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In diabetes mellitus (DM) patients, the morbidity of infectious disease is increased,
and these infections can easily progress from local to systemic infection. Sepsis is
a characteristic of organ failure related to microcirculation disorders resulting from
endothelial cell injury, whose most frequent comorbidity in patients is DM. The aim
of the present study was to evaluate the influence of infection on DM-induced
microvascular damage on inflammation and pulmonary endothelial structure using an
experimental endotoxemia model. Lipopolysaccharide (LPS; 15 mg/kg) was injected
intraperitoneally into 10-week-old male C57BLKS/J lar~ * lepr@/lepr®® (db/db) mice
and into C57BLKS/J larm *+ / + lepr®® (db/ +) mice, which served as the littermate
non-diabetic control. At 48 h after LPS administration, the survival rate of db/db mice
(0%, 0/10) was markedly lower (P < 0.05) than that of the db/ + mice (75%, 18/24),
whereas the survival rate was 100% in both groups 24 h after LPS administration.
In control mice, CD11b-positive cells increased at 6 h after LPS administration; by
comparison, the number of CD11b-positive cells increased gradually in db/db mice until
12 h after LPS injection. In the control group, the number of Iba-1-positive cells did not
significantly increase before and at 6, 12, and 24 h after LPS injection. Conversely, Iba-1-
positive cells continued to increase until 24 h after LPS administration, and this increase
was significantly greater than that in the control mice. Expression of Ext1, Csgalnact1,
and Vcan related to endothelial glycocalyx synthesis was significantly lower in db/db
mice than in the control mice before LPS administration, indicating that endothelial
glycocalyx synthesis is attenuated in db/db/mice. In addition, ultrastructural analysis
revealed that endothelial glycocalyx was thinner in db/db mice before LPS injection.
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In conclusion, in db/db mice, the endothelial glycocalyx is already injured before LPS
administration, and migration of inflammatory cells is both delayed and expanded. This
extended inflammation may be involved in endothelial glycocalyx damage due to the
attenuation of endothelial glycocalyx synthesis.

Keywords: glycocalyx, diabetes, endothelium, inflammation, lipopolysaccharide

INTRODUCTION

Endothelial disorder in patients with non-insulin-dependent
diabetes mellitus (type 2 DM), which accounts for 90-95% of
DM cases, is caused by chronic micro-inflammation from the
early stages of diabetes (Ross, 1999). Systemic microcirculation
disorder by endothelial cell injury is deeply involved in organ
failure and other diseases, such as cardiovascular disease,
nephropathy, retinopathy, and neuropathy (Solinas et al., 2007).
In patients with type 2 DM, the morbidity of infectious disease
is increased, and these infections can easily progress from local
infection to systemic infection (Muller et al., 2005). Additionally,
poor glycemic control in patients with type 2 DM can complicate
the infection (Koh et al, 2012). Likewise, glycemic control
is aggravated by infection, further increasing the severity of
infection. One factor accounting for the easy contraction of
infectious diseases by DM patients is endothelial disorder (Koh
etal., 2012). Moreover, the most frequent comorbidity in patients
with sepsis is DM (Abe et al., 2018; Kushimoto et al., 2020).

Diabetes mellitus patients account for approximately 20% of
patients with sepsis (Investigators et al., 2009; Koh et al., 2012).
The diagnostic criteria for sepsis include organ failure caused by
several factors, including blood distribution abnormalities, heart
contractility disorder, vascular hyper-permeability, endothelial
injury, and decreased glomerular filtration (Singer et al., 2016).
These factors are related to endothelial injury.

Vascular endothelial glycocalyx, which comprises a
glycoprotein complex including syndecans, heparin sulfate,
hyarulonan, and chondroitin sulfate, coats the surface of the
vascular endothelium and maintains vascular homeostasis
(Salmon and Satchell, 2012; Chelazzi et al., 2015). Versican, one
of the core proteins of the glycocalyx, is encoded by VCAN.
Extl, Hasl, Has2, and Csgalnact]l are essential genes in the
synthesis of heparan sulfate, hyaluronan, and chondroitin
sulfate, respectively. Since syndecan-1 is released from
the endothelium upon injury to the glycocalyx, causing
its concentration in circulation to increase, syndecan-
1 is useful as an endothelial glycocalyx injury marker.
For instance, albumin-urea, which is a reliable marker of
endothelial barrier alteration, is associated with the endothelial
glycocalyx structure. Since the endothelial glycocalyx has a
negative charge, the barrier of endothelial cells is destroyed
and albumin flows out when the endothelial glycocalyx is
injured (Adembri et al., 2011). Several previous reports have
suggested associations of endothelial glycocalyx injury with
severe diseases, such as acute kidney injury, chronic kidney
disease, sepsis, and cardiovascular disease (Steppan et al,
2011; Padberg et al, 2014; Liborio et al, 2015; Neves et al.,
2015). In addition, chronic conditions, such as diabetes

