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Abstract
In neural structures with complex geometries, numerical resolution of the Poisson-Nernst-

Planck (PNP) equations is necessary to accurately model electrodiffusion. This formalism

allows one to describe ionic concentrations and the electric field (even away from the mem-

brane) with arbitrary spatial and temporal resolution which is impossible to achieve with

models relying on cable theory. However, solving the PNP equations on complex geome-

tries involves handling intricate numerical difficulties related either to the spatial discretiza-

tion, temporal discretization or the resolution of the linearized systems, often requiring large

computational resources which have limited the use of this approach. In the present paper,

we investigate the best ways to use the finite elements method (FEM) to solve the PNP

equations on domains with discontinuous properties (such as occur at the membrane-cyto-

plasm interface). 1) Using a simple 2D geometry to allow comparison with analytical solu-

tion, we show that mesh adaptation is a very (if not the most) efficient way to obtain

accurate solutions while limiting the computational efforts, 2)We use mesh adaptation in a

3D model of a node of Ranvier to reveal details of the solution which are nearly impossible

to resolve with other modelling techniques. For instance, we exhibit a non linear distribution

of the electric potential within the membrane due to the non uniform width of the myelin and

investigate its impact on the spatial profile of the electric field in the Debye layer.

Introduction
Since the pioneer work of Hodgkin and Huxley [1], mathematical modelling of the electric activ-
ity of neurons has become an important tool to investigate the nervous system. While most mod-
els have relied on the cable theory formalism based on the strong analogy between neurons and
electric circuits, limits of this formalism include its incapacity to account for fluctuations of ionic
concentrations or to describe the electric field beyond the membrane. Extensions of the cable the-
ory formalism have been developed [2, 3], notably in the NEURON software environment, in
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order to describe changes in ionic concentration as well as the impact of intracellular chemical
reactions [4]. However, these extensions still fail to accurately describe the electric field beyond
the membrane or the distribution of ionic concentrations in the Debye layer [5].

Solving the Poisson-Nernst-Planck (PNP) partial differential equations is a promising
approach to overcome these limitations and model the evolution of ionic concentrations and
of the electric field in neural structures such as axons, nodes of Ranvier, dendritic spines or the
synaptic cleft ([5–9]). This strategy, not relying on oversimplifying assumptions such as the
charge difference between intra and extracellular media being localized at the membrane, offers
a potential spatial resolution in the nanometer range [7].

The FEM requires a spatial partition of the computational domain with a mesh of either tet-
rahedral or hexahedral elements and looks for a piecewise polynomial function on each of
these elements which is the best approximation of the physical solution. In general, this renders
the FEM unable to describe phenomena with spatial extents much smaller than the size of a
mesh element which can potentially lead to exploding computational costs. For instance, the
description of a volume of a cubic micron with an uniform resolution of ten nanometers would
require a mesh of roughly one million elements. Modelling the evolution of four ionic concen-
trations as well as of the electric field on such a mesh using piecewise linear polynomials would
imply having to solve 16 millions equations at each time step leading to either unreasonably
slow or plainly infeasible calculations.

A clever way to reduce the computational cost without compromising on solution quality is
to concentrate the mesh elements where the solution exhibits abrupt variations while tolerating
a coarser mesh elsewhere. Such meshes, as the one used in [5], are created and tailored
(adjusted) based on the knowledge of the behaviour of the solution, we will call them “tailored
meshes”. It is also possible to rely on the mesh adaptation method which is based on error esti-
mates derived from preliminary solutions [10–12]. Mesh adaptation is successfully applied in
many industrial problems. While its first goal is to increase accuracy of the simulation for a
given numerical effort, one can also view this approach as an automatic and objective method
of constructing meshes based on intrinsic properties of the simulated quantities. As opposed to
a “tailored mesh”, mesh adaptation doesn’t rely on the user a priori beliefs about the solution
properties and remain easily applicable to complex geometries.

In neural structures, ionic concentrations as well as the electric potential are almost uniform
over large parts of both the intracellular and extracellular space while experiencing steep varia-
tions in the vicinity of the membrane or in regions of high current density like the node of Ran-
vier or synapses. In the absence of transmembrane flux, variations in ionic concentrations and
membrane potential are localized in the so called Debye layer [13] with a characteristic length
of about 1 nm. These observations make the use of adapted meshes particularly promising in
the field of computational neuroscience.

In the present paper, we first provide a detailed discussion on how to best apply the FEM to
the resolution of the PNP equations in the field of computational neuroscience bearing in
mind to make the use of our method by other research groups as straightforward as possible.
Then, using a simple 2D geometry without transmembrane currents, we show that some kind
of mesh adaptation (by an automatic process or by a “manual” positioning of the nodes) is nec-
essary to obtain accurate solutions as resolution on an uniformmesh leads to sizeable numeri-
cal errors and for insufficiently refined meshes failed to converge to the exact value of the
membrane potential obtained analytically. In the absence of transmembrane current, simula-
tions based on automatic mesh adaptation presented here concentrate mesh nodes in the first
nanometer from the membrane (in the Debye layer) exactly where the variations of the solu-
tion are expected to occur. We also compared the quality of solutions obtained on tailored
meshes in which the node density decreased geometrically as a function of distance from the
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membrane (similar to the meshes in [5]). While both strategies led to important concentration
of mesh nodes in the Debye layer, for a similar number of mesh nodes, the simulation on
adapted mesh led to important gain in accuracy (in certain cases we observed a reduction by a
factor of almost ten of the numerical error).

We finally model the generation of an action potential in a 3 dimensional model of a node of
Ranvier. This establishes the feasibility of applying this approach to complex geometries thus to
physiologically relevant investigations of structures such as dendritic spines, synaptic clefts or
multiple nodes of Ranvier in nerve bundles [14]. Beyond that, our simulations reveal details of
the solutions that cannot be captured by other approaches. For instance, we show that in the
nodal region in the vicinity of the membrane, the electric potential can deviate by as much as 0.5
mV from neutrality (larger than predicted by models with uniform membrane width [5]) and
that the electric potential varies in a highly non linear way in the membrane at the junction of
the myelinated and non myelinated region. To our knowledge, our approach is the first to simul-
taneously describe the nanometric Debye layer and the complex geometry of a node of Ranvier.

