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Abstract

Background Cancer is associated with muscle atrophy (cancer cachexia) that is linked to up to 40% of cancer-related deaths.
Oxidative stress is a critical player in the induction and progression of age-related loss of muscle mass and weakness
(sarcopenia); however, the role of oxidative stress in cancer cachexia has not been defined. The purpose of this study was
to examine if elevated oxidative stress exacerbates cancer cachexia.
Methods Cu/Zn superoxide dismutase knockout (Sod1KO) mice were used as an established mouse model of elevated oxi-
dative stress. Cancer cachexia was induced by injection of one million Lewis lung carcinoma (LLC) cells or phosphate-buffered
saline (saline) into the hind flank of female wild-type mice or Sod1KO mice at approximately 4 months of age. The tumour
developed for 3 weeks. Muscle mass, contractile function, neuromuscular junction (NMJ) fragmentation, metabolic proteins,
mitochondrial function, and motor neuron function were measured in wild-type and Sod1KO saline and tumour-bearing mice.
Data were analysed by two-way ANOVA with Tukey–Kramer post hoc test when significant F ratios were determined and α was
set at 0.05. Unless otherwise noted, results in abstract are mean ±SEM.
Results Muscle mass and cross-sectional area were significantly reduced, in tumour-bearing mice. Metabolic enzymes were
dysregulated in Sod1KO mice and cancer exacerbated this phenotype. NMJ fragmentation was exacerbated in tumour-bearing
Sod1KO mice. Myofibrillar protein degradation increased in tumour-bearing wild-type mice (wild-type saline,
0.00847 ± 0.00205; wildtype LLC, 0.0211 ± 0.00184) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0180 ± 0.00118;
Sod1KO LLC, 0.0490 ± 0.00132). Muscle mitochondrial oxygen consumption was reduced in tumour-bearing mice compared
with saline-injected wild-type mice. Mitochondrial protein degradation increased in tumour-bearing wild-type mice (wild-type
saline, 0.0204 ± 0.00159; wild-type LLC, 0.167 ± 0.00157) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0231 ± 0.00108;
Sod1 KO LLC, 0.0645 ± 0.000631). Sciatic nerve conduction velocity was decreased in tumour-bearing wild-type mice (wild-type
saline, 38.2 ± 0.861; wild-type LLC, 28.8 ± 0.772). Three out of eleven of the tumour-bearing Sod1KO mice did not survive the
3-week period following tumour implantation.
Conclusions Oxidative stress does not exacerbate cancer-induced muscle loss; however, cancer cachexia may accelerate
NMJ disruption.
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Introduction

Cancer cachexia is a muscle wasting syndrome defined by a
loss of skeletal muscle mass that cannot be treated by nutri-
tional therapies.1,2 Cachexia occurs in up to 80% of cancer
cases and is directly attributable for up to 40% of
cancer-related deaths.1–3 Current therapies to treat cancer
cachexia are lacking; therefore, a critical need remains to un-
derstand the underlying mechanisms of cancer-induced mus-
cle wasting in order to develop an effective therapeutic
strategy. In many cases, cancer cachexia develops in associa-
tion with pre-existing age-related loss of muscle mass and
function (i.e. sarcopenia).4–6 Oxidative stress is a key driver
of sarcopenia and muscle dysfunction7–9; however, the role
oxidative stress plays in cancer-induced muscle loss is
understudied.

Oxidative stress is an imbalance between the production of
free radicals and the ability to neutralize these oxidizing mol-
ecules. Skeletal muscle reactive oxygen species (ROS) such as
superoxide and its derivatives accumulate and damage mac-
romolecules when they chronically exceed the reducing ca-
pacity of the cell. Damaged proteins induce an increase in
activation of protein breakdown signalling, promoting muscle
loss.10,11 Tissues possess scavenging antioxidant enzymes
that act to neutralize radicals and prevent oxidative
stress-mediated tissue dysfunction.12 However, scavenging
enzymes are dysregulated in many disease conditions,13,14

leading to oxidative stress. Both the content and the activity
of many of these scavenger enzymes (including CuZnSOD) are
disrupted in muscle from mice with cancer15; however, it is
not known if loss of free radical scavenging potential contrib-
utes to muscle loss. CuZnSOD is a primarily cytosolic enzyme
that acts to detoxify superoxide anion, a damaging reactive
molecule formed from the reaction of electrons with oxygen.
The Cu/Zn superoxide dismutase knockout (Sod1KO) mouse
is a model that exhibits high levels of oxidative stress and
damage due to loss of superoxide scavenging capacity and re-
capitulates the pathologies that occur in sarcopenia in an ac-
celerated time frame. Specifically, Sod1KO mice show a
significant loss of muscle innervation, muscle mass, and
function.9,16 The role of oxidative stress in promoting cancer
cachexia is understudied; therefore, it is not known if oxida-
tive stress exacerbates cancer cachexia or cancer mortality.

Mitochondria are a primary site for ROS production in skel-
etal muscle.17 Both cancer and oxidative stress impair mito-
chondrial quality and function, which leads to excess
production of ROS.18–20 The accumulation of ROS contributes
to skeletal muscle atrophy in many disease phenotypes11,21–
26 via the induction of atrophy programming.11,21–26 Consid-
ering the role ROS has in promoting muscle wasting, and
the noted loss of antioxidant activity and content in cachectic
muscle and aged muscle,15,27 there is a critical need to ex-
plore cancer-induced muscle wasting in sarcopenic mice with
high levels of oxidative stress.

To our knowledge, the role of cancer-induced motor neu-
ron dysfunction has not been explored and could be a key
contributor to loss of muscle mass. Oxidative stress contrib-
utes to neuronal dysfunction via demyelination, which may
promote muscle wasting.28–30 Oxidative stress also leads to
neuromuscular junction (NMJ) impairments, which is impor-
tant for the maintenance of skeletal muscle mass and
function.28,29 Sarcopenia is associated with NMJ disruption31;
however, it is not known if cancer leads to NMJ pathology or
exacerbates pre-existing NMJ dysfunction.

