recognize scan types
that generally contain repeats in situations where this was
not the case. For example, this could be the case when the
different b-values of a DWI scan were stored as multiple,
separate (3D) scans instead of a single (4D) scan. Since
the information that a scan is 4-dimensional can aid the
algorithm in recognizing the scan type, a “4D” label was
attached to each scan. This 4D label was set to 1 if the scan
was 4-dimensional, and to 0 if it was not.

All scans were then reoriented to match the orientation
of a common template using FSL’s reorient2std (Jenkinson
et al. 2012). After this step, the scans were resampled to
256 × 256 × 25 voxels, using cubic b-spline interpolation,
while maintaining the original field of view. All of these
resampled (3D) scans were split into (2D) slices, resulting in

Table 3 Overview of data in the ADNI dataset

ADNI dataset

Scan type Ax Cor Sag 3D Total

T1w 0 0 276 2380 2656

T1wC 0 0 0 0 0

T2w 1725 488 5 0 2218

PDw 1069 0 0 0 1069

T2w-FLAIR 1 0 3 488 492

DWI 558 0 2 0 560

PWI-DSC 0 0 0 0 0

Derived 183 0 2 47 232

Total 3536 488 288 2915 7227

The number of scans for each scan type and the different spatial
orientations (axial, coronal, sagittal and 3D) are specified

25 individual slices of 256×256 voxels. The slice extraction
was then followed by an intensity scaling of each slice.
The intensity was scaled such that the minimum intensity
was 0, and the maximum intensity was 1 to compensate for
intensity differences between slices. These pre-processed
slices were than used as input samples for the CNN. No data
augmentation was used, as the large number of scans and
different data sources that were used to train the algorithm
already ensured sufficient natural variation in the samples,
obviating the need for additional augmentation.

After applying these pre-processing steps, the brain
tumor train set consisted of 276625 samples, the brain tumor
test set consisted of 59225 samples, and the ADNI dataset
consisted of 180675 samples.

Network

A CNN was used to classify the samples into one of eight
different classes: T1w, T1wC, T2w, PDw, T2w-FLAIR,
DWI, PWI-DSC, or derived. The architecture of the CNN is
shown in Fig. 3. This architecture was inspired by the VGG
network (Simonyan and Zisserman 2015).

The network was implemented using TensorFlow 1.12.3
(Abadi et al. 2016). The cross-entropy between the
predicted and ground truth labels was used as a loss
function. Weights were initialized using Glorot Uniform
initialization (Glorot and Bengio 2010). We used Adam as
an optimizer (Kingma and Ba 2015), which started with a
learning rate of 0.001, β1 = 0.9, and β2 = 0.999, as these
were proposed as reasonable default values (Kingma and Ba
2015). The learning rate was automatically adjusted based
on the training loss; if the training loss did not decrease
during 3 epochs, the learning rate was decreased by a
factor 10, with a minimum learning rate of 1 · 10−7. The
network could train for a maximum of 100 epochs, and the
network automatically stopped training when the loss did
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Fig. 2 Overview of the
DeepDicomSort pipeline. Scans
are first converted from DICOM
to NIfTI format and
pre-processed. During the
pre-processing the scan is split
into 25 individual slices, that are
then classified as one of eight
scan types by the CNN. The
predictions of the individual
slices are combined in a majority
vote and the predicted scan type
of each scan is used to structure
the dataset. DeepDicomSort can
structure either the original
DICOM files, or the NIfTI files.
In the last case the dataset turns
into BIDS compliant dataset

not decrease during 6 epochs. We used a batch size of 32.
We arrived at this CNN design and these settings by testing
multiple different options and selecting the best performing
one. Details about the optimization of the settings are
presented in Section “Experiments”, Fig. 4, and Appendix
A.

During the training of the network, all slices were
inputted to the CNN as individual samples, and no
information about the (possible) relation between different
slices was provided. After training the network, the scan
type of a scan was predicted by passing all 25 slices of the
scan through the CNN and then combining these individual
slice predictions using a majority vote.

Post-Processing

Once the scan type of each scan is predicted, these
predictions can then be used in (optional) post-processing
steps to automatically structure the dataset. We provide two
options for the structured format:

– Sort the original DICOM files; this can be done in a
user-defined folder structure.

– Sort the NIfTI files; in this case the BIDS format is
used.

During the post-processing, the spatial orientation of the
scan (axial, coronal, sagittal, or 3D) is also determined

Fig. 3 The architecture of the
CNN. The convolutional blocks
consisted of N 2D convolutional
filters followed by batch
normalization and a parametric
rectified linear unit. The output
size of the convolutional blocks
and pooling layers is specified
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Fig. 4 Overview of Experiment I. In this experiment, the brain tumor train set was used to obtain the optimal model parameters and to train the
algorithm. The trained model was then evaluated on the brain tumor test set

based on the direction cosines (DICOM tag (0020, 0037)),
which can be used to define the structured layout when
choosing to sort the DICOM files.

HeuDiConv

HeuDiConv2 is a heuristic-centric DICOM converter, which
uses information from the DICOM tags, along with a user-
defined heuristic file to organize an unstructured DICOM
dataset into a structured layout. HeuDiConv is currently
one of the most widespread, publicly available methods that
can structure an unsorted DICOM dataset. Therefore, we
used HeuDiConv as a benchmark so we could compare our
method, which is based on the visual appearance of a scan,
with a method that is based on the metadata of a scan.