(Nieuwdorp et al., 2006a,b; Broekhuizen et al, 2010), aging
(Machin et al., 2018), and hypertriglyceridemia (Oda et al,
2019), injure the structure of the endothelial glycocalyx and
cause degradation.

Sepsis alters neutrophil deformity in lung capillaries and
subsequently causes permeability alterations and edema. In
ARDS, a histologic hallmark secondary to sepsis is the
recruitment of neutrophils to the lung. It has been reported
that the mortality rate of granulocyte macrophage-CSFKO mice,
which have only a few neutrophils and macrophages, was reduced
(Spight et al.,, 2008). In addition, vascular endothelial glycocalyx
injury was attenuated in an experimental sepsis model with a
few neutrophils (Fukuta et al., 2019; Suzuki et al., 2019). In
type 2 diabetes, the gene expression and phenotypic profiles of
monocytes and neutrophils are altered in response to glucose
(Gupta et al., 2017).

The endothelial glycocalyx regulates adhesion and migration
of leukocytes, and likewise prevents the adhesion of leukocytes to
endothelial cells. Therefore, it is presumed that leukocytes adhere
easily to endothelial cells in injured endothelial glycocalyx in DM.
However, a morphological analysis of DM-induced damage in
endothelial glycocalyx has not yet been performed. In addition,
it is also unknown if injured endothelial glycocalyx under DM is
altered by an endotoxemic condition.

Therefore, the aim of the present study is to evaluate the
influence of infection in DM-induced microvascular damage
on inflammation and pulmonary endothelial structure using an
experimental endotoxemia model.

MATERIALS AND METHODS

In vivo Animal Studies

This study conformed to the Guide for the Care and Use
of Laboratory Animals and was approved by the Institutional
Animal Research Committee of Gifu University (Gifu, Japan).

C57BLKS/] Iar m T / + leprdb (db/ +) mice were purchased
from SLC Japan Inc. (Hamamatsu, Japan). They were mated,
and male C57BLKS/J Iar~t leprdb/leprdb (db/db) mice served
as a model for type 2 DM in this study. As the littermate
non-diabetic control, male C57BLKS/] lar m * / 4 lepr®
(db/ +) mice were used.

After 16 h of starvation as described in previous studies
(Fukuta et al.,, 2019; Suzuki et al., 2019), 10-week-old db/db
and db/ 4 mice were intraperitoneally administered LPS
(15 mg/kg; MilliporeSigma, Burlington, MA). Survival rates were
determined at 12, 24, 36, and 48 h after LPS administration, and
surviving mice were sacrificed and lung specimens collected.
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Serum Preparation and Enzyme-Linked

Immunosorbent Assay

Blood samples were collected from the maxillary artery, allowed
to clot at 25°C for 2 h, and centrifuged at 2,000 x g
for 20 min at 4°C. The supernatant was collected as the
serum and used for measuring IL-1f and syndecan-1 levels
by enzyme-linked immunosorbent assay quantitation kits for
mouse IL-18 (MLBO00C; R&D Systems, Minneapolis, MN,
United States) and mouse syndecan-1 (860.090.192; Diaclone,
Besancon Cedex, France).

Histopathologic Scoring

After deparaffinization, lung sections were cut (4 pm thick),
counterstained with hematoxylin and eosin, and scored by
a certified pathologist as follows for neutrophilic infiltration:
(1) absent to rare solitary neutrophils; (2) detectable extravasated
neutrophils observed as small loose cellular accumulates in one
to a few airways and/or alveoli; (3) detectable extravasated
neutrophils observed as loose to compact cellular accumulates
in multiple to coalescing airway and/or alveoli with some
effacement of lung architecture; and (4) detectable extravasated
neutrophils observed as compact cellular accumulates effacing
most adjacent pulmonary structures. Pulmonary edema was
scored as 1, absent; 2, detectable seroproteinaceous fluid in one
to a few alveoli; and 3, seroproteinaceous fluid filling alveoli in a
multifocal to coalescing pattern in the lung (Suzuki et al., 2019).