To determine if oxidative stress exacerbates cancer ca-
chexia, we implanted tumours in an established experimental
model of oxidative stress, the Sod1KO mice. We hypothesized
that deletion of Sod1 would exacerbate cancer cachexia when
compared with wild-type (WT) counterparts. To test this hy-
pothesis, we measured survivability, skeletal muscle size,
skeletal muscle contractile function, skeletal muscle myofi-
brillar, cytosolic and mitochondrial protein turnover, mito-
chondrial function, metabolic proteomics, motor neuron
function, and loss of innervation in tumour-bearing WT and
Sod1KO mice.

Methods

Animals and interventions

Animal experiments were approved by the Institutional Ani-
mal Care and Use Committees and performed at the Okla-
homa Medical Research Foundation. In the current study,
we have utilized the Lewis lung carcinoma (LLC) pre-clinical
model to study cancer cachexia. Experimental mice were
group housed, kept on a 12:12 h light–dark cycle, and had ac-
cess to standard rodent chow and water ad libitum. The
breeding and characterization of the Sod1KO mice is de-
scribed in detail elsewhere.16,32 Blood was drawn through
the aorta, and tissues were collected and snap frozen in liquid
nitrogen for subsequent analyses.

Lewis lung carcinoma growth and tumour
implantation

Lewis lung carcinoma cells were grown and implanted as pre-
viously described.19 Briefly, LLC cells (ATCC CRL-1642) were
plated in 250 mL culture flasks in Dulbecco’s modified Eagle
medium supplemented with 10% foetal bovine serum plus
1% penicillin and streptomycin. Once confluent, cells were
trypsinized, counted, and diluted in phosphate-buffered sa-
line for implantation. LLC cells were implanted into the right
hind flank of the mouse. WT and Sod1KO mice were im-
planted with LLC cells at ~4–4.5 months of age. LLC cells were
plated at passages 2–5. LLC cells were suspended in 100 μL of
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phosphate-buffered saline for the injection, so control mice
were injected with phosphate-buffered saline into the hind
flank of the mouse.

Ex vivo extensor digitorum longus contractility

Extensor digitorum longus (EDL) contractile properties were
measured as previously described.8,33 Briefly, EDL muscle
was suspended on a dual-mode muscle lever system
(300C-LR, Aurora Scientific Inc, Aurora, Canada) and a hook
in Krebs buffer. Muscles were placed at optimal length and
allowed 20 min of thermoequilibration at 32°C. A
supramaximal current (600–800 mA) of 0.25 ms pulse dura-
tion was delivered through a stimulator (701 C, Aurora Scien-
tific Inc.), while train duration for isometric contractions was
300 ms. Data were recorded and analysed using commercial
software (DMC and DMA, Aurora Scientific). Specific force
(N/cm2) of EDL muscles were multiplied to the ratio of fibre
length to muscle length published previously.34

Histology

Quadricep muscle was immediately imbedded in optimal cut-
ting temperature compound and snap frozen. Sections were
cut at 10 μm with a Leica 3050 cryotome. Staining for
haematoxylin and eosin and succinate dehydrogenase was
performed as previously described.19,26 Zeiss inverted micro-
scope was used to image slides. Muscle fibres were circled
using Image J imaging software.

Determination of protein turnover

Protein synthesis was determined according to methods de-
scribed in other studies.35–37 Mice received a bolus i.p. injec-
tion (~20 μL/g body weight) of 99% deuterium oxide (D2O)
5 days before tissue collection. Drinking water was thereafter
supplemented with 8% D2O in drinking water until
euthanasia.35–37 We chose to start labelling 5 days prior to
euthanasia because this period corresponds to the period of
time that the LLC model begins to lose muscle mass.19,26 Ap-
proximately 50 mg of tibialis anterior (TA) muscles were pow-
dered and fractionated according to our previously published
protocols.35–37 TA muscle was used because gastrocnemius
was processed for other experiments (respirometer, proteo-
mics, RNA analysis, and immunoblot analysis). Briefly, skeletal
muscle tissue was homogenized 1:20 in isolation buffer
(100mM KCl, 40mM Tris HCl, 10mM Tris base, 5mMMgCl2,
1 mM EDTA, 1 mM Adenosine triphosphate, pH = 7.5) with
phosphatase and protease inhibitors (HALT, Thermo Fisher
Scientific) using a bead homogenizer (Next Advance Inc.,
Averill Park, NY, USA). After homogenization, subcellular frac-
tions were isolated via differential centrifugation as

previously described.35–37 The pentafluorobenzyl-N,N-di
(pentafluorobenzyl) derivative of alanine was analysed on
an Agilent 7890A GC coupled to an Agilent 5975C MS as pre-
viously described.35–37 Distilled plasma was analysed on a Liq-
uid Water Isotope Analyser (LWIA-45-EP, Los Gatos Research,
Inc., San Jose, CA, USA). The newly synthesized fraction (f) of
proteins was calculated from the enrichment of alanine
bound in muscle proteins over the entire labelling period, di-
vided by the true precursor enrichment (p), using plasma D2O
enrichment with mass isotopomer distribution analysis
adjustment.38

Modelling calculations to account for non-steady
state conditions

The period of D2O measurement was a period of muscle loss,
which violates the steady state assumptions of isotopic label-
ling. To account for this non-steady state condition, calcula-
tions were made based in our previously published work.39–
41 CoxIV is commonly used as a surrogate marker for mito-
chondrial content; therefore, it was used for assessing turn-
over calculations.42–44 In brief, the mass of protein at time
t, P(t), obeys the differential equation:

dP
dt

¼ ksyn � kdegP tð Þ; (1)

where ksyn is the synthesis rate, with dimensions of mass over
time, and kdeg is the degradation constant, with dimensions
of inverse time.

From the equations derived in Miller et al.,39,40

ksyn ¼ kdegPeq: (2)

Targeted quantitative mass spectrometry

We used targeted quantitative mass spectrometry to mea-
sure protein abundance as previously described.45 Briefly,
gastrocnemius samples were homogenized in a
radioimmunoprecipitation assay buffer containing 10 mM
Tris-Cl (pH 8.0), 1 mM EDTA, 1% Triton X-100 (v/v), 0.1% so-
dium deoxycholate (w/v), 0.1% sodium dodecyl sulfate (w/v),
140 mM NaCl, and 1 mM phenylmethylsulfonyl fluoride, with
protease inhibitor cocktail (Calbiochem Set III, EDTA-free;
EMD Millipore; Billerica, MA, USA), and Bradford assay was
used to determine protein concentration. For targeted prote-
omic analysis, 150 μG protein was used, as previously
described.33,46

Each of the four independent variables was analysed using
scikit-learn’s implementation of linear discriminant analysis
(LDA), with the eigen decomposition performed via singular
value decomposition. Additional information regarding the
univariate statistics comparing genotypes are given in the
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Supporting Information, Table S2. The clear separation be-
tween the genotypes in LDA component 1 is associated with
the knockout of SOD1, as expected; however, the knockout
model induces several other alterations to protein levels,
which are shown with the supplementary table. LDA compo-
nent 2 is associated with a linear combination of variables for
which is less amenable to separation or decomposition into
univariate statistics.