Before HeuDiConv can be used to sort a dataset,
one first needs to define the heuristic file, which is
essentially a translation table between the metadata of a
scan and its scan type. This heuristic file is based on
scan metadata that is extracted from the DICOM tags.
Available metadata includes image type, study description,
series description, repetition time, echo time, size of the
scan along 4 dimensions, protocol name, and sequence
name. HeuDiConv also determines whether a scan is

2https://github.com/nipy/heudiconv

motion-corrected or is a derived image, based on specific
keywords being present in the image type DICOM tag.
These characteristics can also be used in the heuristic file.
Although more scan metadata can be used to define the
heuristic, such as subject gender and referring physician, we
considered this metadata irrelevant for our purpose of scan
type prediction. In addition, this kind of metadata was often
missing due to anonymization.

Experiments

Evaluation of DeepDicomSort

We performed two experiments in which we constructed and
evaluated our method, to show the generalizability among
different datasets:

– Experiment I: Algorithm trained on brain tumor train
set and tested on brain tumor test set

– Experiment II: Algorithm trained on brain tumor dataset
(brain tumor train set and brain tumor test set), and
tested on ADNI dataset

In Experiment I we developed the algorithm and tried
different CNN architectures, pre-processing settings, and
optimizer settings, collectively referred to as the model
parameters, using a train/validation split of the brain tumor
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train set. We then selected the best performing model
parameters and trained a CNN using the whole brain tumor
train set. Once the model was trained, its performance was
evaluated on the brain tumor test set. In Experiment I, the
brain tumor test set was only used to evaluate the results
and was left untouched during the development and training
of the algorithm. Figure 4 shows an overview of the model
parameter selection, training and testing steps, and the data
used in Experiment I. More details about the selection of
the optimal model parameters and the results of other model
parameters can be found in Appendix A.

In Experiment II we used the ADNI dataset as a test set
to see if our method also generalizes to scans in which no
brain tumor was present. In this experiment, we trained the
CNN using the whole brain tumor dataset (a combination of
all the data in the brain tumor train set and brain tumor test
set) and then evaluated the performance of the model on the
ADNI dataset. No model parameter selection was done in
this experiment, instead the optimal model parameters that
were obtained from Experiment I were used. Thus, apart
from training the CNN on a larger dataset, the methods used
in Experiment I and Experiment II were the same. Figure 5
shows an overview of the training and testing steps and the
data used in Experiment II. In this experiment, no T1wC and
PWI-DSC scans were present in the test set, however in a
real-world setting one may not know a priori whether these
scan types were present or absent. Thus, we still allowed
the model to predict the scan type as one of these classes to
mirror this realistic setting.

To evaluate the performance of our algorithm, we
calculated the overall accuracy and the per-class accuracy
of the classification. The overall accuracy was defined as
the number of correctly predicted scans divided by the total

number of scans. The per-class accuracy was defined as
the number of correctly predicted scans of a specific scan
type divided by the total number of scans of that scan type.
We also computed the confusion matrices, which show the
relationship between the ground truth and predicted class.

To visualize which parts of the slice contributed most
to the prediction of the CNN, we generated saliency maps
(Simonyan et al. 2014). Saliency maps were generated by
calculating the gradient of a specific class with respect to
each input pixel, thus giving a measure of the contribution
of each pixel. To obtain sharper maps, we used guided
backpropagation (Springenberg et al. 2015) and applied a
rectified linear activation to the obtained maps. Saliency
maps were generated for all slices of the scans of the
example subject shown in Fig. 1, based on the trained
model from Experiment I. Additional saliency maps were
generated for 20 samples of each scan type that were
randomly selected from the test sets of Experiment I and
Experiment II. The saliency maps for the samples from
Experiment I were generated using the CNN trained in
Experiment I, and for the samples from Experiment II the
CNN trained in Experiment II was used. By generating
saliency maps for multiple samples, we could show the
behavior of our algorithm for different scan appearances.
Some of these samples contained tumors, contained imaging
artifacts or had a low image quality. Thus, these saliency
maps also showed the robustness of our algorithm to
unusual scan appearance. To gain some insight into the
behavior of each convolutional layer we determined the
feature maps of each convolutional layer. We calculated the
feature maps for the T1w slice shown in Fig. 1 by passing
it through the network and determining the output of each
filter after each convolutional layer.

Fig. 5 Overview of Experiment
II. In this experiment the brain
tumor dataset was used to train
the algorithm, and the trained
model was then evaluated on the
ADNI dataset
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Comparison with HeuDiConv

We compared the performance of HeuDiConv and DeepDi-
comSort using the data from Experiment I, since the data
in Experiment II did not include all scan types. When using
HeuDiConv, only the scans which were available in DICOM
format could be processed. This meant that the scans from
the USIGT dataset were removed from the brain tumor train
set, and the scans from the BITE dataset were removed
from the brain tumor test set, as these were not available
in DICOM format. Thus, 86 scans (43 T1wC and 43 T2w-
FLAIR) were removed from the brain tumor train set and 27
scans (all T1wC) were removed from the brain tumor test
set, reducing the train set to 10979 scans and the test set to
2342 scans.

To construct our heuristic, we first extracted all the
relevant DICOM tags from the scans in the brain tumor
train set, see Table 4. Table 4 also shows the number of
unique occurrences for text-based tags and the distribution
of the numerical tags in the brain tumor train set. An
iterative approach was followed to construct the heuristic,
where rules were added or adjusted until the performance
of HeuDiConv on the brain tumor train set could no longer
be increased, see Fig. 6. Our initial heuristic was a simple
one, based solely on certain text being present in the series
description. For example, if the text “T1” was present in the
series description, it was considered a T1w scan.

To compare the performance of HeuDiConv with the
performance of DeepDicomSort the overall accuracy and
per-class accuracy of the scan type predictions obtained
from HeuDiConv were calculated.