Immunohistochemistry

Lung sections were incubated with primary antibodies against the
neutrophil and macrophage surface marker CD11b (ab133357;
Abcam, Cambridge, United Kingdom), the vascular endothelial
cell marker CD31 (DIO-310; Dianova GmbH, Hamburg,
Germany), and the activated macrophage surface marker
Iba-1 (019-19741; Wako Pure Chemical, Osaka, Japan).
Sections were immunostained with the Vectastain Elite ABC
system (Vector Laboratories, Burlingame, CA, United States)
as previously described (Suzuki et al, 2019). To diminish
autofluorescence, the TrueVIEW Autofluorescence Quenching
Kit (Vector Laboratories, Burlingame, CA, United States) was
used according to the manufacturer’s protocol. Cell counting was
performed on five randomly selected high-power fields (HPF) in
each section (n = 6).

RNA Extraction, cDNA Synthesis, and
Quantitative Real-Time PCR

RNA was extracted and purified from the lung tissues of
six individual mice in each group using RNA-Bee (Tel-
Test, Inc., Friendswood, TX) according to the manufacturer’s
protocol. RNA concentration and integrity were assessed
spectrophotometrically. RNA was reverse-transcribed using
the High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Carlsbad, CA). cDNA was a template for qRT-PCR.
qRT-PCR was performed using TB Green Premix Ex Taq II
(TAKARA BIO, Kusatsu, Japan) following the manufacturer’s
protocol on a Thermal Cycler Dice TP 990 machine (TAKARA
BIO, Kusatsu Japan). The PCR reaction conditions were 50°C for
2 min, 95°C for 10 min, and 40 cycles of 95°C for 15 s and 60°C

for 1 min. The relative quantification of each transcript (SDCI,
Hasl, Has2, Csgalnactl, Extl, and VCAN) was determined by
setting the threshold cycle (Ct) for each sample to reflect the
cycle number at which the fluorescence generated within the
reaction crossed the threshold level chosen as a point when
the amplification was in an exponential phase. GAPDH was
the loading control. The function 2ACt was used to determine
relative abundance differences, where ACt is the difference in Ct
values between the compared samples. Primers used in the PCR
reactions are provided in Supplementary Table 1.

Scoring of Lectin Staining Intensity

For quantitative analysis of glycocalyx injury, scoring of
Lycopersicon esculentum lectin (tomato lectin, B-1025-5; Vector
Laboratories, Burlingame, CA, United States) staining intensity
was performed using a confocal fluorescence microscope (BZ-
X810, Keyence, Osaka, Japan) and Image] software (Olympus
Corp, Tokyo, Japan). A preferred sugar of tomato lectin is
N-acetylgalactosamine, which is one of the components of
glycosaminoglycan, and vascular labeling by tomato lectin is a
useful method to reveal vascular patterns (Robertson et al., 2015).
Tomato lectin (100 L) was injected into the jugular vein 10 min
before sacrifice. The lung of each mouse was embedded in OCT
compound and frozen with liquid nitrogen. The frozen blocks
were stored at —80°C. Sections of frozen tissues (5-7 wm thick)
were prepared with a cryostat. The intensity of tomato lectin was
scored manually in 10 HPF per sample (n = 6 per sample) in
the focal plane.

Electron Microscopy

Electron microscopy analysis of the endothelial glycocalyx
was performed as previously described (Okada et al., 2017;
Ando et al, 2018; Inagawa et al., 2018). Briefly, mice were
anesthetized and then perfused with a solution comprising 2%
glutaraldehyde, 2% sucrose, 0.1 mol/L sodium cacodylate buffer
(pH 7.3), and 2% lanthanum nitrate, at a steady flow rate
of 1 ml/min, through a cannula placed in the left ventricle.
After the mice were sacrificed, lung samples were fixed in a
solution without glutaraldehyde and then washed in 2% alkaline
(0.03 mol/L NaOH) sucrose solution. The freeze-fracture method
was used to prepare samples for scanning electron microscopy
(S-4800; Hitachi High-Technologies Global, Tokyo, Japan). To
prepare samples for transmission electron microscopy (TEM),
specimens were embedded in epoxy resin, and then ultrathin
(90 nm) sections were generated, stained with uranyl acetate
and lead citrate, and subjected to TEM analysis (HT-7700,
Hitachi High-Technologies Global, Tokyo, Japan). To prepare
samples for conventional electron microscopy, a fixative with
2.5% glutaraldehyde in 0.1 mol/L phosphate buffer (pH 7.4) was
used, without lanthanum nitrate.