Respiration and hydroperoxide production in
permeabilized fibre bundles

Skeletal muscle fibre permeabilization was performed as pre-
viously described.11,19,33 Briefly, small strips of red gastrocne-
mius muscle were teased to near-single fibres in ice cold
buffer X (7.23 mM K2EGTA, 2.77 mM CaK2EGTA, 20 mM im-
idazole, 0.5 mM DTT, 20 mM taurine, 5.7 mM ATP, 14.3 mM
PCr, 6.56 mM MgCl2–6H2O, and 50 mM K-MES with a pH of
7.1). These fibre bundles were then permeabilized with sapo-
nin for 30min. Mitochondrial oxygen consumption rate (OCR)
and hydroperoxide production rate were simultaneously
measured using the Oxygraph-2k (O2k, OROBOROS Instru-
ments, Innsbruck, Austria) respirometer and fluorometer as
previously described.11,19,33 Briefly, OCR and hydroperoxide
production were measured in permeabilized fibre bundles in
buffer Z media containing 10 μM Amplex UltraRed (Molecular
Probes, Eugene, OR), 1 U/mL horseradish peroxidase, super-
oxide dismutase, and blebbistatin (25 μM) at 37°C. Rates of
respiration and hydroperoxide production were determined
using the following sequential additions of substrates and in-
hibitors: glutamate (10 mM), malate (2 mM), pyruvate
(5 mM), Adenosine diphosphate (5 mM), succinate
(10 mM), rotenone (1 μM), antimycin A (1 μM), and N,N,N′,
N′-Tetramethyl-p-phenylenediamine (TMPD) (0.5 mM) imme-
diately followed by ascorbate (5 mM, ascorbate is added to
ensure TMPD is reduced, so TMPD can continue to donate
electrons). Respiration measurements were normalized to
antimycin A to account for non-mitochondrial oxygen con-
sumption. Data for both OCR and rates of hydroperoxide gen-
eration were normalized by milligrams of muscle bundle wet
weights weighed on Acculab AL-104 scale.

RNA isolation, cDNA synthesis, and quantitative
real-time PCR

Gastrocnemius muscles were collected and frozen in liquid ni-
trogen at time of harvest. Gastrocnemius muscle, 20–30 μg,
was homogenized into a 1 mL TRIzol solution. RNA was
isololated as previously described.8 Isolated RNA purity and
concentration were confirmed using Bio-Tek (Winooski, VT)
Power Wave XS plate reader with Take3 microvolume plate
and Gen5 software. After which, 1 μg of RNA was reverse

transcribed into cDNA using previously described methods8

and iScriptTM cDNA Synthesis reverse transcriptase reagents.
cDNA was diluted to 1:25 (25 ng/μL) and Ct values analysed
using Sybr Green reagents and commercial QuantStudio 6
Flex real-time RT-PCR instrumentation (Applied BioSystems,
Foster City, CA). The following primers were used for
RT-PCR assessment (Table S1): 18s, ND4, ND6, COX1, CytB,
ATPase 8/6, ATP5F1, SDHA, and UQCRC1. No differences
were seen in 18s among experimental conditions for experi-
ments presented. Final quantification of gene expression
was calculated using the ΔΔCT method. Relative quantifica-
tion was calculated as 2�ΔΔCT.

Immunoblotting
Immunoblot was performed as previously described.47

Briefly, gastrocnemius muscle was homogenized in a buffer
containing 0.23 M Tris HCl, pH 6.8, 4.5% w/v SDS, 45% glyc-
erol, 0.04% w/v bromophenol blue, 80 mM dithiothreitol,
0.57 mM 2-mercaptoethanol, protease inhibitor and dena-
tured at 95°C. Concentrations were determined using the
RC/DC assay (500-0119, BioRad, Hercules, CA), and 30 μg to-
tal protein was resolved by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis, transferred to a
nitrocellulose membrane and blocked in 5% weight by vol-
ume milk in Tris-buffered saline with 0.2% Tween 20. Mem-
branes were probed overnight for antibodies specific to
CuZn Superoxide Dismutase (SOD), MnSOD,
Voltage-dependent anion channel (VDAC), Cytochrome C Ox-
idase Subunit IV (CoxIV), and Thioredoxin-dependent perox-
ide reductase (Prdx3). Primary and secondary antibodies
were diluted in Tris-buffered saline with 0.2% Tween 20 and
used according to manufacturer’s protocol. Membranes were
imaged using Syngene G Box. All bands were normalized to
the 45 kDa actin band of Ponceau S stain as a loading control.

Sciatic nerve conduction velocity

Sciatic nerve conduction velocity was measured based on a
previously described protocol.48 Briefly, mice were
anaesthetised with constant flow of isoflurane. Sciatic nerve
conduction velocity was measured using stimulating elec-
trodes placed at the ankle, and recording electrodes were
placed dorsally over all five digits. The latency and distance
between electrodes were measured, and then, the stimulat-
ing electrodes were moved to the sciatic notch. The nerve
was again stimulated, and the resulting latency was
subtracted from the initial ankle–foot latency. This difference
was divided between the distance between the notch and an-
kle to determine velocity. The distance was determined by
stretching the foot so that a linear distance could be mea-
sured between stimulating and recording electrodes.
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Transmission electron microscopy for sciatic nerve

Sciatic nerve samples were immediately collected after sacri-
fice, fixed in 4% glutaraldehyde and post-fixed 1% osmium.
The Oklahoma Medical Research Foundation imaging core fa-
cility then processed the sciatic nerves for ultrastructure as-
sessment. Images were taken on a Hitachi H-7600
Transmission Electron Microscope at ×1200 magnification.