Results

Experiment I - Evaluation on Brain Tumor Dataset

The results from Experiment I (evaluation on the brain
tumor test set, containing scans of subjects with brain
tumors) are reported in Table 5. The network was trained
for 96 epochs. In this experiment our method achieved an
overall accuracy of 98.7%.

The highest per-class accuracy was achieved for the
PDw and PWI-DSC scans (100.0% for both), whereas
the T2w-FLAIR scans had the lowest accuracy (93.0%).
The confusion matrices show that most of the incorrectly
predicted T2w-FLAIR scans were classified as T1w scans
(see Appendix B). Appendix C shows the performance of
our method on a per-slice basis before the majority vote has
taken place to determine the scan class, which shows that the
per-slice accuracy is lower than the per-scan accuracy. This
is not surprising since there are slices in a scan from which
it is almost impossible to determine the scan type even

Table 4 DICOM tag numbers and descriptions of the DICOM tags
extracted for the HeuDiConv heuristic

Tag description Tag number

Image type 0008,0008 72 unique instances

Study description 0008,1030 435 unique instances

Series description 0008,103E 1215 unique instances

Repetition time 0018,0080 Mean ± std: 3912 ± 4078

Echo time 0018,0081 Mean ± std: 52.11 ± 48.9

Number of rows in image 0028,0010 Range: 128 - 1152

Number of columns in image 0028,0011 Range: 128 - 1152

For text-based tags the number of unique instances is shown and for
numerical-based tags the distribution is shown, based on the scans in
the brain tumor train set

for a human (for example, the most superior and inferior
slices).

Experiment II - Evaluation on ADNI Dataset

The results from Experiment II (evaluation on the ADNI
dataset, containing scans of subjects without brain tumors)
are reported in Table 5. Just like in Experiment I the
network was trained for 96 epochs. In this experiment
our method achieved an overall accuracy of 98.5%. It
took approximately 22 hours to train the network of this
experiment using an Nvidia Titan V GPU with 12 GB
memory.

The highest per-class accuracy was achieved for the T1w
scans (100.0%), whereas the T2w scans had the lowest
accuracy (95.1%). Most of the incorrectly predicted T2w
scans were predicted as T1wC or PDw scans. Furthermore,
although no T1wC and PWI-DSC scans were present in
the test set used in this experiment, our method incorrectly
classified 40 scans as T1wC (mainly T2w scans) and 3 scans
as PWI-DSC scans (all DWI scans). The full confusion
matrix can be found in Appendix B.

Focus of the Network

Figure 7 shows the saliency maps for the different scan
types, for the same slices as in Fig. 1. For most scan types,
the CNN seemed to focus on the ventricles, the cerebral
spinal fluid (CSF) around the skull, the nose, and the eyes.
For the PDw slice, the CNN did not have a specific focus
on the ventricles and did not seem to have a particular focus
inside the brain. The DWI and derived slices also showed
some focus outside of the skull, probably because of the
artifacts outside of the skull that these scan types often
feature (as can be seen in Fig. 7h). We have created saliency
maps for all 25 slices of the scans shown in Fig. 1, which
are shown in Appendix E. For most other slices the focus
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Fig. 6 Overview of the
HeuDiConv experiment. In this
experiment the scans from the
brain tumor train set that were
available in DICOM format
were used to construct the
heuristic file. HeuDiConv used
this heuristic file to predict the
scan type of the scans from the
brain tumor test set which were
available in DICOM format

of the CNN was the same as for the slices from Fig. 7.
Furthermore, the presence of a tumor did not disturb the
prediction as also evidenced by the high accuracy achieved
in Experiment I. Only on the most superior and inferior
slices did the CNN struggle, probably due to the fact that
the brain was barely visible on those slices.

Additional saliency maps for randomly selected samples
from the test sets of Experiment I and Experiment II
are shown in Appendix F. These examples show that our
method is robust to heterogeneity in the visual appearance
of the scans, as well as to the presence of tumors, the
presence of imaging artifacts, and poor image quality.
This is demonstrated by the fact that the CNN focused
on the same brain structures for almost all of the slices
and correctly predicted the scan type even for slices with

Table 5 Overall accuracy and per-class accuracy achieved by
DeepDicomSort in Experiment I and Experiment II

Experiment I Experiment II

Overall 0.987 0.985

T1w 0.993 1.000

T1wC 0.997 N/A

T2w 0.990 0.965

PDw 1.000 0.998

T2w-FLAIR 0.930 0.951

DWI 0.991 0.995

PWI-DSC 1.000 N/A

Derived 0.994 0.983

poor imaging quality or artifacts. The feature maps of all
convolutional layers are shown in Appendix G. For the
shallow convolutional layers, some filters seemed to detect
the skull without looking at the brain tissue, whereas other
layers seemed to focus more on specific brain structures
such as the CSF. Interpreting the deeper convolutional
layers gets harder as the feature maps of those layers have a
lower resolution.

