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Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and
insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle
contraction results in AMPK activation, which promotes GLUT4 translocation and PM
insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4
translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4
translocation. We performed biochemical, molecular biology and fluorescent
microscopy imaging experiments using gain- and loss-of-function mutants of
tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as
a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4
translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in
AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines
Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and
glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of
glucose homeostasis.
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INTRODUCTION

In addition to insulin stimulation, energy demanding conditions enhance glucose transport in
skeletal muscle through GLUT4 redistribution to the plasma membrane (PM) through a distinct but
separate signaling cascade other than insulin-signaling in skeletal muscle (1). When there is reduced
energy supply in muscle cells under certain conditions like muscle contraction and deprivation of
glucose or oxygen, glucose is replenished under the regulation of AMPK signaling (2).
Abbreviations: AICAR, 5-Aminoimidazole-4-carboxamide ribonucleotide; AMP, Adenosine monophosphate; AMPK, 5’
adenosine monophosphate-activated protein kinase; ATCC, American Type Culture Collection; ATP, Adenosine
Triphosphate; CA, Constitutively Active; DMEM, Dulbecco’s Modified Eagle Media; DN, Dominant Negative; GLUT4,
Glucose Transporter Type 4; GST, Glutathione S-transferase; IACUC, Institutional Animal Care and Use Committee; KD,
Knock Down; MS, Mass Spectrometry; PAGE, Polyacrylamide Gel Electrophoresis; PBS, Phosphate Buffer Saline; PI3K,
Phosphoinositide 3-Kinase; PM, Plasma membrane; SDS, Sodium Dodecyl Sulphate; TIRFM, Total Internal Reflection
Fluorescence Microscopy; Tmod3, Tropomodulin 3; WT, Wild Type.
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AMPK acts as a sensor of cellular energy status in eukaryotic
cells (3). It is activated by increased cellular [AMP]/[ATP] ratio
caused by metabolic stresses, which accelerates ATP
consumption and/or interferes with ATP production (4).
AMPK activation in skeletal muscle correlates with enhanced
glucose uptake (5, 6). AMPK activators, such as AICAR,
adiponectin, IL-6, dinitrophenol and A-769662 promote
GLUT4 trafficking to the cell surface and enhance glucose
uptake in myotubes (7, 8).

Although AMPK-mediated GLUT4 translocation and
insertion into the PM is a critical cellular process in the
regulation of glucose uptake and glucose homeostasis, little is
known at the molecular level regarding the downstream effectors
of AMPK that play an essential role in the process, especially
when compared with the well-studied Akt substrates in the
regulation of GLUT4 trafficking mediated by the insulin
signaling cascades (9–13). We have recently identified
tropomodulin 3 (Tmod3), an actin filament capping protein, as
an AKT2 substrate and characterized its role in the regulation of
insulin-dependent GLUT4 translocation and glucose uptake in
adipocytes (14). Phosphorylation of Tmod3 regulates insulin-
induced cortical F-actin remodeling as an essential step for
GLUT4 vesicle fusion with the PM. Furthermore, the
interaction of Tmod3 with tropomyosin, Tpm3.1, is required
for GLUT4 vesicle exocytosis and glucose uptake (14).

In this study, we report that Tmod3 is a novel effector of
AMPK, and that Tmod3 phosphorylation by AMPK is essential
for GLUT4 insertion into the PM and glucose uptake.
Furthermore, AMPK-mediated Tmod3 phosphorylation
regulates cortical F-actin remodeling and the binding of
Tmod3 with monomeric G-actin is independent of the Tmod3:
tropomyosin interaction. Taken together, our study provides a
mechanistic link between AMPK signaling and cortical F-actin
remodeling in GLUT4 insertion into the PM and glucose uptake
in myoblasts.
MATERIALS AND METHODS

Reagents
All the plasmids, antibodies and primers are listed in
Supplementary Tables 1–3 respectively. All the chemicals were
purchased from Sigma-Aldrich unless otherwise stated.