Enzyme activity assay

Activities of CuZnSOD and MnSOD were determined using na-
tive gels with negative staining as a method previously
described.49 Briefly, Extracts containing 40 μg protein were
separated on a 10% polyacrylamide native page gel. The gel
was then soaked in a solution containing nitroblue tetrazo-
lium, riboflavin, and Tetramethylethylenediamine (TEMED).
The riboflavin is activated to oxidize an electron donor
(TEMED). The gel was then imaged using Syngene G Box.
For publication purposes, the image was inverted so that
the achromatic areas representing SOD activity appear as
dark regions against a light background.

Statistical analysis

A two-way ANOVA with the independent factors of genotype
and LLC implantation was used as the global analysis for each
dependent variable. Only when there were differences was
the Tukey–Kramer post hoc test performed. For all experi-
ments, the comparison-wise error rate, α, was set at 0.05
for all statistical tests. Asterisk (*) was used to denote signif-
icant differences denoted from the post hoc test. Interactions
were denoted by #. All data were analysed, and graphs were
compiled using GraphPad Prism (La Jolla, CA, USA) and data
expressed as mean ± SEM.

Results

Characterization of Lewis lung carcinoma-induced
cancer cachexia in wild-type and Sod1KO mice

In order to determine if elevated oxidative stress exacerbates
cancer cachexia, we measured body weight, muscle weights,
and cross-sectional area (CSA) of hindlimb muscles. Injection
of Sod1KO mice with LLC caused a 15% reduction in body
weight compared with Sod1KO saline (P = 0.0107), suggesting
that cancer-induced loss of body weight was more severe in
Sod1KO mice when compared with WT mice (Figure 1A). Gas-
trocnemius, quadriceps femoris, and TA muscle wet weights
normalized to body mass were ~20% smaller in Sod1KO mice
when compared with WT mice (P = 0.005–0.01, Figure 1B–
D). Gastrocnemius mass was ~20% smaller in tumour-bearing

Sod1KO mice than gastrocnemius mass of saline-injected
Sod1KO mice (P = 0.017), which indicates that
tumour-mediated gastrocnemiusmuscle loss wasmore severe
in Sod1KO mice than WT mice (Figure 1B). Quadricep femoris
and TA muscle wet weights decreased by ~15% in
tumour-bearing WT and Sod1KO mice compared with
saline-injected WT and Sod1KO mice (P = 0.001–0.03, Figure
1C and 1D). Soleus mass was ~15% smaller in
tumour-bearing WT mice than saline-injected WT mice
(P = 0.019, Figure 1E). EDL mass was not different between
groups (Figure 1F). The degree of tumour-induced loss of mus-
cle wet weight in hindlimb muscles is different in WT and
Sod1KO mice (Figure 1G).

Despite a reduction in muscle mass in Sod1KO mice com-
pared with WT mice, the mean CSA of quadricep femoris
muscle fibres in the muscles was not different than in WT
mice (Figure 1H). The mean CSA of quadricep femoris muscle
fibres was ~25% smaller in tumour-bearing mice when com-
pared with saline-injected WT and Sod1KO mice (P = 0.001,
Figure 1H and 1J). The number of small fibres (200–
1200 μm2 area) increased in tumour-bearing WT and Sod1KO
mice when compared with saline-injected WT and Sod1KO
mice and the number of large fibres (>2400 μm2) decreased
in tumour-bearing WT and Sod1KO mice when compared
with saline-injected WT and Sod1KO mice (Figure 1I and 1J).
Both the mean quadriceps femoris CSA and the frequency
distribution suggest that cancer-induced loss of individual
muscle fibre mass was not exacerbated in Sod1KO mice (Fig-
ure 1H and 1I). Figure 1J shows representative haematoxylin
and eosin staining images from the quadriceps femoris used
to assess CSA.

Oxidative stress-induced contractile dysfunction
was not exacerbated in tumour-bearing mice

In agreement with our previous reports, EDL maximal force
was reduced by ~25% in Sod1KO mice when compared with
WT counterparts (P = 0.012, Figure 2A). Despite a mean de-
crease of specific force in Sod1KO mice, there was no signifi-
cant decrease between groups (P = 0.15, Figure 2B). We
analysed the ex vivo twitch force of the EDL muscle and found
no difference between groups (Figure 2C). Interestingly, the
presence of tumours did not exacerbate contractile dysfunc-
tion in Sod1KO mice (Figure 2A–C).

Tumour burden in Sod1KO mice exacerbates
neuromuscular junction fragmentation

Neuromuscular junction fragmentation increased by ~30% in
saline-injected Sod1KO mice when compared with WT saline
mice (P = 0.03, Figure 3A and 3B). NMJ fragmentation was
not different in tumour-bearing WT mice compared with
saline-injected WT mice. NMJ fragmentation increased by
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an additional ~15% in tumour-bearing Sod1KO mice when
compared with saline-injected Sod1KO mice (P = 0.01, Figure
3A and 3B). Sod1KO mice had a ~50–200% increase in mRNA
content for the denervation markers Runx1, Gadd45α, AchRα,
and Sln when compared with WT mice (P = 0.0001–0.0087,
Figure 3C). Denervation markers did not increase in
tumour-bearing WT mice (Figure 3C), and tumour burden in
Sod1KO mice did not further increase mRNA denervation
markers when compared with saline-injected Sod1KO mice
(Figure 3C).