Data Analysis

Data are presented as the mean + SEM. A paired-samples
t-test was used to compare the two groups, and survival data
were analyzed using the log-rank test; P < 0.05 was considered
significant. All calculations were performed using Prism software
version 7.02 (GraphPad, La Jolla, CA).
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RESULTS

Profiles of Diabetic Mice

The db/db mice had significantly greater body weight and
higher plasma glucose and hemoglobin alphalc levels than did
non-diabetic db/ 4 mice (Figures 1A,B). Blood urea nitrogen
and alanine aminotransferase levels were also higher in db/db
mice than in db/ + mice, whereas creatinine and aspartate

aminotransferase levels were not significantly different between
the two groups (Figures 1C-F).

Proinflammatory Cytokine
Concentrations in db/db Mice Upon

Lipopolysaccharide Administration
To produce LPS-induced experimental endotoxemia model mice,
we intraperitoneally injected 15 mg/kg LPS into 10-week-old
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FIGURE 1 | Phenotype of do/db mice under normal conditions. Serum (A) blood sugar, (B) HbA1c, (C) blood urea nitrogen, (D) creatinine, (E) aspartate
aminotransferase, and (F) alanine transferase concentration: blood sugar, HoA1c, blood urea nitrogen, and alanine transferase concentrations were significantly
higher in db/db mice (n = 6) than in the wild-type mice (n = 6). *, P < 0.05 vs. wild type.
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db/db mice and littermate db/ + male mice. At 48 h after
LPS administration, the survival rate of db/db mice (0%, 0/10)
was markedly lower (P < 0.05) than the db/ + mice (75%,
18/24) (Figure 2A).

Before LPS injection, the body weight was 40.5 &+ 2.4 g in
db/db mice whereas it was 22.4 £ 0.6 g in the control mice.
Twenty-four hours after LPS administration, the body weight
was 39.2 £ 2.4 g in db/db mice whereas it was 20.5 £ 0.6 g in
the control mice.

In the control mice, the serum proinflammatory cytokine IL-
18 reached 266.5 + 18.9 ng/ml at 6 h after LPS injection and
200.7 & 42.8 ng/ml at 12 h after injection. Thereafter, the serum
IL-1p levels decreased to 30.3 + 6.7 ng/ml within 24 h after LPS
injection (Figure 2B). In db/db mice, IL-1f concentration was
not significantly different at 6 and 12 h after LPS administration
compared with the control mice (357.0 £ 49.8 ng/ml and
337.7 & 63.7 ng/ml, respectively). However, 24 h after LPS

injection, it was 248.7 £ 85.7 ng/ml, which was significantly
higher than that in control mice. However, before LPS injection,
there was no significant difference between the db/db mice
and control mice. This result indicated that inflammation was
prolonged in db/db mice compared with the control mice.