It is our belief that those two tests provide a good illustration that simulations based on
adapted meshes are the most efficient from a numerical point of view. Moreover, it can capture
unsuspected minute details of the solution that cannot be detected without a priori knowledge.
It is possible to argue that the use of adapted meshes could be neglected for oversimplified
geometries as “manual” positioning of the nodes can also lead to good results. However, even
in those simple cases mesh adaptation reduces the numerical efforts leading to shorter simula-
tion times for a fixed accuracy level. More importantly, adapted meshes can be used on com-
plex geometries for which “tailored meshes” are difficult or plainly impossible to construct.

Modelling methodology

Electro-diffusion theory and model
The electrodiffusion model solves the system of partial differential equations including the
Nernst-Planck equation

@ck
@t

¼ r � Dk rck þ
ck
ak
rV

� �� �
; in O; k ¼ 1; � � � ; n�; ð1Þ

which describes the fluxes of n� ionic species subjected to electro-diffusion, as well as the Pois-
son equation

�r � ðεrVÞ ¼ F
Xn�
k¼1

zkck; in O; ð2Þ

which relates the electric potential V to the distribution of the electric charges. Here ck, Dk and
zk are the concentration, diffusion coefficient and valence of the ionic specie k respectively. The
coefficient αk is defined by αk = RT/Fzk, where R is the perfect gas constant, F the Faraday con-
stant, T the absolute temperature and ε is the dielectric constant of the medium O. If we define
Fk, by

Fk ¼ �Dk rck þ
ck
ak

rV

� �
; ð3Þ

as the flux of ionic specie k, then Eq (1) can be rewritten as the following continuity equation

@ck
@t

þr � Fk ¼ 0; in O; k ¼ 1; � � � ; n�: ð4Þ
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We solved Eqs (1) and (2) on a computational domain O composed of three parts: the intra-
cellular space, the membrane and the extracellular space. The diffusion coefficients of ionic
species in the intra and extracellular spaces are taken to be the diffusion coefficients in water
(see Table 1 and [15]) while these coefficients are set to zero on the membrane where the ionic
concentrations themselves are also taken to be zero. The dielectric permittivity constant in
both the intracellular and extracellular spaces is taken to be the dielectric permittivity constant
of water ε0 εw where ε0 is the dielectric permittivity constant of vacuum and εw � 80 is the rel-
ative dielectric permittivity of water [16] (see Table 1) while the dielectric permittivity of the
membrane is given by ε0 εmem where εmem is the relative dielectric permittivity of the mem-
brane which value will be discussed below.

While Eqs (1) and (2) could be used to describe an arbitrarily large number of ionic concen-
trations, we limited ourselves to a minimal set of cations K+, Na+ and a generic anion species
A−. The first two are needed for the description of an action potential, whereas the last one is
needed to obtain realistic net charge, osmolarity and cytosol resistivity [6]. Initial concentra-
tions in the intracellular and extracellular domains are given in Table 1. For both concentra-
tions and electric potential, we impose fixed Dirichlet conditions on the outermost boundary
of the extracellular space and denote this boundary by Gt

ex. For ionic concentrations, we apply
for each ionic species k = 1, � � �, n�, the non-homogeneous boundary condition

ck ¼ c0k; on Gt
ex; ð5Þ

where c0k take the initial value of the extracellular concentration of ionic specie k, whereas the
voltage obeys to the following homogeneous Dirichlet condition

V ¼ 0; on Gt
ex: ð6Þ

On the outermost boundaries of the intracellular space denoted by G‘
ex and G

r
ex, we apply the

following homogeneous Neumann boundary conditions for each ionic species k = 1, � � �, n�

and for the potential

Fk � n ¼ 0; on Gr
ex [ G‘

ex; ð7Þ

rV � n ¼ 0; on Gr
ex [ G‘

ex: ð8Þ

Table 1. Electrodiffusion parameters.

R 8.31454 J �mole−1 � K−1 Perfect gas constant

F 96485 C �mole−1 Faraday constant

T 279.450 K Absolute temperature

ε0 8.88541 � e−12 C �m−1 � V−1 Vacuum electric permittivity

εw 80 Water relative dielectric permittivity

εmem 40 Membrane relative dielectric permittivity

[K+]i 155mM Initial intracellular K+ concentration

[Na+]i 12mM Initial intracellular Na+ concentration

[A−]i 167.02mM Initial intracellular anion concentration

[K+]o 4mM Initial extracellular K+ concentration

[Na+]o 145mM Initial extracellular Na+ concentration

[A−]o 149mM Initial extracellular anion concentration

DK 1.96μm2 �ms−1 K+ diffusion coefficient

DNa 1.33μm2 �ms−1 Na+ diffusion coefficient

DA 2.00μm2 �ms−1 Anion diffusion coefficient.

doi:10.1371/journal.pone.0161318.t001
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The boundary of the domain O is then given by @O≔�Gt
ex [ �Gr

ex [ �G‘
ex. Moreover on the electro-

lyte-membrane interfaces, additional homogeneous Neumann conditions are applied for con-
centrations, except around the node of Ranvier where non zero flux is applied for
concentrations. Denoting by Gn

in the two cylindrical surfaces defining the intracellular-mem-
brane and the extracellular-membrane interfaces at the node of Ranvier, we apply for every
ionic specie

Fk � n ¼ fk; on Gn
in; ð9Þ

where functions fk are computed using the conductance of voltage-gated channels. The details
of flux computation and the dynamics of the gating variables follow the standard Hodgkin-
Huxley scheme and are given in the supplemental methods (S1 Methods). The vector n is the
unit outer normal at the associated boundaries.