HeuDiConv Predictive Performance

The top-level rules of the derived heuristic for HeuDiConv
were mainly based on the series description, with additional
lower-level rules based on the echo time, image type, and
the derived status of the scan. The overall accuracy obtained
within the brain tumor train set after several iterations of
improving the heuristic was 91.0%. The overall accuracy in
the brain tumor test set was 72.0%. The results for each class
can be found in Table 6, along with a comparison to the
accuracy of the CNN evaluated on the brain tumor test set.
For the evaluation of the CNN’s performance, we included
the same scans as present in the test set for HeuDiConv (i.e.
those which were available in DICOM format). Although
a slightly different dataset was used for this test set, the
results of the CNN in Tables 5 and 6 appear to be the
same. This can be explained by the fact that only T1wC
scans were removed from the test set, thus for all other
classes the accuracy remained the same. Furthermore, due
to the large number of scans the difference is only visible
at more decimals, e.g. the overall accuracy in Table 5 was
98.73% whereas in Table 6 it was 98.72%. These results
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Fig. 7 Saliency maps of the scan
types, generated by the CNN
evaluated on the same slices as
in Fig. 1. This CNN was the
model obtained in Experiment I

(a) T1w (b) T1wC (c) T2w (d) PDw

(e) T2w-FLAIR (f) DWI (g) PWI-DSC (h) Derived (ADC)

show that DeepDicomSort outperformed HeuDiConv both
in terms of the overall accuracy and the per-class accuracy
for all classes. Appendix D compares the time required to
sort the datasets using either DeepDicomSort, HeuDiConv,
or by hand, which shows that DeepDicomSort is more than
twice as fast as the other two methods.

Discussion

Our results show that it is possible to use a CNN to
automatically identify the scan type of brain MRI scans and
use this to sort a large, heterogeneous dataset. Because of
the high accuracy of our method, it can be used virtually
without manual verification. The CNN performed well both
for scans with and without the presence of a tumor. The
performance of our method generalizes well across scans

Table 6 Accuracy of HeuDiConv on the brain tumor test set

HeuDiConv DeepDicomSort

Overall 0.720 0.987

T1w 0.963 0.993

T1wC 0.447 0.997

T2w 0.930 0.990

PDw 0.077 1.000

T2w-FLAIR 0.684 0.930

DWI 0.887 0.991

PWI-DSC 0.600 1.000

Derived 0.948 0.994

Results of DeepDicomSort on this test set are also given, where the
scans which were not available in the DICOM format were excluded
from the test set

from different sites, scanners, subjects, and scan protocols.
Our method was also able to correctly predict the scan type
of scans that had poor imaging quality or contained imaging
artifacts, as can be seen in Appendix F.1. The CNN focused
mainly on the ventricles, areas close to the skull, and the
CSF at the edges of the brain. There was also some focus on
the gray matter and white matter, although these structures
seemed less relevant for the decision making of the CNN. It
makes sense that the CNN focuses on the CSF, both in the
ventricles and at the edges of the brain, because their visual
appearance is very characteristic of the scan type. Although
the CNN also focused on the eyes and nose, we do not
expect this to disrupt the prediction when these structures
are absent (e.g. in defaced scans). There were a lot of slices
in which the eyes and nose were not present, such as the
most inferiorly and superiorly located slices, for which the
CNN predicted the scan type correctly.

Data sorting is just one step of the data curation pipeline,
and in recent years more research on the automation of other
data curation tasks has been carried out. Some examples
include automatic scan quality checking (Esteban et al.
2017), motion artifact correction (Tamada et al. 2020), and
missing scan type imputation from the present scan types
(Lee et al. 2019). However, to automate other data curation
steps the dataset first needs to follow a structured format,
making our tool a crucial first step in the overall pipeline.
The increasing data complexity, both in volume and in the
number of different types of data, not only shows a need for
a proper data curation pipeline, but also shows the need for
a standardized data structure for scans and their associated
metadata (van Erp et al. 2011; Gorgolewski et al. 2016;
Lambin et al. 2017). The widespread adoption of a common,
standardized data structure would be favorable over the use
of our tool or similar tools. Unfortunately, both in research
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and in clinic practice, it is currently not commonplace to
provide datasets in a standardized format, thus making our
tool a valuable addition to the data curation pipeline. Even
if a standardized data structure were to be widely adopted,
our tool would remain valuable as a quality assessment tool.

Although the accuracy of our method is high overall, our
method predicted the incorrect scan type in some cases. For
example, in Experiment I the CNN mainly misclassified
T2w-FLAIR scans. Almost all of these misclassified T2w-
FLAIR scans originated from the RIDER Neuro MRI
dataset. Comparing a T2w-FLAIR scan from the RIDER
dataset with a T2w-FLAIR scan from the train set used in
Experiment I shows a big difference in visual appearance,
see Fig. 8a and b. These figures show that the white
matter and gray matter appear very different on the two
scans, even though they have the same scan type, which
probably confused the network. In Experiment II the per-
class accuracy was the lowest for the T2w scans. Almost
all of the misclassified T2w scans were hippocampus
scans, an example of which can be seen in Fig. 8c. The
misclassification of these scans can be explained by their
limited field of view. Since the CNN did not see any such
scans in the training set, as all scans in the training set
covered the full brain, it is not surprising that our method
failed in these cases. The saliency maps in Fig. 8 show that
the CNN had difficulty focusing on the relevant parts of the
slice. For example, for the T2w-FLAIR slices in Figs. 7e
and 8d it can be seen that the CNN focused mainly on
the ventricles, whereas in Fig. 8e there was more focus on
the edge of the brain, similar to the T1w slice in Fig. 7a.
Although we did not achieve a perfect prediction accuracy,
it is unlikely that any scan sorting method ever will, due
to the large heterogeneity in scan appearance and scan

metadata. While not perfect, our method does have a very
high performance overall and the comparison with manual
sorting shows that it considerably reduces the time required
to sort a dataset.