Cell Culture
L6 myoblasts ATCC (American Type Culture Collection) were
cultured in a-MEM supplemented with 10% heat inactivated
fetal bovine serum and 1% penicillin-streptomycin (10,000
U/mL) at 37°C and 5% CO2. HEK293T (ATCC) cells were
cultured in high glucose DMEM supplemented with 10% fetal
bovine serum and 1% penicillin-streptomycin.

Lentivirus Packaging and Infection
All the lentiviruses were generated using third generation
packaging system as per Biosafety Level 2 and institutional
guidelines of Agency for Science, Technology and Research
(A*STAR), Singapore. Lentiviruses were produced by
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co-transfection of HEK293T cells with lentiviral expression and
packaging plasmids using the calcium phosphate transfection
method as previously described (15, 16). Viral supernatant was
collected after 48 hours of transfection and centrifuged at 1,000 x g
for 5 minutes and filtered through 0.45 µm filter. The viruses were
further concentrated by ultracentrifugation using SW41 swinging
rotor in Beckman Coulter Optima-L-100 XP at 116,000 x g for 2
hours at 4°C. L6 myoblasts were infected with titrated viruses in
the presence of 8 µg/mL of polybrene (Hexadimethrine bromide,
Cat. No: 107689-10G, SIGMA-ALDRICH). The growth medium
was replaced with normal growth medium after 24 hours
of infection.

Protein Purification
Tmod3-WT and its variants were purified as described
previously with brief modifications (14).

Preparation of FLAG-Tagged Proteins From
HEK293T Cells
FLAG tagged proteins were expressed in HEK293T cells
and the cells were lysed in TNET buffer (50 mM Tris-HCl,
pH 7.5, 150 mM NaCl, 10 mM NaF, 1 mM EDTA, 1%
Triton X-100) supplemented with 2 mM Na3VO4 and 1
mM PMSF and 1X protease inhibitor cocktail tablet
(Roche). The cleared supernatant was purified using anti-
FLAG M2 Affinity gel (Sigma-Aldrich). Proteins were
subsequently eluted with 3XFLAG peptide (Sigma-Aldrich)
in TBS buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl). Total
protein concentrations in the samples were measured using
Bradford assay.

Recombinant GST-Fusion Protein Purification
Full length mouse Tmod3-WT (Wild Type) and mutants were
inserted in-frame in the linker region of pGEX-KG vector in
order to encode fusion proteins with GST (Glutathione S-
transferase) in the N-terminus. GST fusion Tmod3-WT and
mutants were expressed in BL21 Escherichia coli and induced
with 1 mM isopropyl-b-D-thiogalactopyranoside for protein
production. Bacteria were harvested when OD600 of the
bacterial growth reached approximately 1.00. The lysates were
harvested and purified using standard protein purification
protocol. Briefly, bacterial pellet was re-suspended in Buffer A
containing 20 mM Tris-HCl, pH 8.0, 0.1 M NaCl, 1 mM DTT
(dithiothreitol), 1 mM PMSF and 1X protease inhibitor cocktail
tablet and incubated with 0.25 mg/ml lysozyme on ice for
30 min. The bacteria lysates were sonicated on ice and were
treated with 0.5% Triton X-100 and rocked at 4°C for 15 minutes.
The lysates were then cleared by centrifugation at 16,000 x g, at
4°C for 30 minutes. Glutathione-Sepharose 4B beads (GE
Healthcare) were equilibrated in Buffer A containing 0.1%
Triton X-100. The pre-equilibrated beads were incubated with
clear supernatant for 1 hour at 4°C. The glutathione beads bound
GST-fusion proteins were eluted by thrombin cleavage (GE
Healthcare) in TTB buffer (20 mM Tris-Cl, pH 8.0, 2.5 mM
CaCl2, 150 mM NaCl). Thrombin was removed using
benzamidine-Sepharose beads (GE Healthcare) and thrombin
free proteins were further concentrated using centrifugal filters
April 2021 | Volume 12 | Article 653557
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(Millipore). Protein concentrations were measured using
Bradford assay.