Weak formulation of the Electro-diffusion model
Multiplying Eq (4), for each ionic species k = 1, � � �, n�, by proper test functions ψ and integrat-
ing over the domain O, we obtainZ

O

@ck
@t

c dx þ
Z
O

r � Fk c dx ¼ 0: ð10Þ

For the electric potential, we multiply Eq (2) by the test function φ and obtain

�F
Xn�
k¼1

Z
O

zkckφ dx �
Z
O

r � ðεrVÞφ dx ¼ 0: ð11Þ

Applying integration by parts on Eqs (10) and (11) yieldsZ
O

@ck
@t

cdx þ
Z
O

Dkrck � rcdx þ
Z
O

~DkckrV � rcdx ¼

�
Z
@O[Gn

in

ðFk � nÞcds;

�F
Xn�
k¼1

Z
O

zkckφdx þ
Z
O

εrV � rφdx ¼
Z
@O

ðεrV � nÞφds;

where ~Dk≔
Dk
ak
. Taking into account Dirichlet boundary conditions Eqs (5) and (6), we denote

by C and V functional spaces of concentrations and electric potential, respectively

C ¼ V ¼ φ 2 H1ðOÞ; φ ¼ 0 on Gt
ex

� �
: ð12Þ

Reorganizing the previous system, we obtain the following so called weak formulation of the
PNP equations: Find ck 2 H1(O) with ck � c0k 2 C, k = 1, � � �, n�, and V 2 V such thatZ

O

@ck
@t

c dx þ
Z
O

Dkrck � rc dx þ
Z
O

~DkckrV � rc dx ¼ �
Z
Gn
in

fk c ds; ð13Þ

8c 2 C;

�F
Xn�
k¼1

Z
O

zkckφdx þ
Z
O

εrV � rφdx ¼ 0; 8φ 2 V:
ð14Þ
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Finite element approximations
The finite element treatment of the PNP equations first requires a spatial discretization of Eqs
(13) and (14) by representing unknown functions ck and V as well as test functions ψ and φ by
piecewise polynomials on the mesh T Z≔f>g of simplicial> partitioning the domain O. In
fact we consider the following finite approximation spaces CZ and VZ of piecewise polynomials

of degree q and p defined relatively to the mesh T Z:

H
k�
Z :¼ cZ 2 C 0ð�OÞ : cZ 2 P k� ð>Þ� �

;

CZ :¼ cZ 2 H
q
Z; cZ ¼ 0 on Gt

ex

n o
; ð15Þ

VZ :¼ φZ 2 H
p
Z; φZ ¼ 0 on Gt

ex

n o
; ð16Þ

where P k�ð>Þ is the space of polynomials of degree k� on>. The discrete weak formulation in
space of Eqs (13) and (14) is then given by: Find approximated solutions ck;Z 2 H

q
Z with ck;Z �

c0k;Z 2 CZ; k ¼ 1; . . . ; n� and VZ 2 VZ such that

Z
O

@ck;Z
@t

cZdx þ
Z
O

Dkrck;Z � rcZdx þ
Z
O

~Dkck;ZrVZ � rcZdx

¼ �
Z
Gn
in

fkcZds; 8cZ 2 CZ;

ð17Þ

�F
Xn�
k¼1

Z
O

zkck;ZφZ dx þ
Z
O

εrVZ � rφZ dx ¼ 0; 8φZ 2 VZ; ð18Þ

where c0k;Z is the interpolation of the initial value function c0k ontoH
q
Z.

For the discretization in time, we consider a second order backward difference formula
(BDF2) (also known as Gear time stepping scheme, it is an implicit multistep marching
scheme) [17]. This numerical procedure, for solving an ordinary differential equation of the
type

@y
@t

¼ Fðt; yÞ; ð19Þ

can be exemplified as follows: To obtain the approximation yr+1 of the solution y at time step
tr+1 = tr + Δtr, solve the following equation

3

2
yrþ1 ¼ 2yr �

1

2
yr�1 þ DtrFðtrþ1; yrþ1Þ ð20Þ

which depends on values that are yet unknown. This implicit scheme is of second order accu-
racy, meaning that the error scales withOðDt2r Þ. Applying it to the discrete weak formulation in
space Eqs (17) and (18), we seek approximation of solutions ck, η and Vη as follows: Given func-
tions cr�1

k;Z , c
r
k;Z, V

r�1
Z and Vr

Z , for times tr−1 and tr respectively, find crþ1
k;Z 2 H

q
Z with c

rþ1
k;Z � c0k;Z 2 CZ
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and Vrþ1
Z 2 VZ such thatZ
O

1

Dtr

3

2
crþ1
k;Z � 2crk;Z þ

1

2
cr�1
k;Z

� �
cZ dx þ

Z
O

Dkrcrþ1
k;Z � rcZ dx

þ
Z
O

~Dkc
rþ1
k;Z rVrþ1

Z � rcZ dx ¼ �
Z
Gn
in

fk cZ ds; 8cZ 2 CZ; ð21Þ

�F
Xn�
k¼1

Z
O

zkc
rþ1
k;Z φZ dx þ

Z
O

εrVrþ1
Z � rφZ dx ¼ 0; 8 φZ 2 VZ: ð22Þ

Expressing trial functions crþ1
k;Z ðxÞ and Vrþ1

Z ðxÞ as weighted sum of basis functions fcig
Nq
i¼1 and

fφig
Np
i¼1 forCZ andVZ respectively,

crþ1
k;Z ðxÞ :¼

XNq

i¼1

crþ1
k;i ciðxÞ ; k ¼ 1; :::; n� Vrþ1

Z ðxÞ :¼
XNp

i¼1

Vrþ1
i φiðxÞ; ð23Þ

and taking test functions as ψη = ψj, j = 1, . . ., Nq and φη = φj, j = 1, . . ., Np, the system Eqs (21)
and (22) is rewritten as an algebraic system of (n� × Nq)+Np equations

A11 A12ðcrþ1Þ
A21 A22

 !
crþ1

Vrþ1

 !
¼ F1ðcrþ1;Vrþ1Þ

F2ðcrþ1;Vrþ1Þ

 !

where crþ1 ¼ ðcrþ1
1 ; :::; crþ1

n� Þ 2 R
n��Nq andVrþ1 2 R

Np are vectors associated with the coeffi-
cients crþ1

k;i and Vrþ1
i in Eq (23). The coupling term in Eq (21) (third term on the left hand side)

makes this an algebraic nonlinear system of generic form

AðUrþ1ÞUrþ1 ¼ FðUrþ1Þ:

To solve such problem at time step r+1, the Newton-Raphson method is used. Starting with U1

= Ur (the solution at the preceding time step), a first order approximation of the linearized sys-
tem is solved iteratively,

KUdU ¼ FðUsÞ �AðUsÞUs

Usþ1 ¼ dU þ Us

ð24Þ

andUr+1 is obtained at the end of this process (the loop is stopped when the correction δU is
small enough). In our case, the main difficulty in the definition of the tangent matrixKU , arises
from the coupling term. Introducing δc, δV and neglecting the second order terms, we getZ

O

~Dkc
k
sþ1rVsþ1 � rcZ dx �

Z
O

~Dkc
k
srVs � rcZ dx þ

Z
O

~DkdcrVs � rcZ dx

þ
Z
O

~Dkc
k
srdV � rcZ dx:

Algorithm 1: Finite element resolution

1. Given a mesh, the initial time t0, c0
1, . . .,c0

n� and V0 the initial conditions.
Put r = 0;

2. While [final time is not reached]
• Compute a time step length Δtr, tr+1 = tr+Δtr
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• Compute the flux fk by solving a system of ordinary differential equa-
tions (see S1 Methods)

• Put ck
1 ¼ cr

k; k ¼ 1; :::;n�, V1 = Vr and s = 1

• While [desired tolerances on dkc and δV are not reached]

- Construct the matrices K̂k
cc ¼ gMc þ Dk

c þ Dk
cc; Dk

cv ; Sk k ¼ 1; :::;n�, Dv
- Construct the vectors rk

c ¼ Fk
c � Mc~c

k
n � K̂k

ccc
k
s;rv ¼ �

Xn�
k¼1

Skcks � DvVm

- Solve the linear system
K̂k

ccd
k
c þ Dk

cvdv ¼ rk
c; k ¼ 1; . . . ;n�

Xn�
k¼1

Skdk
c þ DvdV ¼ rv ;

- Put ck
sþ1 ¼ dk

c þ ck
s; k ¼ 1; :::;n�; Vsþ1 ¼ dv þ Vs

- Set s = s + 1
• End while
• Compute the approximation at time tr+1

crþ1
k ¼ cksþ1; k ¼ 1; :::;n�; Vrþ1 ¼ Vsþ1

3. End while

Using this expression in Eqs (21) and (22) and the corrections δc, δV, the system Eq (24) is
described by

gMc þDk
c þDk

cc

� 	
dkc þDk

cvdV ¼ Fk
c �Mc~c

k
n � gMc þDk

c þDk
cc

� 	
cks ; ð25Þ

Xn�
k¼1

Skdkc þDvdV ¼ �
Xn�
k¼1

Skcks �DvVs; ð26Þ

cksþ1 ¼ dkc þ cks ; k ¼ 1; � � � ; n� Vsþ1 ¼ dV þ Vs ð27Þ

where, at time step r+1, we take as a starting state: ck
1 ¼ cr

k k ¼ 1; :::; n� and V1 = Vr, the matri-
ces and vectors are defined respectively by

ðMcÞij :¼
Z
O

cicj dx; ðDk
cÞij :¼

Z
O

Dkrci � rcj dx;

ðDk
ccÞij :¼

Z
O

~Dkcj

XNp

‘¼1

ðVsÞ‘rφ‘ � rci dx; ðFk
cÞj :¼ �

Z
Gn
in

fk cj ds;

ðDk
cvÞij :¼

Z
O

~Dk

XNq

‘¼1

ðcks Þ‘c‘rφj � rci dx; ~ckn :¼ �bcnk � acr�1
k

Skij :¼ �F
Z
O

zkciφj dx; ðDvÞij :¼
Z
O

εrφi � rφj dx

a ¼ 1

2Dtr
b ¼ � 2

Dtr
g ¼ 3

2Dtr

α, β and γ are the coefficients of the finite difference Eq (20). The complete sequence of approx-
imation is presented in Algorithm 1.

It is possible to have the length of the time step Δtr changed as the calculation proceeds
according to the dynamics of the system to speed up the simulation. Here we used the fact that
the number of iterations for the resolution of one time step increases with Δtr to reach a target
range [Nmin, Nmax] of number of iterations for each time step. If Nit is the number of iterations
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at tr, then for tr+1 we define

Dtr ¼
ð1þ fminÞDtr�1 Nit < Nmin;

Dtr�1 Nmin � Nit � Nmax;

ð1� fmaxÞDtr�1 Nit > Nmax:

8><
>:

For the discretization of the system Eqs (13) and (14) we chose quadratic interpolation
P 2ð>Þ for all spaces, therefore k� = p = q = 2 and CZ ¼ VZ. Although the use of linear interpo-

lations (i.e. P 1ð>Þ) could be viewed as less demanding (since it leads to smaller algebraic sys-
tem), the higher degree of precision of quadratic interpolation makes it possible to use coarser
meshes for the same precision.

The use of explicit time schemes for the system of Eqs (17) and (18) was excluded as it leads
to conditional stability of the method and the Courant–Friedrichs–Lewy (CFL) condition [18]
needed to insure stability would impose very small time steps. A simpler implicit time march-
ing scheme could be used, for instance taking a ¼ 0; b ¼ �1

Dtr
; g ¼ �1

Dtr
corresponds to the back-

ward Euler scheme (BDF1). Once again, even if this could be viewed as a reduction of
computation, the result would be opposite since the diminution in precision imposes the use of
smaller time steps therefore an increase in the total number of time steps.

In the same manner, simplifications in the construction of the matrix involved in the left
hand side of Eq (25) could be seen as reducing the assemblage, therefore decreasing computa-
tion time. However, this would lead to a degradation in the convergence rate of the iterative
method thus to an increase in non linear iterations and overall calculation time. One such sim-

plification could be to neglect the matrix contributionDk
cc, still giving a converging method.