The CNN was trained and evaluated by using the
ground truth labels, which were obtained by manually going
through the dataset and annotating each scan according
to the perceived scan type. It is possible that the scan
type was incorrectly annotated for some of the scans.
To limit this possibility we took a second look at scans
where there was a mismatch between the prediction from
DeepDicomSort and the ground truth label, both for train
datasets and test datasets. We corrected the ground truth
label for scans that were incorrectly annotated and these
corrected labels were used for the experiments presented in
this paper. The labels of around 0.1% of the scans in the
dataset were corrected in this way. Although it is possible
that there were still some incorrectly annotated scans,
based on these findings we expect this fraction to be very
small.

We chose a CNN as the basis of our method because
we wanted to minimize the number of pre-processing steps.
Using more traditional machine learning approaches, such
as a support vector machine or random forest, would require
the extraction of relevant features from each scan. This
would complicate our method as we would first have to
hand-craft these features and add a pre-processing step in
which we extract these features from the scan. Furthermore,
the extraction of these features would likely require a brain
mask to prevent the features from being influenced too
much by the background. The creation of this brain mask
would add a pre-processing step, and could be a potential
source of error. Instead, by using a CNN, no features had

Fig. 8 Examples of scans our
method misclassified (b and c)
and a correctly classified scan
(a) as comparison, along with
their saliency maps. The T2w-
FLAIR scan in (b) is probably
misclassified as its appearance is
very different from T2w-FLAIR
scans that were in the train
dataset. The T2w scan in (c) is
probably misclassified because
it has a very limited field of view

(a) T2w-FLAIR scan from
the Ivy GAP collection.
This scan type was cor-
rectly predicted.

(b) T2w-FLAIR scan
from the RIDER Neuro
MRI collection. This scan
type was misclassified as
a T1w.

(c) T2w scan from the
ADNI dataset. This scan
type was misclassified as a
T1wC.

(d) Saliency map of the
correctly classified scan
from (a).

(e) Saliency map of the
misclassified scan from
(b).

(f) Saliency map of the
misclassified scan from (c).
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to be defined as the CNN automatically learns the relevant
features. The CNN also does not require a brain mask, as it
has learned to ignore the background and focus on the brain
itself, as shown by the saliency maps.

We opted for a 2D CNN instead of a 3D CNN, because
this allowed us to extract a larger region of the scan to be
used as an input for the CNN. By using a 2D CNN, this
region could encompass a full slice of the brain enabling the
CNN to learn features that capture the relative differences
in appearance of the various tissue types (white matter, gray
matter, CSF, bone, skin, etc.), which are characteristic of
the scan type. Furthermore, because a 2D CNN typically
requires less memory than a 3D CNN (Prasoon et al. 2013),
it requires less computational power (making our method
accessible to a broader audience), and also requires less time
to train and evaluate (Li et al. 2014).

Our method achieved a better overall accuracy and per-
class accuracy than HeuDiConv. The results obtained using
HeuDiConv show the difficulty of creating a method based
on DICOM tags that generalizes well to other datasets.
Even within one dataset, it can be difficult to create a
heuristic that correctly maps the scan metadata to the scan
type; for example Table 4, shows that 1215 different series
descriptions are used just for the eight scan types considered
in this research. HeuDiConv has particular difficulty in
identifying scans that have similar metadata but have
different scan types. For example, this is reflected in the
results for the T1w and T1wC scans. These scans usually
have similar scan settings and series descriptions, making
it hard to determine whether a scan is obtained pre- or
post-contrast administration. The same difficulty plays a
role for T2w and PDw scans, which are often acquired
at the same time in a combined imaging sequence and
thus have the same series description. In our timing results
(Appendix D), it was faster to sort the dataset by hand than
to use HeuDiConv. This was caused by HeuDiConv often
misclassifying T2w-FLAIR and T1wC scans as a different
scan type, and thus a lot of manual time was needed to
correct these mistakes.

A method that, similar to ours, classifies the scan type
based on the visual appearance of the scan was proposed
by Remedios et al. (2018) called �-net. Their method
can identify T1w, T1wC, T2w, and pre-contrast and post-
contrast FLAIR scans. Remedios et al. do this using a
cascaded CNN approach where a first CNN is used to
classify a scan as T1-weighted, T2-weighted, or FLAIR.
Two other CNNs are then used to classify a scan as pre-
contrast or post-contrast, one CNN for the T1-weighted
scans and one CNN for the FLAIR scans. �-net achieved an
overall accuracy of 97.6%, which is lower than our overall
accuracy of 98.7% (Experiment I) and 98.5% (Experiment
II). Since Remedios et al. did not make their trained model
publicly available, it was not possible to directly compare

performances on the same dataset. Remedios et al. tested
their method on 1281 scans, which came from 4 different
sites and 5 different scanner models. Their dataset was thus
considerably smaller and less heterogeneous than our test
data set. Furthermore, our method can identify more scan
types and does so using only a single CNN instead of
three.

A limitation of our method is that it can only classify a
scan as one of the eight scan types for which it was trained.
Thus, when it is presented with an unknown scan type
(e.g. PWI-ASL or dynamic contrast-enhanced perfusion-
weighted imaging), our method will (wrongly) predict it
as one of the other classes. In future work, this limitation
could be addressed in two ways. The first option would be
to adapt the network to either recognize more scan types
or to replace one of the existing classes by a different one.
This can be done using a transfer learning approach by fine-
tuning the weights obtained in this research on additional
data (Tajbakhsh et al. 2016). Since we did not have enough
data for other scan types, we limited the CNN to the eight
classes for which we did have enough data. A second option
would be to extend our method to allow out-of-distribution
detection (DeVries and Taylor 2018). In this methodology,
the network could not only predict the scan type of a scan
but could also indicate if a scan belongs to an unknown
scan type. This requires a significant change to the model
architecture, which we considered outside the scope of this
research for now.