Detection of Phospho-Ser25 of Tmod3 by
LC-MS/MS
In-Gel Digestion and Nano-Electrospray Ionization-
Tandem Mass Spectrometry
Phosphorylation of Ser25 of Tmod3 was detected by LC-MS/MS
as described previously with brief modifications (17). Briefly,
FLAG-tagged Tmod3 proteins were purified from HEK293T
transiently co-expressing FLAG-Tmod3 and constitutively
active form of AMPK (Myc-AMPK-CA) using anti-FLAG M2
Affinity gel. Proteins were eluted in 2x Laemmli buffer, heated at
95°C for 10 minutes and separated using 12% precast gels (Bio-
Rad). The gel was stained with 0.1% Coomassie Brilliant Blue
R250. Gel bands around 40 kDa which correspond to Tmod3
were excised, de-stained, de-hydrated with acetonitrile, treated
with 25 mM DTT in 50 mM ammonium bicarbonate at 56°C for
25 minutes and alkylated in 55 mM iodoacetate for 30 minutes in
the dark at room temperature. Samples were then incubated with
1 mg trypsin for 16 hours at 37°C. Then, the gel plugs were
digested with 10 ng/ml mass spectrometry grade trypsin gold
(Promega Gema) in 25 mM ammonium bicarbonate overnight at
37°C. Peptide mixtures were extracted with 20 mM ammonium
bicarbonate, then with 50% (v/v) acetonitrile, 5% (v/v) formic
acid in H2O. The pooled peptides, thus evaporated to dryness
using SpeedVac, were dissolved in 5 ml of 2% (v/v) methanol and
1% (v/v) formic acid with 50mM citric acid for enhancing the
detection by LC-ESI-MS/MS.

Mass spectrometry (MS) analysis was performed on a LTQ-
Orbitrap Velos Pro ETD Mass Spectrometer (Thermo Fisher
Scientific, San Jose, CA) that was equipped with nanoACQUITY
UPLC system (Waters Milford, MA), Xcalibur 2.2 SP1.48 and
LTQ Tune Plus 2.7 instrument control. 5 ml of peptides were
desalted for 5 minutes with 0.1% (v/v) formic acid in water and
1% (v/v) acetonitrile in mobile phase at the rate of 8mL per
minute. Nano-reverse-phase liquid chromatography, in
nanoACQUITY UPLC BEH 130Å 1.7 mm C18 column,
75 mm x 200 mm, was used to separate desalted peptides
keeping the flow rate of 0.3 ml/min at 35°C. Nanospray in
positive ion mode at 1.8 kV was used for ionization. Data-
dependent scanning tandem mass spectrometry was used to
obtain spectra with one full MS scan from 300 to 1,800 m/z at
resolution of 60,000, followed by HCD Orbitrap tandem MS
scans of ten most intensive peptide ions with normalized
collision energy of 35 v at a resolution of 15,000.

Mass Spectrometry Data Analysis
SequestHT and PhosphoRS3.0 in Protein Discoverer 1.4 SP1
software (ThermoScientific) were used to analyze tandem mass
spectrometry data. MS raw data were also analyzed by database
search using UniProtKB/Swiss-Prot, and annotation of the
phospho-peptide tandem MS/MS using PEAKS studio 7.0
software (Bioinformatics Solutions Inc.) ± 5 ppm and ± 0.2 Da
of the peptide and fragment ion mass tolerances were used
respectively. Carbamido-methylation of cysteine was included
as a fixed modificat ion , oxidat ion of methionine ,
Frontiers in Endocrinology | www.frontiersin.org 3
phosphorylation of serine, threonine and tyrosine were selected
as dynamic and variable modification. Two missed cleavages
were allowed for searching the data.

In Vitro GST Pull-Down Assay
The glutathione beads bound GST-fusion proteins were
equilibrated with TNET buffer. The beads and cell lysates
containing 2 mg proteins were rocked at 4°C for overnight.
The beads were washed with TNET buffer and eluted using 2X
Laemmli sample buffer. The samples were subjected to SDS-
PAGE and Western blot analysis.