Neglecting both terms of the linearisation (Dk
cc andD

k
cv) produces a diverging method since a

large part of the information related to the coupling is ignored.

Mesh adaptation
Electric potential in neural structures is characterized by localized and fast transient behaviour.
In such cases the accuracy of the numerical approximations often deteriorates due to phenom-
ena such as: local singularities (like those arising from re-entrant corners of domains), exces-
sively small zones of heterogeneous material, presence of boundary layers or sharp moving
fronts. An obvious strategy to improve the quality of the solution is to refine the resolution grid
but in situations where different spatial scales are involved, refining in a global manner will
lead to an excessive work load. Mesh adaptation improves the quality of FEM solutions thanks
to local operations such as edge refinement (Fig 1A), node elimination (Fig 1B), edge swapping
(Fig 1C) and node displacement (Fig 1D).

We will briefly detail the main ideas behind our hierarchical error estimator and our adap-
tive remeshing strategy and we refer to [11, 12] for more details. Let T Z denote a triangulation

of the domain O and> its elements. Let u be the exact solution, usually unknown and suppose
that we have computed a finite element approximation of degree q of the solution denoted uðqÞ

Z .

We now make the assumption that we can build, starting from uðqÞ
Z , a new approximation ûðqþ1Þ

Z

of degree q + 1 that is at least slightly more accurate in the sense that

ku� ûðqþ1Þ
Z k � bku� uðqÞ

Z k ð28Þ
with β< 1. The construction of ûðqþ1Þ

Z is therefore crucial and will be described later on. For the

moment, we assume its existence and the triangle inequality gives

ku� uðqÞ
Z k � ku� ûðqþ1Þ

Z k þ kûðqþ1Þ
Z � uðqÞ

Z k � bku� uðqÞ
Z k þ kûðqþ1Þ

Z � uðqÞ
Z k
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thus

ku� uðqÞ
Z k � 1

1� b
kûðqþ1Þ

Z � uðqÞ
Z k ð29Þ

and the error can then be controlled by the right-hand side in some appropriate norm (L2 or
H1-norm for instance).

Fig 1. a) Edge refinement. b)Node elimination. c) Edge swapping in 2D. d)Node displacement.

doi:10.1371/journal.pone.0161318.g001
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Now the idea is to define ûðqþ1Þ
Z such as:

ûðqþ1Þ
Z ¼ uðqÞ

Z þ cðqþ1Þ
Z ð30Þ

where cðqþ1Þ
Z can be seen as a degree q + 1 correction to the degree q approximate solution uðqÞ

Z ,

thus the name hierarchical error estimator. The error bound Eq (29) reduces to

ku� uðqÞ
Z k � 1

1� b
kcðqþ1Þ

Z k ð31Þ

In order to construct kcðqþ1Þ
Z k our method requires an accurate approximation of the gradi-

ent (ru) of the solution (denoted g ðqÞ
Z ), which we also require to belong to the space of piece-

wise continuous functions whose restriction to any element> of T Z belongs to the space

P qð>Þ). For this purpose, there exists gradient recovery methods producing accurate approxi-

mations ofru. We will use the one described in [19].
Then kcðqþ1Þ

Z k can be easily computed using uðqÞ
Z and the recovered gradient g ðqÞ

Z . Indeed, to

enrich uðqÞ
Z in order to get an approximation ûðqþ1Þ

Z of degree q + 1, we need, as in a Taylor

expansion, its derivatives of order q + 1. Obviously, the (q + 1)th derivatives of uðqÞ
Z vanish but

we can use the qth derivatives of the recovered gradient gðqÞ
Z . This means that the (q + 1)th

derivative of ûðqþ1Þ
Z should coincide with the appropriate qth derivative of gðqÞ

Z .

In the general case, a well posed linear system can be built on each element, whose solution
completely defines c(q+1). Now, if we can control the correction c(q+1), then from Eq (31) we can
also control the error and this will serve for the construction of an adapted mesh.

The first objective is to reach a prescribed global target level of error (eO) in L2-norm.X
>2T Z

jjcðqþ1Þjj20;> ¼ e2O

Since we are modifying the mesh locally, this objective will be reached also locally by imposing
on each element

jjcðqþ1Þjj20;> ¼ e2O meas ð>Þ
meas ðOÞ ¼ e2>:

This way, the error is distributed proportionally to the element area (or volume in 3D) and if
this target value can be reached on each element, then the global error eO will be attained.
These local target errors are imposed using edge refinement and node elimination (Fig 1A and
1B). For edge refinement for example, we build for each edge e of the mesh the patch PZðeÞ of
elements containing e (Fig 1A). On that patch, the local target error should be

X
>2PZðeÞ

e2> ¼ e2O meas ðPZðeÞÞ
meas ðOÞ ð32Þ

and the estimated error is X
>2PZðeÞ

jjcðqþ1Þjj20;>:

We then cut that edge by adding a new mid-side node and we reinterpolate the recovered gra-
dient g ðqÞ

Z at the new node which is necessary for the computation of c(q+1) on the newly created

elements. We then compute the error estimate on the new patch and choose, between the initial
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patch and the new one, the one for which the estimated error is closest to the target Eq (32). A
similar procedure is used for node elimination and more details are given in [11, 12].

We also want to reach the global target error value with a minimum number of nodes. As a
second objective, we therefore try to achieve some form of equidistribution of the error by min-
imizing, as in [20], theH1-seminorm of the error which is approximated by the quantity:

X
>2T Z

jjrcðqþ1Þjj20;>

0
@

1
A

1=2

:

This minimization is also performed locally but now using edge swapping and node displace-
ment. To move node P for example, we construct the patch PZðPÞ of elements sharing that

node and determine its new position in order to minimize the quantityX
>2PZðPÞ

jjrcðqþ1Þjj20;>:

A gradient method can be used for the minimization. The node is only allowed to move inside
the patch to prevent element inversion. A similar procedure is used for edge swapping.
Remarkably, the minimum on theH1-seminorm of the error cannot be achieved without some-
how reorienting and stretching the elements in appropriate directions, therefore leading to
anisotropic meshes as shown in [12, 20].