Another limitation is the use of reorient2std from FSL,
which means that (this part of) the code cannot be used
in a commercial setting. Commercially allowed alternatives
exist, such as the ‘reorient image’ function from ANTs
(http://stnava.github.io/ANTs/), however these have not
been tested as part of the DeepDicomSort pipeline.

A promising future direction could be to predict the
metadata of a scan based on its visual appearance. For
example, one could predict the sequence that has been used
to acquire a scan (e.g. MPRAGE or MP2RAGE in the case
of a T1w scan), or reconstruct the acquisition settings of
a scan (e.g. the spin echo time). In this research, we did
not consider these types of predictions because we first
wanted to focus on the dataset organization, however we
think that our method can provide a basis for these types of
predictions.

Conclusion

We developed an algorithm that can recognize T1w, T1wC,
T2w, PDw, T2w-FLAIR, DWI, PWI-DSC, and derived
brain MRI scans with high accuracy, outperforming the
currently available methods. We have made our code and
trained models publicly available under an Apache 2.0
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license.3 Using the code and the trained models, one can run
the DeepDicomSort pipeline and structure a dataset either
according to the BIDS standard or a self-defined layout.
We think that scan type recognition is an essential step in
any data curation pipeline used in medical imaging. With
this method, and by making our code and trained models
available, we can automate this step in the pipeline and
make working with large, heterogeneous datasets easier,
faster, and more accessible.
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Appendix A: Model Parameter Selection

To determine the optimal model parameters (i.e. the CNN
architecture, pre-processing settings and optimizer settings)
of the CNN used in the DeepDicomSort pipeline, we
evaluated the performance of different model parameters on
the brain tumor train set, the train set from Experiment I.
Before carrying out the experiments, the brain tumor train
set was partitioned into a train set and validation set. 85%
of the scans was used as a train set and 15% of the scans
was used as a validation set. Only one such split was made
since training and validating the network for multiple splits
would be too time-consuming. During the splitting, all slices
of a scan where either all in the train set or all in the
validation set to prevent data leakage between the train set
and validation set.

We compared five different CNN architectures: the
architecture proposed in this paper, Alexnet (Krizhevsky
et al. 2012), ResNet18 (He et al. 2016), DenseNet121
(Huang et al. 2017) and VGG19 (Simonyan and Zisserman
2015). For all networks, the same pre-processing approach
as described in Section “Pre-Processing” was used, with
the optimizer settings as described in Section “Network”.
The only difference was that the learning rate reduction was
based on the validation loss instead of the training loss.
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Fig. 9 Learning curves of the different network architectures tested in
the model parameter selection

For the VGG19 model, the initial learning rate was lowered
to 0.0001, as the model would otherwise get stuck in a
poor minimum early in the training stage. Different pre-
processing settings (e.g. different normalization settings)
and model settings (e.g. learning rate) were tested. However,
here we show only the effect of the different architectures
using the same pre-processing settings for all models to
make a fair comparison and since we obtained the best
results using these pre-processing settings.

The learning curves for the different models are shown in
Fig. 9. The learning curve for the AlexNet model (Fig. 9b),
shows that this model is the only one that was not capable
to properly train for the task at hand, probably due to the
low number of weights that can be optimized in this model.

Table 7 Overall training accuracy, overall validation accuracy, and
the time it took to train each network for the different network
architectures test in the model parameter selection

Train Validation Training time (h)

Our model 0.999 0.971 14.8

2D AlexNet 0.255 0.255 11.0

2D DensNet121 1.000 0.980 21.8

2D ResNet18 1.000 0.973 26.4

2D VGG19 1.000 0.948 34.6

3D DenseNet121 1.000 0.868 22.9

3D ResNet18 1.000 0.832 27.7

A train/validation split of the brain tumor train set was used to
determine the performance

Except for the AlexNet model, all the other models were
able to properly learn, and the final validation accuracy
was roughly the same for all models. The DenseNet
model achieved the highest validation accuracy of 98%,
a full overview of the performance of the different CNN
architectures can be found in Table 7. These results
show that multiple models work for the problem at hand.
Ultimately, we chose to employ our proposed architecture
because it is less computationally intensive than the other
models. Not only does our model train faster (shown in
Table 7), it also requires less time to predict the scan type
of new scans, and requires less (GPU) memory. Selecting
the least computationally intensive model allows a wider
adoption of our tool.

We also trained two 3D models to compare their perfor-
mance with the 2D models. In the case of the 3D models,
most of the pre-processing steps were kept the same, apart
from the slice extraction. Instead of extracting 25 slices, 3D
patches with a size of 90 × 90 × 15 voxels were extracted.
A maximum of 10 patches per scan were extracted, in
such a way that they covered as much of the (geometrical)
center of the scan as possible to ensure that the patches
contained brain and not just background. We trained a 3D
ResNet18 and a 3D DenseNet121; the learning curves can
be seen in Fig. 9f and g. These 3D architectures achieved
a lower validation accuracy than their 2D counterparts,
0.87 versus 0.98 for the DenseNet model and 0.83 versus
0.97 for the ResNet model. These results justified our
choice for a 2D model, which not only achieved a higher
accuracy but was also less computationally intensive.