Metabolic enzymes are altered in both Sod1KO
mice and tumour-bearing mice

We were interested in how metabolic enzymes were altered
in WT mice and Sod1KO mice with cancer. In general, the

gastrocnemius muscle from Sod1KO mice showed an
up-regulation of proteins involved in oxidative stress re-
sponse, fatty acid metabolism, and oxidative metabolism
when compared with saline-injected WT mice (Figure 4A–
D). Carbohydrate metabolism proteins were both
up-regulated and down-regulated in Sod1KO mice compared
with saline-injected WT mice (Figure 4C). Tumour burden had
a more modest effect on proteins involved in oxidative stress
response and fatty acid metabolism when compared with
saline-injected WT mice (Figure 4A and 4B); however, pro-
teins involved in carbohydrate metabolism were largely
up-regulated (Figure 4C). Oxidative metabolism proteins
were both up-regulated and down-regulated in
tumour-bearing WT mice when compared with
saline-injected WT mice (Figure 4D). Metabolic protein dys-
regulation in tumour-bearing Sod1KO mice was exacerbated
when compared with saline-injected Sod1KO mice (Figure

Figure 1 Characterization of LLC-induced cancer cachexia in wild-type (WT) and Sod1KO mice. (A) Body weights (BW—tumour weight) of WT saline,
WT Lewis lung carcinoma (LLC), Sod1KO saline, and Sod1KO LLC tumour-bearing mice. (B) Gastrocnemius mass in all groups normalized to BW. (C)
Quadricep mass in all groups normalized to BW. (D) Tibialis anterior (TA) mass in all groups normalized to BW. (E) Soleus mass in all groups normalized
to BW. (F) Extensor digitorum longus (EDL) mass in all groups normalized to BW. (G) Percent mass lost from cancer in hindlimb muscles of WT and
Sod1KO mice. (H) Mean cross-sectional area (CSA) analysis for all groups. (I) Frequency distribution of small fibres, average fibres, and large fibres.
Groups for frequency distribution are displayed as shown here. (J) Representative images for haematoxylin and eosin stain across all groups. Scale
bar is 100 μM. N of 6–8 was used for each group. Saline, black bar; LLC, blue bar. Asterisk denotes post hoc differences at an alpha set at P < 0.05.
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4A–D). LDA analysis, a linear transformation technique that
attempts to find a feature subspace that maximizes group
separability, showed distinct separation between the meta-
bolic proteins of WT and Sod1KO mice (Figure 4E). There
was no distinct separation between saline-injected WT mice
and tumour-bearing WT mice (Figure 4E). Metabolic profile
of tumour-bearing Sod1KO mice was different than

saline-injected Sod1KO mice (Figure 4E). Statistics for these
proteins are shown in Table S1.

Tumour-bearing mice have protein imbalance
favouring degradation, despite an oxidative
stress-associated increase in myofibrillar protein
synthesis

Muscle mass is lost when protein breakdown exceeds protein
synthesis; therefore, we used D2O labelling to measure pro-
tein turnover in the TA muscle of WT and Sod1KO mice in re-
sponse to induction of cachexia. Myofibrillar protein synthesis
was two-fold greater in saline Sod1KO mice when compared
with saline WT mice (P = 0.027, Figure 5A). Myofibrillar deg-
radation was two-fold greater in saline Sod1KO mice than in
saline WT mice (P = 0.0067, Figure 5B). Importantly, myofi-
brillar protein degradation was two-fold greater in
tumour-bearing WT and Sod1KO mice when compared with
WT saline and Sod1KO saline, respectively (P = 0.0001–
0.0007, Figure 5B). Tumour-bearing Sod1KO mice had ~50%
greater increase in myofibrillar degradation rates when com-
pared with tumour-bearing WT mice (P = 0.0001, Figure 5B).
Cytosolic proteins are typically involved in cell signalling and
regulatory functions. There was no change in cytosolic pro-
tein synthesis between groups (Figure 5C). Cytosolic protein
degradation did not increase in tumour-bearing WT mice
when compared with saline-injected WT mice; however, cy-
tosolic protein degradation was ~100% greater in
tumour-bearing Sod1KO mice when compared with saline
Sod1KO mice (P = 0.0046, Figure 5D).

Tumour-bearing mice have impaired mitochondrial
function, increased reactive oxygen species
production, increased mitochondrial protein
degradation, and a loss of oxidative fibres

Mitochondrial dysfunction is prevalent in multiple muscle
wasting conditions including cancer cachexia19; therefore,
we wanted to determine if elevated oxidative stress exacer-
bates cancer-induced mitochondrial dysfunction and
cancer-induced mitochondrial turnover dysregulation. We
assessed mitochondrial respiration and hydroperoxide pro-
duction using permeabilized muscle fibres. Glutamate and
malate-stimulated leak respiration was not different between
groups. Next, we measured maximally stimulated respiration
from electron transport chain complex I, complex I + II, and
complex II. These measurements assess mitochondrial peak
respiratory capacity (state 3). There was a trend for a ~20%
mean decrease (non-significant, P = 0.1–0.25) in maximally
stimulated respiration (complex I, complex I + II, and complex
II) in Sod1KO when compared with WT counterparts (Figure
6A). Complex I, complex I + II, and complex II-stimulated state

Figure 2 Oxidative stress-induced contractile dysfunction is not exacer-
bated in tumour-bearing mice. (A) Twitch contractile force for EDL muscle
ex vivo. (B) Maximal contractile force for EDL muscle ex vivo. (C) Specific
maximal contractile force for EDL muscle ex vivo. Saline, black bar; Lewis
lung carcinoma, blue bar. Asterisk denotes post hoc differences at an al-
pha set at P < 0.05. EDL, extensor digitorum longus; WT, wild type.
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3 respiration was ~30% lower in tumour-bearing WT mice
when compared with saline-injected WT mice (P = 0.0002–
0.0023, Figure 6A). To assess the function of mitochondrial
complex IV, we stimulated mitochondria with ascorbate and
TMPD, which directly feeds elections into complex IV. Com-
plex IV-stimulated respiration was ~20% lower in
tumour-bearing WT mice than saline-injected WT mice
(P = 0.0074, Figure 6A). Taken together, these data suggest
that cancer disrupts maximal mitochondrial respiratory, and
mitochondrial dysfunction in tumour-bearing Sod1KO mice
was not further impaired (Figure 6A).

When mitochondria become damaged, electrons are more
susceptible to leak into oxygen to form ROS. We wanted to
determine if elevated oxidative stress triggers an increase in
ROS production with cancer. State 1 hydroperoxide produc-
tion was ~200% higher in tumour-bearing Sod1KO mice when
compared with saline-injected Sod1KO mice (P = 0.033, Fig-
ure 6B). Increased state 1 hydroperoxides is typically associ-
ated with muscle that has lost innervation,50,51 which
corroborates our findings in Figure 3. ROS generation during
maximally stimulated respiration is indicative of electrons
prematurely leaking into oxygen. There were no differences
in ROS production between groups with complex I, complex
I + II, and complex II-stimulated respiration (Figure 6B). Rote-
none leads to reverse electron flow and leak at complex I
while antimycin A causes electron backup and leak for the

entire electron transport chain. There were no differences
in ROS production between groups following rotenone and
antimycin A treatment (Figure 6B). These data suggest that
cancer exacerbates basal hydroperoxide production in
Sod1KO mice; however, in stimulated conditions, hydroper-
oxides produced in tumour-bearing Sod1KO mice are not
higher than saline-injected Sod1KO mice.