In Vitro Protein Kinase Assay
In vitro kinase assays were performed on purified FLAG-tagged
Tmod3 WT and mutant proteins. Briefly, 1 mg of FLAG-
Tmod3 and 1 mg recombinant AMPK (a1/b1/g2) (Sigma-
Aldrich) were incubated in 20 ml of volume reaction in kinase
buffer (25 mM Tris-HCl, pH 7.5, 5 mM b-glycerophosphate,
2 mM DTT, 0.1 mM Na3VO4, 10 mM MgCl2) containing 0.2
mM ATP. The kinase reaction was incubated at 30°C for 30
minutes and boiled in 30 ml 2X Laemmli sample buffer and
separated by SDS-PAGE. Phosphorylation signals were detected
using anti-phospho-serine antibody. For autoradiography, the
sample mixtures were incubated in the kinase buffer with 10 mCi
[32P] g-ATP (PerkinElmer, SG) for 30 minutes at 30°C and
subjected to SDS–PAGE and autoradiography.

Radioactive Glucose Uptake Assay
2-Deoxyglucose uptake measurements were carried out as
described previously (18) with some modifications. Briefly, L6
myoctyes were deprived of serum for 2 hours. Following all
stimulations and inhibitions cell monolayers were washed thrice
with KRPH (Krebs-Ringer Phosphate – Hepes, pH 7.4) buffer
(19) and any remaining liquid was aspirated. Cells were then
incubated for 5 minutes in KRPH buffer containing 10 mmol/l
unlabeled 2-deoxyglucose and 10 mmol/l [3H]-2-deoxyglucose
(1 mCi/ml) in the absence of AICAR and inhibitors, unless
otherwise indicated. The reaction was terminated by washing
thrice with cold PBS. The radioactivity was determined by lysing
the cells with 0.05N NaOH, followed by liquid scintillation
counting using PerkinElmer counter. Total protein was
determined by the Bradford method. Nonspecific uptake was
determined in the presence of 10 mmol/l cytochalasin B and
subtracted from all experimental values. The glucose uptake
values are expressed as “pmol radioactive 2-deoxyglucose taken
up per minute and per mg protein.”

Fluorescence Microscopy
Co-localization studies were carried out as described previously
(14, 20). Briefly, L6 myoblasts plated on 0.1% gelatin-coated
cover-slips were serum starved for 2 hours before AICAR
treatment. Cells were fixed with 4% paraformaldehyde of pH
7.4, washed with ice cold PBS and blocked with PBS containing
5% goat serum (Cat. No: 16210072, GIBCO Life Technologies)
and 0.02% sodium-azide for at least 1hour. Cells were then
permeabilized with 0.01% Triton-X 100 in PBS and stained with
relevant antibodies followed by Alexa Fluor secondary antibodies
April 2021 | Volume 12 | Article 653557
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accordingly. The cover-slips were mounted with DAKO
mounting medium (DAKO) after washing with PBS. Optical
sections of each samples were taken through sequential scans at
relevant wavelengths (488 nm and 561 nm) using a Nikon A1R-
A1 confocal laser microscope system with X100 NA/1.40 CFI
Plan APO VC oil-immersion objective. TIRFM setup was based
on Nikon Eclipse-Ti inverted microscope with two EMCCD
cameras (1,002 X 1,002 pixels, 8 X 8 mm, 14-bit, Andor iXonEM

+885; Andor Technologies) capable of capturing two channels
(TIRF laser 488 nm; TIRF laser 561 nm) simultaneously. Both
TIRF and epifluorescence images were captured using X100 NA/
1.49 APO TIRF oil-immersion objective. Immersion oil
(ND=1.515, Nikon) was used to bridge the optical contact
between the cover-slip and the objective. The penetration
depth of the evanescent field is estimated to be ~200 nm.
Images were acquired with no binning; at 13 mHz, the readout
rate with average exposure times vary between 100 and 300 ms.