Appendix B: Confusion Matrices

The confusion matrices for Experiment I (Table 8) and
Experiment II (Table 9), which show the relation between
the ground truth scan type and the predicted scan type.
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Table 8 Confusion matrix of results from Experiment I

Ground truth Predicted

T1w T1wC T2w PDw T2w-FLAIR DWI PWI-DSC Derived

T1w 433 2 0 1 0 0 0 0
T1wC 2 608 0 0 0 0 0 0
T2w 1 2 292 0 0 0 0 0
PDw 0 0 0 181 0 0 0 0
T2w-FLAIR 18 0 0 0 238 0 0 0
DWI 0 0 0 0 0 344 2 1
PWI-DSC 0 0 0 0 0 0 87 0
Derived 0 0 1 0 0 0 0 156

Table 9 Confusion matrix of results from Experiment II

Ground truth Predicted

T1w T1wC T2w PDw T2w-FLAIR DWI PWI-DSC Derived

T1w 2655 1 0 0 0 0 0 0
T1wC 0 0 0 0 0 0 0 0
T2w 0 34 2140 44 0 0 0 0
PDw 0 0 2 1067 0 0 0 0
T2w-FLAIR 6 5 0 1 468 12 0 0
DWI 0 0 0 0 0 557 3 0
PWI-DSC 0 0 0 0 0 0 0 0
Derived 0 0 1 0 0 3 0 228

Appendix C: Predictive Performance on
Per-Slice Basis

Table 10 shows the accuracy of the CNNs from Experiment
I and Experiment II on a per-slice basis instead of on a
per-scan basis. These results are obtained by comparing
the predicted class of a slice directly with the ground truth
class of that slice before the individual slice predictions are
combined by a majority vote to obtain the scan type.

Table 10 Overall accuracy and per-class accuracy achieved by
DeepDicomSort in Experiment I and Experiment II on a per-slice basis

Experiment I Experiment II

Overall 0.934 0.851

T1w 0.942 0.814

T1wC 0.940 N/A

T2w 0.926 0.894

PDw 0.905 0.914

T2w-FLAIR 0.879 0.592

DWI 0.985 0.943

PWI-DSC 0.925 N/A

Derived 0.990 0.908

Appendix D: Time Comparison Between
DeepDicomSort, HeuDiConv andManual
Sorting

We estimated the potential time that can be saved by using
DeepDicomSort to sort a dataset instead of doing so by
hand or using HeuDiConv. We did so by assuming the
hypothetical situation where one has an automated tool that
requires the T1wC and T2w-FLAIR scans as inputs, and
we compared the time needed to find the T1wC and T2w-
FLAIR scans for all subjects and sessions in the brain tumor
test set. The manual sorting was simulated by iterating
over all scans in a session in random order until either the
T1wC and T2w-FLAIR scans were found or until there
were no more scans to check. The sorting of the dataset
using HeuDiConv or DeepDicomSort was simulated by
first iterating over all scans that were predicted as a T1wC
or T2w-FLAIR by these methods, and checking whether
that prediction was correct. If the predicted scan type was
incorrect, the same approach as for the manual sorting was
followed to find the correct scans. We assumed that, on
average, a human required 25 seconds per scan to visually
identify the correct scan type. By multiplying this time per
scan with the total number of scans that were iterated over,
we obtained an estimate for the total time taken by each
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method to find the T1wC and T2w-FLAIR scans. We used
the brain tumor test set to evaluate the timing results, since
HeuDiConv was only optimized for the brain tumor dataset.

D.1 Results

The time required to identify the T1wC and T2w-FLAIR
scan for each session in the brain tumor test set by hand
was estimated to be 29.0 hours. The estimated time required
to check and correct the automated scan type recognition
by HeuDiConv was 35.7 hours, which excludes the time
required to construct the heuristic. If the automated scan
type recognition was done by DeepDicomSort instead, we
estimated that 12.3 hours of manual time were required.
The time required to run the DeepDicomSort pipeline on
the dataset was 61.5 minutes using an Intel Xeon Processor
E5-2690 v3 for pre-processing and post-processing, and an
Nvidia Tesla K40m GPU to classify the samples using the
CNN. If the scans identified by DeepDicomSort were used
without a manual check, in which case the total sorting time
was only 61.5 minutes, 527 scans would have been correctly
identified. Four scans were incorrectly identified as a T1wC
or T2w-FLAIR scan, for one session the T1wC would not
have been found, and for 8 sessions the T2w-FLAIR would
not have been found.

It should be noted that with the automated methods
(DeepDicomSort and HeuDiConv), one gets a fully sorted
dataset, whereas the sorting by hand still requires the sorting
of the scans that were not yet identified.

Appendix E: Saliency Map for Full Scan

Figures 10 and 11 show the saliency maps for all 25 slices
from the scans of the example subject from Fig. 1. The CNN
seems to focus on the same features as in Fig. 7, mostly on
the ventricles and on the CSF at the edges of the brain. In the
superior slices of the scan, it can be seen that the presence of
a tumor does not disrupt the CNN. Although it looks at the
edge of the tumor, it does not put a lot of focus on the tumor
itself. For the most superior slices of the T1w, T1wC and
T2w scans it can be seen that when the brain is no longer
present in the slice the CNN loses it focus and seems to look
randomly throughout the slice.

Appendix F: SaliencyMaps for Additional
Examples

F.1 Random Samples from the Brain Tumor Test Set

To show the robustness of our method to differences in
scan appearance, as well as to imaging artifacts, we have

T1w T1wC T2w PDw T2w-FLAIR DWI PWI-DSC Derived

Fig. 10 Saliency maps for slices 1 through 13 of the subject from Fig. 1

T1w T1wC T2w PDw T2w-FLAIR DWI PWI-DSC Derived

Fig. 11 Saliency maps for slices 14 through 25 of the subject from Fig. 1
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Fig. 12 Saliency maps and predicted scan type of randomly drawn
samples from the brain tumor test set

Fig. 13 Saliency maps and
predicted scan type of randomly
drawn samples from the brain
tumor test set
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randomly selected 20 slices of each scan type from the brain
tumor test set. All of these slices were then passed through
the CNN, and we determined the saliency maps along with
the predicted class of each slice. This is the prediction
based on the slice itself, and thus before the majority vote.
The saliency maps and predicted scan types are shown in
Figs. 12 and 13. We have highlighted slices that contain
imaging artifacts (†), have a poor image quality (†), and
subjects with a large head tilt (†). These saliency maps show
that the CNN is quite robust to the presence of a tumor, the
presence of imaging artifacts, or poor image quality, in most
cases the CNN still predicts the correct scan type.