Lung Injury in db/db Mice Under

Lipopolysaccharide Administration

To determine pulmonary injury 24 h after LPS injection, we used
a scoring system (Figures 2C-G). After LPS administration, the
levels of neutrophil infiltration and pulmonary edema increased
compared with pre-LPS injection levels. db/db mice showed
a significant increase in neutrophil infiltration and pulmonary
edema compared with the control mice. These results suggest
that inflammation was aggravated in db/db mice compared with
the control mice.
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FIGURE 2 | Lipopolysaccharide (LPS)-induced lung injury is accelerated in db/db mice compared with in control mice. (A) Kaplan—Meier survival curves for control
mice (n = 24) and LPS-treated mice (n = 10). (B) Serum interleukin 18 (IL-18) was measured in mice using an enzyme-linked immunosorbent assay. (C) Hematoxylin
and eosin-stained lung tissues. Arrows indicate neutrophil infiltration. (D) Graphs of the histologic scoring of lung injury around the pulmonary edema.
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Inflammation Duration in db/db Mice
To examine the infiltration of inflammatory cells after LPS
administration, immunohistochemistry analysis of CD11b was
performed. Before LPS administration, the number of CD11b-
positive cells in db/db mice is larger than in control mice. In
control mice, the proportion of CD11b-positive cells increased
at 6 h after LPS administration (404 + 18 cells/HPF), and then
decreased gradually. By comparison, in db/db mice, the number
of CD11b-positive cells increased gradually until 12 h after LPS
injection (211 £ 9 cells/HPF at 6 h, 350 £ 9 cells/HPF at 12 h
after LPS administration) and gradually decreased at 24 h after
LPS administration (316 =+ 8 cells/HPF) (Figures 3A,B).
Furthermore,  to  assess  activated = macrophages,
immunohistochemical analysis of Iba-1 was performed
(Figures 3C,D). Before LPS injection, there were fewer Iba-
1-positive cells in db/db mice than in control mice. In the control
group, the number of Iba-1 positive cells did not significantly
increase before or at 6, 12, and 24 h after LPS injection (22 + 2,
26 & 1, 29 £ 1, and 34 £ 3 cells/HPE, respectively). However,
Iba-1-positive cells continued to increase until 24 h after LPS
administration, increasing to a significantly greater extent than
that in the control mice.

Pulmonary Endothelial Glycocalyx Injury
in db/db Mice

To investigate pulmonary endothelial glycocalyx injury, serum
syndecan-1 concentration was measured.

Serum syndecan-1 concentration in db/db mice was not
significantly different from that in control mice before LPS

administration (Figure 4A). In the control group, serum
syndecan-1 levels reached 7.7 £ 0.8 ng/ml at 6 h after LPS
injection and 11.2 £ 0.9 ng/ml at 12 h after injection. At later
time points, serum syndecan-1 levels gradually decreased to
7.2 & 1.4 ng/ml at 24 h after LPS administration. Conversely,
serum syndecan-1 concentration in db/db mice continued to
increase up to 24 h after LPS injection and was significantly
higher than that in control mice at 12 and 24 h after LPS
administration (16.5 % 1.1 and 20.0 & 1.9 ng/ml, respectively, vs.
control mice, P < 0.01) (Figure 4A).

To quantitatively assess endothelial glycocalyx injury, we
measured the intensity of tomato lectin staining because lectin
binds to glycoproteins within the endothelial glycocalyx. Injected
tomato lectin co-localize on pulmonary capillary endothelial cells
(Supplementary Figure 1). In db/db mice, tomato lectin intensity
was lower than in the control mice before LPS administration
(Figure 4B and Supplementary Figure 2). After LPS injection,
intensity score is lower in both the control and db/db mice
compared with before LPS injection, and especially, it was
also lower in db/db mice than in the control mice. These
results suggest that injury to endothelial glycocalyx in pulmonary
capillaries was aggravated in db/db mice.

Pulmonary Endothelial Glycocalyx

Synthesis in db/db Mice

To confirm endothelial glycocalyx synthesis before LPS
administration, qRT-PCR was performed for syndecan-1
(SDCI, Figure 4C), hyaluronan synthase 1 (HASI, Figure 4D),
hyaluronan synthase 2 (HAS2, Figure 4E), chondroitin sulfate
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N-acetylgalactosaminyltransferase 1 (Csgalnactl, Figure 4F),
exostosin-1 (EXT1I, Figure 4G), and versican (Vcan, Figure 4H)
in the control and db/db mouse groups. Results showed that the
expression of EXT1, Csgalnactl, and Vcan in db/db mice was
significantly decreased compared with that in the control mice
before LPS administration.

The ultrastructure of the endothelium and endothelial
glycocalyx ~was analyzed wusing electron microscopy.
Conventional SEM results showed that pulmonary capillaries
were of the continuous type, characterized by an uninterrupted
endothelium and a continuous basal lamina, in control group
mice before LPS administration (Figure 5A). To determine the
endothelial glycocalyx structure, SEM with lanthanum staining
was performed (Figure 5B). The endothelium-like structure
of endothelial glycocalyx covered the surface of the vascular
endothelium in the control group, under normal conditions,
whereas the endothelial glycocalyx structure was thinner in
db/db mice. After LPS injection, the endothelial glycocalyx
was degraded completely in db/db mice, whereas its injury was
attenuated in the control mice (Figure 5B).

Conventional TEM also revealed that the endothelium was
thin and smooth in control mice before LPS injection. However,
in the control mice after LPS injection, the endothelial wall
became edematous, and the extent of this was greater in db/db
mice than in the control mice with or without LPS (Figure 6A).