In summary, mesh modification is done by sweeping the nodes (for node elimination and
node displacement) and the edges (for edge division and edge swapping) a number of times
until the two above objectives are approximately satisfied.

Algorithm 2 summarizes the method used for mesh adaptation.

Algorithm 2: Mesh adaptation method
1: Given an initial meshM0.
2: While [mesh variations occurs]
3: Solve to obtain a solution ui on meshMi.
4: Compute an estimation of the error Eq (31).
5: Adapt the meshMi using local operations to obtainMiþ1.

• Reach a prescribed global target level of error in L2-norm thanks to
edge refinement and node elimination.

• Minimize the H1-seminorm of the error using node displacement and edge
swapping (error equidistribution).

6: Set i = i+1.
7: End while

Algorithm 2 was performed on an initial mesh generated from COMSOL Multiphysics, a
commercial software.

Finally, the method was implemented using the finite element library MEF++ developed at
the Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF) (see http://giref.ulaval.ca/
mef.html).

Results

Gain in accuracy through solution based mesh adaptation
While the FEM and the finite volume method have been used to describe various problems in
neuroscience ([5, 6]), to the best of our knowledge no attempt has been made to quantify the
relationship between the numerical error and the mesh size in this context. For the sake of sim-
plicity and in order to be able to compare our results with exact solutions, we first considered
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the simplest of situations, a two-dimensional geometry with linear membranes and no trans-
membrane flux (Fig 2A). In this scenario, variations in ionic concentrations and electric poten-
tial are localized near the membrane where the electric potential is well described by the
Poisson Boltzmann equation

DV þ
Xn�
k¼1

zkc
0
kF

ε0εw
exp � ziFV

NAkBT

� �
¼ 0 ð33Þ

with kB � 1.38 × 10−23 J � K−1 the Boltzmann constant and NA � 6.022mol−1 the Avogadro
number. In this context c0k denotes the concentration of ionic specie k at infinity (far from the
membrane) taken to be equal to its initial value. Linearizing Eq (33) and assuming electroneu-
trality away from the membrane, one obtains

DV ¼
Xn�
k¼1

z2kF
2c0k

ε0εwkBTNA

 !
V : ð34Þ

Solving Eq (34) yields the characteristic length of the region in which the electric potential and
ionic concentrations vary steeply, i.e. the Debye layer (λD), according to [13]

lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0�wkBTNA

F2
Pn�

k¼1 z
2
k c

0
k

s
:

For the specific values of our problem this gives a Debye length of approximately 1.1 nm.
These observations about the Debye layer led us to formulate three hypotheses: 1) The mesh

adaptation method should concentrate a large proportion the mesh elements within 1 nm of
the interfaces between the membrane and the intra-extra cellular spaces, 2)Mesh node density
should decrease in a way that is approximately exponential with distance from the membrane,
3) Given that variations occur only in the direction perpendicular to the membrane, the
adapted mesh should be very anisotropic.

To test these hypotheses, we iteratively applied the mesh adaptation method and solved the
PNP equations on the domain (see Algorithm 2). This process led to a very anisotropic mesh
with nodes concentrated near the interfaces between membrane and intra-extra cellular spaces
(Fig 2B). We created a tailored mesh (see details below) as an alternative to the mesh adapta-
tion method. In Fig 2C we present the nodal distribution, in the intracellular space, as a func-
tion of distance from the membrane for the meshes produced by the adaptation process and
our tailored mesh. This figure also depicts the evolution of the adaptation process. Here the
process was stabilized (i.e. no notable changes in mesh topology observed) after 15 iterations.
This clearly demonstrates (Fig 2C) the densification near the membrane in a zone less then
0.25 nm from the membrane. Notice the overshoot of the sixth mesh with a peak of nearly 55%
of the nodes, which is corrected in the next iterations by redistributing the superfluous nodes
in the nearby zone, leading to a mesh with around 20% of the nodes in the first 0.25 nm and
almost 45% of the nodes in the first nm.

These results can be interpreted as the mesh adaptation algorithm detecting the necessity
for the size of some mesh elements to be smaller than 1 nm. However, for a regular mesh to
have elements of this size in a 2D geometry of 1 μm2 surface area would require 106 elements
bearing a prohibitive computational cost. A tailored mesh as proposed by J. Pods et al. [5] is
more efficient compared to a uniform mesh. However it requires an a priori knowledge of the
solution and in the case of complex geometries, such an approach can become impracticable
since properties of the solution may be difficult, if not impossible, to infer in advance. As for
the adaptive method, in any cases, it will automatically densify meshes on sensitive areas with
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Fig 2. a) Schematic of the two dimensional model used to compute the numerical error of the method. The membrane potential was computed by the
difference of electric potential at each side membrane (see the two circles). b) Example of a computational grid obtained with the mesh adaptation method.
c) Distribution of mesh nodes in the intracellular space as a function of the distance from the membrane. Results obtained for the iterations Algorithm 2 as
well as for a tailored mesh. d)Membrane potential error (see Eq (37)) on different meshes. The error was computed as a function of the number of
computation nodes in the mesh for different strategies: uniformmesheswith a uniform refinement, tailoredmesheswith increased node density near the
interface of the membrane and intra (extra) cellular space and meshes obtained throughmesh adaptationmethod.

doi:10.1371/journal.pone.0161318.g002
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respect to the accuracy of the numerical solution. As an indication we added, in (Fig 2C), the
nodal distribution for a tailored mesh which is similar to the mesh proposed in [5]. We created
this mesh by manually specifying regions of high node density near the membrane and regions
of low density elsewhere. The mesh was constructed so that the node density decreases in a
geometric manner as a function of the distance from the membrane.