F.2 Random Samples from ADNI Dataset

The same approach as in Appendix F.1 has been applied to
show the saliency maps from random samples of the ADNI
dataset. In this case, the saliency maps were derived using
the trained model from Experiment II instead of Experiment
I. Once again the saliency maps and the predicted scan type
are shown in Figs. 14 and 15. We have highlighted slices
that contain imaging artifacts, including hippocampus scans
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Fig. 14 Saliency maps and
predicted scan type of randomly
drawn samples from the ADNI
dataset
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with a limited field of view, (†), have a poor image quality
(†), and subjects with a large head tilt (†).

F.3 Robustness Against Bright Noise

To test the effect of potential bright spots in the scan, we
performed an experiment where random bright spots were
introduced in the slices from Fig. 1. Within each slice 0.5%
of voxels were randomly chosen, and the intensity of these
voxels was set to the maximum intensity of the slice. We

then determined the saliency maps for these slices and the
predicted scan type, the results are shown in Fig. 16.

These results show that our method is quite robust against
bright spots in a scan. Only for the T1w and PWI-DSC
scans there were slices that were misclassified. In the case
of the T1w slice, there were two out of five slices that
were predicted to be T1wC. This is most likely caused
by the CNN having learned that a T1w and T1wC scan
have a similar appearance in general, but that the T1wC
scan has brighter spots. In two cases the PWI-DSC slice
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Fig. 15 Saliency maps and
predicted scan type of randomly
drawn samples from the ADNI
dataset
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was misclassified as a DWI. Probably this is caused by
the CNN seeing the random brightness spots outside the
skull as imaging artifacts, which often show up in DWI
scans and less so in PWI-DSC scans. Although the CNN
misclassified the T1w and PWI-DSC slices in some cases,
when bright spots were introduced on all 25 slices of the
T1w and PWI-DSC scans (randomly for each slice) and
then passed through the network, the CNN still predicted the
correct scan type of the scan after the majority vote.

Appendix G: Feature Map Visualizations

Figures 17 through 22 show the feature maps of all filters of
each convolutional layer for the T1w slice shown in Fig. 1.
It can be seen that some filters mainly identify the skull (for
example, filter 1 from convolutional layer 1), whereas other
filters seem to focus on specific structure (for example, filter
4 from convolutional layer 1, which seems to identify gray
matter).
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Fig. 16 Saliency maps and
predicted scan types of the
derived slices from Fig. 1 after
randomly setting some pixels to
the maximum intensity. Every
time the slice with the added
noise is shown, followed by the
saliency map and predicted scan
type for the same slice in the
row below
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Fig. 17 Feature map
visualizations of the trained
CNN from Experiment I. These
visualizations were obtained by
passing a T1w slice through the
network, and showing the results
directly after convolutional layer
1. The slice is the same as the
one shown in Fig. 1
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Fig. 18 Feature map
visualizations of the trained
CNN from Experiment I. These
visualizations were obtained by
passing a T1w slice through the
network, and showing the results
directly after convolutional layer
2. The slice is the same as the
one shown in Fig. 1

Filter 1Filter 1 Filter 2Filter 2 Filter 3Filter 3 Filter 4Filter 4 Filter 5Filter 5 Filter 6Filter 6 Filter 7Filter 7 Filter 8Filter 8

Filter 9Filter 9 Filter 10Filter 10 Filter 11Filter 11 Filter 12Filter 12 Filter 13Filter 13 Filter 14Filter 14 Filter 15Filter 15 Filter 16Filter 16

Filter 17Filter 17 Filter 18Filter 18 Filter 19Filter 19 Filter 20Filter 20 Filter 21Filter 21 Filter 22Filter 22 Filter 23Filter 23 Filter 24Filter 24

Filter 25Filter 25 Filter 26Filter 26 Filter 27Filter 27 Filter 28Filter 28 Filter 29Filter 29 Filter 30Filter 30 Filter 31Filter 31 Filter 32Filter 32

179Neuroinform (2021) 19:159–184



Fig. 19 Feature map
visualizations of the trained
CNN from Experiment I. These
visualizations were obtained by
passing a T1w slice through the
network, and showing the results
directly after convolutional layer
3. The slice is the same as the
one shown in Fig. 1
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Fig. 20 Feature map
visualizations of the trained
CNN from Experiment I. These
visualizations were obtained by
passing a T1w slice through the
network, and showing the results
directly after convolutional layer
4. The slice is the same as the
one shown in Fig. 1
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Fig. 21 Feature map
visualizations of the trained
CNN from Experiment I. These
visualizations were obtained by
passing a T1w slice through the
network, and showing the results
directly after convolutional layer
5. The slice is the same as the
one shown in Fig. 1
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Fig. 22 Feature map
visualizations of the trained
CNN from Experiment I. These
visualizations were obtained by
passing a T1w slice through the
network, and showing the results
directly after convolutional layer
6. The slice is the same as the
one shown in Fig. 1
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