The endothelial glycocalyx structure showed greater
degradation in db/db mice than in control mice, even in
the absence of LPS (Figure 6B). After LPS injection, the
endothelial glycocalyx caused a skip lesion in control mice, and
a part of the endothelium was exposed to the vascular lumen. In
db/db mice, the endothelial glycocalyx was significantly degraded
than that in the control group (Figure 6B).

DISCUSSION

The current study showed that extended inflammation occurs in
db/db mice after LPS administration. Specifically, we showed that
(a) the endothelial glycocalyx layer in db/db mice was thinner
than in the control mice before LPS injection, (b) the survival

Frontiers in Cell and Developmental Biology | www.frontiersin.org

April 2021 | Volume 9 | Article 623582


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Sampei et al.

Endothelial Glycocalyx in Diabetes

LPS (+)

Lanthanum Nitrate (-) >

w

Lanthanum Nitrate (+)

control mice.

FIGURE 5 | Ultrastructural imaging of pulmonary endothelial injury by SEM. (A) Images for samples not stained with lanthanum nitrate; the endothelial glycocalyx
was not detected. (B) The endothelial glycocalyx was detected using lanthanum nitrate staining. Although the moss-like structure of the endothelial glycocalyx
covered the surface of the vascular endothelium in the control group mice under normal conditions, the endothelial glycocalyx structure was already degraded and
dispersed (white arrow) in db/db mice. After LPS injection, the endothelial glycocalyx was degraded completely in db/db mice, whereas its injury was attenuated in

Control
L N

rate was significantly decreased in db/db mice compared with
in the control group, and (c) the migration of inflammatory
cells was delayed and extended in db/db mice compared with
in control mice.

Endothelial Glycocalyx Layer in db/db

Mice

The endothelial glycocalyx is injured under hyperglycemic
conditions (Nieuwdorp et al, 2006a,b; Hirota et al., 2020).
One mechanism responsible for this may involve attenuation of
glycocalyx synthesis. We found that ExtI, Csgalnactl, and Vcan
gene expression decreased in db/db mice before LPS injection.
These results suggested the possibility that endothelial glycocalyx
synthesis decreased in db/db mice, although the synthesis of
glycocalyx is complicated by multiple enzymatic pathways, and
factors regulating its shedding include local pH and mechanical
stimuli (Reitsma et al., 2007).

Previous reports have shown that endothelial glycocalyx is
synthesized on endothelial cells (Mensah et al., 2017), and it
was also found that endothelial cell dysregulation is involved
in DM (McVeigh et al, 1992; De Vriese et al., 2000). Under

hyperglycemia, glucose intake into endothelial cells is promoted
via glucose transporter 1 (Mann et al.,, 2003), and endothelial
disorder results from intracellular metabolic disorders (Wautier
et al., 2001; Quagliaro et al., 2003). Likewise, insulin resistance
and inflammatory cytokines can also impair the function of
endothelial cells (Groop et al., 2005; Razavi Nematollahi et al.,
2009; Taegtmeyer et al., 2015).

The endothelial glycocalyx is injured directly by
hyperglycemia; and its synthesis may be damaged because
endothelial cells under DM are exposed to hyperglycemic
conditions for an extended time.

Migration of Inflammatory Cells Is

Delayed and Expanded in db/db Mice

In db/db mice, the number of CD11b-positive cells, including
neutrophils and macrophages, delayed in reaching the peak
compared with that in the control mouse group. After reaching
the peak, the number of cells did not decrease in db/db mice,
whereas cell number was significantly decreased in the lungs
of control mice. This result is also supported by the result of
analysis of serum proinflammatory cytokine IL-1B, which did
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more degraded in db/db mice. Black arrows indicate the endothelial glycocalyx.

FIGURE 6 | Ultrastructural imaging of pulmonary endothelial injury by transmission electron microscopy (TEM). (A) Images taken from samples not stained with
lanthanum nitrate; the endothelial glycocalyx was not detected. The pulmonary endothelium was thin and smooth in control mice before LPS injection. In control
mice after LPS injection, the endothelial wall became edematous, but the extent of this was greater in db/db mice than in control mice treated with or without LPS.
(B) The endothelial glycocalyx was detected using lanthanum nitrate staining. The endothelial glycocalyx structure showed greater degradation in db/db mice than in
control mice under normal conditions. After LPS injection, the endothelial glycocalyx formed a skip lesion in control mice, whereas the endothelial glycocalyx was

not decrease in db/db mice compared to the control group.
Meanwhile, tissue-resident macrophages, as indicated by Iba-1-
positive migration to lung tissue, continued to increase in db/db
mice after LPS injection, whereas there was no significant change
in the control mice.