To compare the numerical errors of solutions obtained with different meshing strategies, we
took advantage of the easily computed value of the membrane potential

Vmem ¼ Q
dintradmem

2Lε0εmem

ð35Þ

where L is the length of the membranes, dintra the distance between the two membranes, dmem

is the width of the membrane (see Fig 2A). The electric permittivity of the membrane is εmem

and Q is the mean electric charge density in the intracellular medium given by

Q ¼ F
Pn�

k¼1 zkc
0
k

Ldintra

: ð36Þ

We compared this exact value to the membrane potential computed by the FEM approach at
the center of the membrane. More precisely we computed the absolute difference between the
variation of Vmem and the variation of our approximation Vη on each side of the membrane at
control points~xa ¼ ð2; 0:434Þ and~xb ¼ ð2; 0:534Þ (see Fig 2A):

error ¼ jðVmemð~xaÞ � Vmemð~xbÞÞ � ðVZð~xaÞ � VZð~xbÞÞj: ð37Þ

The rate (order) of convergence, with respect to the time step and the spatial size of the ele-
ments are relatively standard theoretical results (see [21] for instance). The FEM (for continu-
ous coefficients and a regular geometry), would give an error of order k? with respect to space
since we are using degree k? polynomial approximation in space and of order 2 in time since
we are using an order 2 marching scheme (here BDF2). Because we are not fulfilling all the
conditions here (our coefficients are discontinuous), and since we are using quadratic polyno-
mial approximation, as presented by Ying and Benzhuo [22] (see also [23]), we “lose” an order
of convergence in space leading to a rate of convergence of 1 in space. It should be noted that
using a linear approximation in space would lead to a rate of converge in space of 1/2, which
strengthens the argument in favour of the use of quadratic interpolation. The approach of
mesh adaptation has no effect on the convergence rate since the theoretical results don’t require
the discretization parameters to be constant. Of course, in the case of non uniform meshes,
error graphs cannot be based on the size of elements which varies throughout the domain, but
rather on the number of nodes, which becomes the comparing quantity. Since we have a rate of
convergence of 1, the error is expected to be inversely proportional to the number of nodes.
We also illustrated the spatial rate of convergence of steady-state solutions (Fig 2D) as we have
slopes of 1 for the adapted mesh method as well as for the tailored meshes, indicating that both
approaches can be used with confidence in this setting. Notice that the curve for the uniform
meshes cannot give us this information as excessively refined meshes would be needed to
exhibit a slope of 1. Indeed, the values of membrane potential computed on regular meshes
obtained by successive global refinements failed to converge to the exact value one for a num-
ber of elements up to 105.

Contrastingly, when we applied the mesh adaptation technique to meshes of different sizes,
the error was less 10−4 mV for as little as 695 mesh elements (Fig 2D). Using different tailored
meshes (obtained by increasing node density in each region) the approximation of the mem-
brane potential converged to the theoretical value with the error reaching 10−4 mV for 1458
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elements (Fig 2D) therefore needing more then two times the number of nodes used by the
adapted mesh for the same order of accuracy.

Since we have a convergence rate of 1 in both cases, the gap in accuracy and in number of
nodes will remain, even if we refine the meshes (which corresponds to increasing the number
of nodes). Using our initial tailored mesh as a reference, the mesh adaptation method reduces
the number of nodes for a given precision by a factor nearly equal to two (Fig 2D). For an accu-
racy of about 10−5, the adaptive method requires approximately 5000 nodes while we would
need to refine our initial tailored mesh until it has more than 10000 nodes.

Using tailored meshes with better positioning and density of nodes could produce accuracy
arbitrarily close the one obtained using adapted meshes, which are in a sense optimal as dis-
cussed above. However, this raises the question of how to determine, with the same efficiency
and precision, the zones and the densities of nodes in those regions. Pretending to establish
optimal targeted geometrical zones, densities and to control the total number of nodes without
tools comparable to those used by the adaptation method (i.e. without a detailed knowledge of
the behavior of the error) seems inconceivable.

Application of mesh adaptation in a model of action potential generation
in a node of Ranvier
The advantages of the mesh adaptation method being demonstrated in the simplistic instance
of a 2D geometry, we now apply this strategy to the simulation of an action potential in a node
of Ranvier. The details of the geometry and most parameters of the model were taken as in [6]
while the leak conductance was taken as in [5], see also Fig 3A and Table 2. The action poten-
tial was provoked by imposing a [Na+] flux in the nodal region during the first 0.5 ms of the
simulation. The time course of membrane potential and of intracellular ionic concentrations
are shown in Fig 3B–3D and are comparable to results obtained by Lopreore et al. [6].

We adjusted the relative dielectric permittivity of the membrane to obtain an equivalent
electric capacitance of 2μF/cm2 in the node and 0.5μF/cm2 in the myelinated part of the mem-
brane as in [6]. We made the conversion according to the formula giving electrical capacitance
of a cylindrical shell

Cap ¼ 2ε0εmempL
log ððDþ dÞ=dÞ ð38Þ

where d is the radius of the axon and D the width of the membrane. This gave the unphysiolo-
gical value of εmem = 40 (as opposed to the experimentally measured value between 2 and 10
[24]). This might be due to the fact that the width of membrane in the nodal region is larger
than the physiological value (20 nm vs* 5–10 nm [25]). The specific values of these parame-
ters have however no impact on the general results of the present paper regarding the benefits
of the mesh adaptation method.

Highlighting regions of interest of the solution, the mesh adaptation method concentrates
mesh elements in and near the unmyelinated part of the membrane while the elements outside
of this region are very anisotropic and especially scarce in the extracellular space (Fig 4A).
Beyond increasing the accuracy of the results (as described in the previous section), by concen-
trating the nodes of the grid in regions of interest, adapted meshes can reveal features of the
solutions that would otherwise be missed. In particular, the frequent assumption that the elec-
tric field is constant in a cross section of the membrane (as is used to derive the GHK flux equa-
tion) is no longer valid when the width of the membrane is not uniform as in the present case
(Fig 4B). Remark that solving the Poisson equation on complex geometries, especially in the

Improved Simulation of Electrodiffusion in the Node of Ranvier by Mesh Adaptation

PLOS ONE | DOI:10.1371/journal.pone.0161318 August 22, 2016 16 / 22



presence of reentering corners, is a problem related to intrinsic mathematical difficulties so it
would be difficult to obtain a good approximation of the solution by simpler methods.