Considering the loss of mitochondrial respiration in
tumour-bearing mice, we were interested in the effect of
the tumour on mitochondrial turnover and content in skeletal
muscle because impaired mitochondrial turnover can lead to
mitochondrial dysfunction. For these calculations, we used
the mitochondrial content marker CoxIV (Figure 6D). mRNA
content for mitochondrial genes were not different between
groups (Figure 6c); however, mitochondrial proteins MnSOD,
Prdx3, and CoxIV were decreased by ~20–50% in WT and
Sod1KO tumour-bearing mice when compared with WT saline
and Sod1KO saline mice, respectively (P = 0.02–0.049, Figure
6D). Immunoblot images are shown in Figure S1. The percent-
age of the image area that stained for SDH was not different
between genotypes (Figure 6E and 6H). However, the area
stained in tumour-bearing WT mice was ~35% lower than
saline-injected WT mice (P = 0.042, Figure 6E and 6H). Loss
of stained SDH area was not different in LLC-injected Sod1KO
mice when compared with saline-injected Sod1KO mice (Fig-
ure 6E and 6H). Mitochondrial protein synthesis increased by

Figure 3 Cancer does not exacerbate neuromuscular junction disruption. (A) Representative images for NMJ staining in all groups. (B) NMJ fragmen-
tation in all groups. Saline, black bar; LLC, blue bar. (C) Colours for graphs displayed in (C) are displayed here. Wild-type saline, black bar; wild-type LLC,
dark blue bar; Sod1KO saline, grey bar; Sod1KO LLC, light blue bar. Denervation mRNA markers in all groups. For NMJ staining, an N of 2 animals per
group was used. N of 6–8 per group was used in mRNA denervation markers.. Number sign denotes an interaction. Asterisk denotes post hoc differ-
ences at an alpha set at P < 0.05. LLC, Lewis lung carcinoma; NMJ, neuromuscular junction; WT, wild type.
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~300% in saline-injected Sod1KO mice compared with all
other groups (P = 0.0001, Figure 6F). Mitochondrial protein
degradation increased by four-fold in tumour-bearing WT
mice compared with saline-injected WT mice (P = 0.0001, Fig-
ure 6G). Mitochondrial degradation in tumour-bearing

Sod1KO mice increased by two-fold compared with
saline-injected Sod1KO mice, which was a notably smaller in-
crease than tumour-bearing WT mice (P = 0.0001, Figure
6G). Transmission electron microscopy (TEM) showed drasti-
cally increased size and quantity of mitochondria in Sod1KO

Figure 4 Metabolic enzymes are altered in Sod1KO mice and tumour-bearing mice. (A) Heat map for oxidative stress enzymes relative to wild-type
saline mice. (B) Heat map for fatty acid metabolism enzymes relative to wild-type saline mice. (C) Heat map for carbohydrate metabolism enzymes
relative to wild-type saline mice. (D) Heat map for oxidative metabolism enzymes relative to wild-type saline mice. Targeted proteomics of glycolysis
enzymes in all groups. (E) LDA analysis for the proteomics data set. Red, wild-type saline; green, wild-type LLC; orange, Sod1KO saline; blue, Sod1KO
LLC. N of 6–8 per group was used. LDA, linear discriminant analysis; LLC, Lewis lung carcinoma; WT, wild type.
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mice compared with WT mice, while mitochondria of
tumour-bearing mice were smaller and less dense than
saline-injected mice (Figure 6I).

Motor neuron dysfunction was present in Sod1KO
mice and tumour-bearing mice

Sod1KO mice show a number of motor neuron phenotypes
including demyelination, reduced nerve conduction velocity,
and NMJ disruption.29,48,52,53 Here, we asked whether the
presence of tumours can exacerbate these phenotypes. The
axon diameter measured in the sciatic nerve from Sod1KO
mice was not different than in WT counterparts; however,
axon diameter decreased by ~50% in tumour-bearing WT
mice compared with saline-injected WT mice (P = 0.014,
Figure 7A and 7F). Injection of LLC cells had no effect on axon
diameter in Sod1KO mice (Figure 7A and 7F). There was no
change in myelin diameter in Sod1KO mice compared with
WT mice; however, myelin diameter decreased by ~40% in
tumour-bearing WT mice compared with saline-injected WT
mice (P = 0.0048, Figure 7B and 7F). Myelin diameter was
not different in tumour-bearing Sod1KO mice when com-
pared with saline-injected Sod1KO mice (Figure 7B and 7F).
The axon diameter/myelin diameter and G ratio were not dif-
ferent between groups (Figure 7C, 7D, and 7F). The percent

abnormal myelin increased by 100% in Sod1KO mice when
compared with WT mice (P = 0.0001 Figure 7E and 7F). WT
tumour-bearing mice had 50% altered myelin profile, while
saline-injected WT mice did not have an altered myelin pro-
file (P = 0.0001, Figure 7E and 7F). Sciatic nerve conduction
velocity was decreased by ~20% in Sod1KO mice when com-
pared with WT mice (P = 0.0223, Figure 7G). Also, sciatic
nerve conduction velocity is decreased by ~30% in
tumour-bearing WT mice compared with saline-injected WT
mic`e (P = 0.0038, Figure 7G). Sciatic nerve conduction veloc-
ity was not further decreased in tumour-bearing Sod1KO
mice (Figure 7G).

Lewis lung carcinoma injection induced death of
Sod1KO mice within three weeks

We injected 4-month to 5-month-old female WT and Sod1KO
mice with phosphate-buffered saline or one million LLC cells.
Unexpectedly, 3 out of 11 of the tumour-bearing Sod1KO
mice did not survive the 3-week duration of tumour implan-
tation, while no WT mice that were injected with LLC cells
died during the experimental period (Figure 8). Therefore,
we ended the experiment after 3 weeks for data collection.
Saline-injected WT and Sod1KO mice survived the entire du-
ration of the study as well (Figure 8).