Myc-GLUT4-mCherry Translocation
For GLUT4 translocation studies, L6 myoblasts were transduced
with lentivirus encoding shRNA against Tmod3 or Tmod3
mutants. After the AICAR treatment the cells were fixed and
blocked in non-permeabilized condition. Then the cells were
incubated with primary mouse anti-Myc Ab (9E10) for overnight
and with Alexa Fluor 488-conjugated anti-mouse secondary
antibody for 1 hour at 4°C. Mounted samples were subjected
to confocal imaging at single centrally located plane. Nikon
Element software was used for quantitative measurements of
GLUT4 vesicle translocation. Briefly, the entire ventral surface of
each cells expressing Myc-GLUT4-mCherry was selected for
measurement of fluorescence intensity of both mCherry and
Myc-signals after removal of background fluorescence. The ratio
of cell surface to total GLUT4 was quantified by detecting cell
surface GLUT4 through anti-Myc fluorescence immuno-
labelling and total GLUT4 through mCherry fluorescence in
non-permeabilized L6 cells. Data in each group were normalized
and expressed as a percentage of AICAR-treated control cells.
TIRF/epifluorescence analysis for fixed cells was performed
(21, 22). Under non-permeabilized conditions, the ratio of
TIRF-Myc/Epi-mCherry was acquired by dividing the
fluorescence intensity of TIRF-Myc signal for each cell by that
of the Epi-fluorescence GLUT4-mCherry. Data in each group
were averaged and the ratio of TIRF-Myc/Epi-mCherry in
control group was set as 1 for group comparison.

TIRFM-based F-Actin Remodeling
and Analysis
TIRF based F-actin remodeling and analyses were done as
described previously (14). L6 myoblasts expressing Lifeact-
tdTomato were serum starved for 2hours and imaged using
TIRFM with Perfect Focus System. AICAR (2 mM) was added at
zero time point and TIRF images were taken over 30 minutes
with an interval of 15 seconds and 121 total readings. Two
independent ways of measurement were used to analyze the
F-actin remodeling. (1) Measurement of TIRF-Lifeact-tdTomato
on the cell periphery: this analysis was particularly focused on the
AICAR-stimulated build-up or enrichment of cortical F-actin at
Frontiers in Endocrinology | www.frontiersin.org 4
the cell periphery. To quantify, multiple boxes of the region of
interest [L X W: 5 X 5, 25 mm2 per region of interest (ROI)]
spanning across the boundary of cell periphery were used to
measure the fluorescence intensities of RAW images over time.
In order to take into account the membrane reorganization in the
time course, each ROI was selected to include a portion of the cell
periphery and partial background. TIRF intensities of all ROIs
were measured over time, all the readings were normalized to the
intensity measured at zero time point after removing the
background fluorescence, and the averaged values were plotted
against the time so as to indicate the time course of F-actin
remodeling under AICAR stimulation. This method selectively
estimated the extent of cortical F-actin rearrangements on the
cell periphery without considering the changes in intracellular
ventral region. Events of membrane remodeling could be
distinguished from the events of thickening of cortical F-actin.
(2) Measurement of the TIRF-Lifeact-tdTomato on the ventral
regions of the cell and away from the cell edge: ventral regions of
each individual cell, excluding the peripheral regions of the cell
were manually selected in Nikon Element software and subjected
to time course analysis as described in (1) Measurement of TIRF-
Lifeact-tdTomato on the cell periphery. The extent of ventral
actin polymerization was assessed over time without taking into
account the changes in membrane ruffling activity and peripheral
F-actin structures.