Consistent with our findings showing a delayed peak in
neutrophil numbers, it was reported that neutrophil migration
capability is attenuated in DM (Delamaire et al., 1997; Koh
etal.,, 2012). However, tissue-resident macrophages may increase
compensatory mechanisms, instead of neutrophils with low
migration capability. Consequently, in db/db mice, extended
inflammation may occur. In addition, the alteration of serum
syndecan-1 concentration, serving as a marker of endothelial
glycocalyx injury, was also similar to the modulation of
inflammatory cells after LPS injection.

Endothelial Glycocalyx Injury Influences

Extended Inflammation
The intact glycocalyx prevents the inadvertent adhesion
of platelets and leukocytes to the vascular wall

(Mulivor and Lipowsky, 2002; Reitsma et al., 2007; Becker et al.,
2010a,b). Specifically, the glycocalyx thickness (approximately
0.5 wm) exceeds the dimension of cellular adhesion molecules
expressed on endothelial cells, such as integrins, selectins, and
ICAMs, thus attenuating the interactions of these molecules
with circulating blood cells (Becker et al., 2010a,b). Injury of the
endothelial glycocalyx leaves the endothelial cells vulnerable to
injury, and it is easy to expose the cell surface receptors to the
vascular lumen, and granulocytes and platelets enable them to
adhere to endothelial cells.

In db/db mice, the endothelial glycocalyx was thinner than
that in the control mice before LPS administration. In addition,
hyperglycemia itself stimulates ICAM expression on endothelial
cells (Jafar et al., 2016). Therefore, it is thought that endothelial
cells are easily injured. This phenomenon may have led to
extended inflammation in the lungs of db/db mice.

Lipopolysaccharide — administration causes endothelial
glycocalyx injury; subsequently, the endothelial cells are
damaged by pathogens and damage associated molecular
patterns. It was recently reported that endothelial cells cause
pyroptosis under stress (Cheng et al., 2017; Jia et al., 2019) and
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secrete proinflammatory cytokines, such as IL-1p. Pyroptosis is
a highly inflammatory form of programed cell death that occurs
most frequently upon infection with intracellular pathogens and
is likely to form part of the antimicrobial response (Jorgensen and
Miao, 2015). This process promotes the rapid clearance of various
bacterial, viral, fungal, and protozoan infections by removing
intracellular replication niches and enhancing the host’s defensive
responses (Jorgensen and Miao, 2015). Although this reaction
promotes inflammatory responses for host defense, excessive
promotion of the inflammatory response leads to injury in the
host itself. Since it is possible that pyroptosis contributes to
extended inflammation in db/db mice, further study is required.

Recently, the novel coronavirus disease 2019 (COVID-
19) caused by SARS-CoV-2 has become a serious concern.
It is suggested that DM plays a pivotal role in COVID-19
progression. In particular, endothelial disorders, including loss of
endothelial glycocalyx, may be involved in increased morbidity
and mortality in diabetic patients with COVID-19 (Hayden,
2020). This phenomenon may also be explained by the extended
inflammation that occurs in diabetic patients.

Notably, a limitation of this study is that it is descriptive, and
further research is required to clarify the implicated mechanisms.
In addition, sepsis is an exceedingly complicated disease and
analysis with a simple experimental endotoxemia model may
not suffice. Therefore, additional studies using a bacteremia
model are required. As lanthanum binds to not only endothelial
glycocalyx but also calcium-binding sites, it has been used as a
calcium probe in several organs (Shaklai and Tavassoli, 1982).
Therefore, lanthanum staining is not specific to glycocalyx.

CONCLUSION

In conclusion, this study provided the ultrastructure of
endothelial glycocalyx injury under diabetic conditions. In db/db
mice, endothelial glycocalyx is already injured before LPS
administration, and the migration of inflammatory cells is both
delayed and expanded. This extended inflammation may be
involved in endothelial glycocalyx damage due to the attenuation
of endothelial glycocalyx synthesis.
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