Eq (34) suggests that the amplitude of the deviation from neutrality of the electric potential
in the Debye layer of the extracellular space is directly proportional to its gradient on the mem-
brane (though the actual picture can be complicated by the presence of transmembrane ionic
fluxes). This predicts a larger deviation near the corner between the myelinated and unmyelin-
ated section of the membrane (Fig 4D) than near the middle of the myelinated section (Fig 4E).

Fig 3. a) Schematic of the three dimensional geometry used in the model of a node of Ranvier. b-d) Time of electric potential (b), potassium
concentration (c) and sodium concentration (c) during an action potential at the spatial point indicated by a circle in a.

doi:10.1371/journal.pone.0161318.g003
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Discussion
Solving the PNP equations with the FEM is a promising approach bound to gain wider use to
describe electro-diffusion in neural structures [7]. This method is particularly useful to describe
structures with complex geometries such as nodes of Ranvier, dendritic spines or the synaptic
cleft and its surrounding [5, 6, 8, 9]. In such contexts, the FEM describes phenomena that other
computational approaches fail to capture such as the fine scale distribution of ion concentra-
tions and of the electric potential or the way their variations extend beyond the membrane.

However, discontinuities in dielectric permittivity and ionic diffusion coefficients occurring
at the interfaces between the membrane and the intra-extra cellular spaces pose numerical chal-
lenges, as the solutions typically exhibit strong variations localized at the vicinity of these inter-
faces. As demonstrated here, this feature of problems naturally occurring in the field of
neuroscience can lead to significant numerical errors if not addressed properly. The efficiency of
“tailored meshes” have been demonstrated in the context of an axisymmetric model of propaga-
tion of an action potential in an axon with membrane of uniform width [5]. In the present
paper, we show that the technique of the mesh adaptation method, which has a proven track
record in the field of industrial mathematics, can be applied to describe electrodiffusion by solv-
ing the PNP equations on complex three dimensional geometries in neuroscience. In addition
of yielding higher performance, this approach has the advantage of not requiring the user to
manually specify mesh properties based on possibly incomplete a priori beliefs on the solution.

A potential limitation of the mesh adaptation method is that since this procedure is per-
formed using a solution at a given time, the adapted mesh may no longer be optimal as the fea-
tures of the solution change over time. In the instance of the propagation of an action potential
along an axon for example, an ideal strategy would make the concentration of mesh elements
follow the propagation of this action potential since this is where the solution varies most
abruptly and where it is most important to describe the details of the solution. A possible way
to achieve such a time evolving mesh would be to readapt the calculation grid at several time
points of the simulation (at each tenth of millisecond for instance) as we hope to achieve in
future research. Another potential limitation of using the FEM to solve the PNP equations is
that the use of partial derivative equations implicitly assumes that ionic concentrations are con-
tinuous quantities and thus fails to describe the granularity arising from the discrete distribu-
tion of ions and of transmembrane proteins such as voltage-gated channels. It has however
been demonstrated in [6] that stochastic equations can be coupled with partial derivative equa-
tions and capture the variance in the solution due to the stochastic behaviour of channels. It
might of interest to go one step further and use a system of stochastic partial derivative

Table 2. Additional parameters for the node of Ranvier.

d 0.434μm Radius of the axon

Dn 0.02μm Thickness of the unmyelinated part of the membrane

Dm 0.406μm Thickness of the myelinated part of the membrane

L 4μm Length of the axon section

Lnode 0.7μm Length of node in which currents are applied

gL
K 0.435mS � cm−2 Conductance density of leak K+ channels

gL
Na 0.065mS � cm−2 Conductance density of leak Na+ channels

�gv
K 36mS � cm−2 Conductance density of voltage-gated K+ channels

�gv
Na 120mS � cm−2 Conductance density of voltage-gate Na+ channels

dur 0.5ms Duration of the stimulus

Dur 10ms Duration of the simulation

doi:10.1371/journal.pone.0161318.t002
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equations to account for the probabilistic movement of ions. This could become important for
ionic species with low concentration such as Ca2+ where the small number of ions in each spa-
tial elements can violate the continuity condition on which the use of diffusion equations is
founded.

Fig 4. a) Illustration of the three dimensional mesh obtained for the description of node of Ranvier by the mesh adaptation method. b)
Electric potential on the whole domain taken at the peak (most depolarized time point) of the action potential illustrating its non linear
distribution on cross-sections of the membrane. c-e) Enlarged view of the electric potential in small regions near the membrane illustrating
that the model is able to describe the so-called Debye layer.

doi:10.1371/journal.pone.0161318.g004
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Finally, the FEM applied to structures with geometry evolving over time leading to mesh
deformation is relatively common (for instance, in biology, problems such as the dynamics of
visicle shape transformations or mitral valve simulation, in engineering, the extreme deforma-
tion and buckling of structures). However the integration of the adaptation techniques for such
problems is more recent (see [26]). Such techniques could be applied in the field of computa-
tional neurosciences, to describe the birth and growth of dendritic spines [27] or the swelling
of cells [28], potentially helping to better understand these important phenomena.

Conclusion
In the field of neuroscience, experimental data is discovered at an ever increasing pace. Inte-
grating this knowledge in comprehensive models is a great challenge promising to help us bet-
ter understand the function of neural structures. In order for this to be achieved, the steep
computational requirements of modelling micrometric structures with a spatial resolution suf-
ficient to fully explain their function (often required to be in the nanometric range) will have to
be addressed. While the raw power of parallel calculations performed on super computers will
be required, we believe that many numerical methods developed in the field of industrial math-
ematics could allow to push back the numerical wall arising in computational neuroscience. As
demonstrated in the present paper, the use of the mesh adaptation method greatly reduces the
numerical cost of solving the PNP equations to model electro-diffusion while increasing the
precision of the solution. We hope that this research will open the door for the modelling of
larger structures such as axons spanning of several nodes of Ranvier or multiple axons in a
nerve bundle. This could provide insights on how loss of myelin can affect signal propagation
[14, 29].

Supporting Information
S1 Methods. Detailed information on the dynamics of voltage-gated channels and on the
simulation of the generation of an action potential.
(PDF)
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