Statistical Analysis
Data were expressed as means ± SEM unless otherwise stated.
Statistical analyses were performed using ANOVA. The levels of
statistical significance were presented as asterisks and defined in
each figure legend together with the name of the statistical test
accordingly. The graphical data were analyzed using Microsoft
Excel 2010 and Prism 7.0 (GraphPad, San Diego, CA).
RESULTS

AMPK Regulates GLUT4 Translocation
to the Cell Surface and Glucose Uptake
in L6 Myoblasts
To investigate AMPK regulation of GLUT4 translocation and
glucose uptake in myoblasts, we stably expressed a chimeric
GLUT4 protein that includes a Myc epitope at the first exofacial
loop and a fluorescent protein mCherry at the C-terminus
(Figure 1A) in L6 myoblasts. GLUT4 translocation to the cell
surface includes at least two steps: first, GLUT4 trafficking from
the intracellular space to near the PM; and second, GLUT4
insertion into the PM, which results in the surface exposure of its
exofacial loops. The chimeric protein allows tracking of GLUT4
localization, thus its trafficking to the cell periphery by mCherry
fluorescence, and monitoring of GLUT4 insertion into the PM by
antibody labelling of surface-exposed Myc at the first exofacial
loop under non-permeabilized condition (14). Similar to insulin
signaling activation, significant increase in GLUT4 translocation
to the PM and surface exposure was observed upon AMPK
activation, along with increased glucose uptake in both L6
April 2021 | Volume 12 | Article 653557
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myoblasts and myotubes (Figures 1B–D and Supplementary
Figure 1A). Conversely, Compound C, an AMPK inhibitor,
reduced both GLUT4 translocation and glucose uptake, as
wortmannin did for insulin signaling (Figures 1B–D and
Supplementary Figure 1A). These results are consistent with
an established function of AMPK in the regulation of GLUT4
translocation to the PM and glucose uptake in L6 myoblasts, and
demonstrate an experimental setup to allow examination of
AMPK regulation of distinct steps of GLUT4 translocation.

Tmod3 Phosphorylation by AMPK Is
Essential for AMPK-Mediated GLUT4
Translocation to the PM and
Glucose Uptake
Tropomodulins are actin filament capping proteins that
regulates the length of actin filaments in muscle and non-
muscle cells (23). All four Tmod isoforms were detected in L6
myoblasts, however, Tmod3 was found to be predominantly
expressed (Supplementary Figure 1B). Tmod3 expression was
not altered with the differentiation of L6 myoblasts into
Frontiers in Endocrinology | www.frontiersin.org 5
myotubes (Supplementary Figure 1C). Tmod3 has been found
to be localized mainly in the cytoplasm but sparsely in the cortex
in the maturing oocytes (24). Tmod3 was reported to be localized
preferentially at the F-actin rich structures in human
microvascular endothelial cells (25). However, Tmod3 does not
localize prominently to perpendicular F-actin bundles of the cell
body and diffused distribution of Tmod3 is observed in the
cytoplasm which is likely due to fixation of a portion of the
soluble Tmod3-pool (25). Consistently, we found that Tmod3
was associated with phalloidin-labeled cortical F-actin and co-
localized with GLUT4 at cell periphery under AMPK activation
conditions (Supplementary Figures 2A–F). Moreover, a subset
of Tmod3 was co-localized with phospho-AMPK under AMPK
activation (Supplementary Figures 3A–C). Tmod3 KD L6
myoblasts were generated using shRNA against Tmod3 and
control shRNA to study the association of Tmod3 with
phospho-AMPK (Supplementary Figure 1D) . Not
surprisingly, the co-localization of Tmod3 with the phospho-
AMPK was significantly reduced while the level of phospho-
AMPK remained unaltered in Tmod3 KD L6 myoblasts
A B