Figure 5 Tumour-bearing mice have protein imbalance favouring degradation, despite an oxidative stress associated increase in myofibrillar protein
synthesis. (A) Myofibrillar protein synthesis between all groups. (B) Myofibrillar protein degradation between all groups. (C) Cytosolic protein synthesis
between all groups. (D) Cytosolic protein degradation between all groups. Saline, black bar; Lewis lung carcinoma, blue bar. Number sign denotes if
there was an interaction. Asterisk denotes post hoc differences at an alpha set at P < 0.05. WT, wild type.
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Figure 6 Tumour-bearing mice have impaired mitochondrial function, increased reactive oxygen species production, and a loss of oxidative fibres. (A)
Respiration measurements normalized to muscle wet weight. (B) Peroxide assessments normalized to muscle wet weight. There were main effects for
both the genotype and LLC for an increase in hydroperoxide production for state 1, glutamate malate, complex I, complex I + II, and complex II stim-
ulated ROS production. There was an ME for cancer-induced increased in ROS production after antimycin A electron transport chain inhibition. Colours
for graphs (C–E) are displayed here. (C) mRNA content of mitochondria genes. (D) Protein content of mitochondrial and antioxidant proteins. (E) Per-
cent area stained positive for SDH. (F) Mitochondrial protein synthesis measurement using CoxIV as a mitochondrial content marker (Figure 6D). (G)
Mitochondrial protein breakdown measurement using CoxIV as a mitochondrial content marker (Figure 6D). (H) SDH stain representative images. (I)
TEM representative images. For TEM imaging, an N of 2 per group was used. N of 6–8 per group was used for all other measurements. (A–D) Wild-type
saline, black bar; wild-type LLC, dark blue bar; Sod1KO saline, grey bar; Sod1KO LLC, light blue bar. (E–G) Saline, black bar; LLC, blue bar. Number sign
denotes an interaction. Asterisk denotes post hoc differences at an alpha set at P < 0.05. LLC, Lewis lung carcinoma; WT, wild type.
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Discussion

It is currently unknown if increased oxidative stress exacer-
bates cancer cachexia. The primary findings of our study are
that knocking out the Sod1 gene, which codes for a critical
antioxidant enzyme and superoxide anion scavenger, in-
creases cancer mortality rates but does not exacerbate mus-
cle loss, mitochondrial dysfunction, ROS production, or loss of

oxidative phenotype in cachectic muscle in tumour-bearing
mice. Moreover, our study shows that protein turnover
changes in a way that leads to a gain in mitochondrial mass
in Sod1KO mice when compared with WT mice and that
tumour-bearing mice have increased protein degradation
leading to a loss of mitochondrial content. We further found
that induction of cancer exacerbates metabolic enzyme dys-
regulation and NMJ fragmentation in Sod1KO mice.

Figure 7 Motor neuron dysfunction is present in Sod1KO mice and tumour-bearing mice. (A) Axon diameter measurements from sciatic nerve TEM
images in all groups. (B) Myelin diameter measurements from sciatic nerve TEM images in all groups. (C) Axon diameter/myelin diameter from sciatic
nerve TEM images in all groups. (D) G ratio from sciatic nerve TEM images in all groups. (E) Percent abnormal myelin from sciatic nerve TEM images in
all groups. (F) Representative sciatic nerve TEM images. (G) Sciatic nerve conduction velocity assessment in all groups. For TEM image analysis, an N of
1 animal per group was used. N of 6–8 per group was used for nerve conduction velocity. (A–C) Wild-type saline, black circles; wild-type LLC, dark blue
squares; Sod1KO saline, grey triangles; Sod1KO LLC, light blue inverted triangles. (D–G) Saline, black bar; LLC, blue bar. Number sign denotes an inter-
action. Asterisk denotes post hoc differences at an alpha set at P < 0.05. LLC, Lewis lung carcinoma; WT, wild type.
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The pre-clinical model we have elected to use in our study
is implanting LLC cells (1 × 106 cells) into the hind flank of
mice. This model has been used by multiple laboratories to
induce cancer cachexia.54–56 Several laboratories have noted
that implanting 1 × 106 LLC cells into the hind flank of mice
induces a moderate to severe cancer cachexia phenotype
(~20% body mass lost and ~30–45% gastrocnemius muscle
mass lost) after approximately 30 days of tumour growth.54–
56 In our model, we measured muscle mass loss 3 weeks after
tumour implantation because of the abrupt deaths experi-
enced in the Sod1KO mice at that time point. Both WT and
Sod1KO mice display a similar degree of muscle wet weight
and CSA (~10% smaller muscle wet weights and a ~25% de-
crease in mean CSA). We would consider this a mild cancer
cachexia phenotype based on more severe phenotypes com-
monly being observed in other studies and models57–59; how-
ever, we could not extend the study longer based on the
survival of the Sod1KO mice. Further, female mice are less
susceptible to cancer cachexia in pre-clinical models and in
cachectic patients,60–62 which could be another reason why
our phenotype is not as severe as other studies. Despite a
20% decrease in muscle mass in Sod1KO mice, fibre CSA
was not different when compared with saline-injected WT
mice. This would suggest that the smaller muscle size ob-
served in Sod1KO mice at this age is primarily due to loss of
fibre number, which has previously been reported in the
Sod1KO mouse model.63,64 To our surprise, tumour implanta-
tion did not decrease EDL contractility in either WT or
Sod1KO mice. It is possible that the discrepancies between
our data and other cancer cachexia contractility reports are
due to the severity of phenotype observed in these studies

and the fibre type of the muscle used.57,65 Based on these re-
sults, elevated oxidative stress may not exacerbate
cancer-related loss of muscle mass and function; however,
if cancer cachexia was allowed to further progress, it is possi-
ble that loss of Sod1 could exacerbate the phenotype at a
later time point.

Skeletal muscle atrophy occurs by an imbalance of myofi-
brillar protein turnover favouring protein degradation over
protein synthesis. According to our data, tumour-bearing
mice have increased degradation in myofibrillar fractions
and decreased protein synthesis in cytosolic fractions. To
our knowledge, this is the first time long-term protein degra-
dation has been assessed (rather than markers) in a tumour
model. It should also be noted that rates of myofibrillar pro-
tein degradation were higher in tumour-bearing Sod1KO
mice when compared with tumour-bearing WT mice. How-
ever, this did not exacerbate the cancer cachexia phenotype
in Sod1KO mice possibly due to higher rates of myofibrillar
protein synthesis. The Sod1KO mouse is used as an acceler-
ated aging and frailty model,9 and similar to the Sod1KO
mouse model, myofibrillar protein synthesis is elevated in
aged muscle.66 Prior studies show that atrogenes and au-
tophagy machinery is up-regulated in tumour-bearing mice,
which corresponds with our direct measurement of protein
breakdown.67–69 Further, proteolytic markers are elevated
in the Sod1KO mouse model,29 so this may contribute to
our direct measurement showing increased protein degrada-
tion in tumour-bearing Sod1KO mice even when compared
with tumour-bearing WT mice. It is possible that pathways
that contribute to protein breakdown are even further ele-
vated in tumour-bearing Sod1KO mice. Our protein turnover
measurements in myofibrillar and cytosolic fractions highlight
the need to assess both aspects of dynamic protein turnover
(not markers) during non-steady state conditions such as
cancer cachexia, which allows for a more robust interpreta-
tion than just measurements of protein turnover with
markers.

Mitochondria are critical for the maintenance of muscle
mass and function70–72; therefore, we examined skeletal
muscle mitochondrial properties and hydroperoxide produc-
tion in tumour-bearing WT and Sod1KO mice. Maximally
stimulated respiration (state 3 respiration) was reduced in
cachectic muscle in WT mice; however, cancer did not alter
mitochondrial respiration in Sod1KO mice. Also, we ob-
served increased ROS production ranging from 10% to
200% based on the substrate/inhibitor used. It is well
established that mitochondrial damage/dysfunction and
chronically elevated ROS generation lead to muscle
wasting.73–79 Based on these results and previous findings,
it is likely that mitochondrial damage is involved in
cancer-induced muscle loss. More research is required to
show if mitochondrial dysfunction directly contributes to
cancer cachexia.

Figure 8 LLC-injection induced death of Sod1KO mice within 3 weeks.
Survival curve of tumour-bearing WT (n = 8) and Sod1KO (n = 11) mice.
Black line, wildtype saline, wildtype LLC, and Sod1KO saline. Blue line,
Sod1KO LLC. LLC, Lewis lung carcinoma; WT, wild type.
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Both total mitochondrial content and mitochondrial turn-
over are key drivers of respiratory capacity in skeletal muscle;
therefore, we measured mitochondrial turnover in
tumour-bearing WT and Sod1KO mice. Loss of oxidative phe-
notype (SDH stain) and mitochondrial content (Prdx3,
MnSOD, and CoxIV) occurs in WT tumour-bearing mice, but
not tumour-bearing Sod1KO mice, which may contribute to
the loss of respiratory capacity in tumour-bearing mice. Mito-
chondrial protein synthesis is dramatically up-regulated in
Sod1KO mice and cancer completely blunts this increase in
mitochondrial protein synthesis. Also, mitochondrial protein
degradation is dramatically elevated in tumour-bearing mice.
These data are corroborated by the increase in mitochondria
size in muscle from Sod1KO mice and reduced mitochondria
volume in tumour-bearing mice shown via electron micros-
copy images. These findings are consistent with previous
studies showing that there is a loss of the oxidative pheno-
type in skeletal muscle of tumour-bearing mice.18,56,80

Because mitochondrial content is differentially affected by
the Sod1KO mouse and tumour-bearing mice, we used
targeted proteomics to illustrate changes in metabolic and
antioxidant proteins. Sod1KO mice have a global change in
the protein content of metabolic enzymes and antioxidant
enzymes, which is exacerbated in tumour-bearing Sod1KO
mice. Surprisingly, proteins involved in oxidative stress re-
sponse are relatively unchanged in WT tumour-bearing mice,
which suggests that ROS was not chronically elevated enough
for an oxidative stress response. However, oxidative stress re-
sponse and dysregulation of metabolic enzymes are exacer-
bated in tumour-bearing Sod1KO mice, showing that these
mice may be more susceptible to tumour-induced changes
in metabolism.

Prior research from our laboratory clearly shows that mus-
cle loss and contractile dysfunction can be driven by neuro-
muscular impairments; therefore, we assessed motor
neuron function and NMJ integrity. There was a loss of myelin
and axon diameter in tumour-bearing mice and abnormal
myelin profiles in Sod1KO mice. We also observed impaired
sciatic nerve conduction velocity in both Sod1KO mice and
tumour-bearing mice, which indicates that nerve function is
impaired. Motor neuron impairments have been shown to
lead to muscle pathology.81,82 This is especially prevalent in
disorders such as Amyotrophic lateral sclerosis. At this point,
it is not known if motor neuron dysfunction contributes to
cancer-induced muscle loss. Sod1KO mice have NMJ impair-
ments that mirror what happens in aged mice.83 NMJ frag-
mentation was further elevated in tumour-bearing Sod1KO
mice when compared with saline-injected Sod1KO mice,
which indicates that cancer could exacerbate NMJ
impairments. These data would suggest that cancer in aged
individuals may accelerate NMJ fragmentation, which would
lead to sarcopenia.

In summary, this is the first study to investigate if in-
creased oxidative stress and frailty exacerbates cancer

cachexia in tumour-bearing mice. Cancer in Sod1KO mice, a
mouse model for oxidative stress and sarcopenia, did not ex-
acerbate muscle wasting in tumour-bearing mice. Also, we
have revealed that the deletion of Sod1 does not exacerbate
cancer-mediated contractile dysfunction, cancer-mediated
mitochondrial dysfunction, and cancer-mediated ROS produc-
tion. Cancer differentially alters myofibrillar and mitochon-
drial degradation in Sod1KO mice when compared with WT
mice. Also, we have found that cancer exacerbates metabolic
enzyme dysregulation and NMJ fragmentation in Sod1KO
mice. To our knowledge, this is the first study to show that
cancer disrupts motor neuron function; however, it is not
known if this contributes to muscle loss. Future studies
should examine cancer cachexia in an aged population con-
sidering aging is the greatest risk factor for cancer.
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