D

C

FIGURE 1 | AMPK regulates GLUT4 translocation to the PM and glucose uptake in L6 myoblasts. (A) GLUT4 chimeric protein, Myc-GLUT4-mCherry, for the
detection of GLUT4 translocation and insertion into the PM. (B, C) L6 myoblasts stably expressing Myc-GLUT4-mCherry were serum starved for 2 hours and treated
with DMSO as control, insulin (100 nM) or insulin along with wortmannin (200 nM) for 20 minutes, AICAR (2 mM) or AICAR along with Compound C (CC) (10 µM) for
30 minutes. In fixed and non-permeabilized cells, cell surface Myc-GLUT4-mCherry signals were detected with anti-Myc mouse monoclonal antibody followed by
Alexa Fluor-488 goat anti-mouse secondary antibody. The samples were subjected to confocal microscopic imaging. Images presented are from a single centrally
located plane. Intensity of Myc at PM was quantified against intensity of total mCherry in the whole cell. Data in each group were normalized and expressed as a
percentage of Insulin treated cells. Data are presented as mean ± SEM of about 100 cells in each group from three independent experiments (ANOVA with Dunnett’s
multiple comparison test). **p<0.01 and ***p<0.001. Scale bar: 10 mm. (D) Impaired [3H]-2-Deoxyglucose uptake in L6 myoblasts. After serum starvation for 2 hours,
L6 myoblasts were treated with DMSO as control, insulin (100 nM), insulin plus wortmannin (200 nM) for 20 minutes, AICAR (2 mM) or AICAR plus Compound C
(CC) (10 µM) for 30 minutes. Data are presented as mean ± SEM of three independent experiments (ANOVA with Dunnett’s multiple comparison test). *p<0.05.
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(Supplementary Figures 3D–F) indicating that the silencing of
Tmod3 has no role in AMPK phosphorylation. These data
suggest a potential role of Tmod3 in regulating AMPK-
mediated GLUT4 translocation and glucose transport through
cortical F-actin remodeling.

Like insulin, AICAR-activated AMPK induces glucose
transport (6, 26–29), which is primarily mediated by GLUT4
insertion in the PM in myocytes (30). As Tmod3 was previously
shown to be involved in the regulation of insulin-stimulated
GLUT4 translocation and insertion into the PM and glucose
uptake in adipocytes (14), we decided to investigate whether
Tmod3 was also critical in AMPK-mediated GLUT4
translocation and glucose uptake. As expected, AICAR-
activated-AMPK induced apparent GLUT4 translocation and
insertion into the PM (Figures 2A, B) and significant glucose
uptake (Figure 2C) in scrambled control myoblasts. In contrast,
Tmod3-KD myoblasts showed dramatically reduced GLUT4
surface exposure at the PM (Figures 2A, B) and glucose
uptake (Figure 2C) in response to AICAR treatment. Co-
treatment of AICAR with Compound C (CC), an AMPK
inhibitor, abolished AICAR-induced glucose uptake in
scrambled control cells (Figure 2C), consistent with the notion
that AICAR-induced glucose uptake was mediated by AMPK.
These data suggest that Tmod3 is essential for AMPK-mediated
GLUT4 translocation and/or its insertion into the PM, and
glucose uptake in L6 myoblasts.

Tmod3 Is Required for GLUT4 Insertion
Into the PM
To further delineate the role of Tmod3 on GLUT4 translocation
and insertion into the PM, we used total internal reflection
fluorescence microscopy (TIRFM) to visualize fusion events
within ~200 nm from the PM, together with epifluorescence
for events across the entire cell, including GLUT4 trafficking
from intracellular space to the cell periphery (14). Under non-
permeabilized conditions, GLUT4 inserted into the PM was
quantified by the ratio of TIRF-Myc fluorescence to Epi-
mCherry fluorescence (14). In the control cells, AICAR
stimulation led to both significant GLUT4 translocation to the
TIRF zone near the PM and insertion into the PM, and surface
exposure of the Myc epitope as evidenced by the red and green
fluorescence signals (Figures 2D, E). In contrast, Tmod3-KD
myoblasts displayed diminished GLUT4 insertion into the PM,
although GLUT4 trafficking to the TIRF zone was largely
unaffected (Figures 2D, E). These results suggest that KD of
Tmod3 affects GLUT4 vesicle fusion with the PM but not its
trafficking from the intracellular space to the cortical area of cell
periphery in L6 myoblasts.

To corroborate the above findings, we applied Latrunculin B
treatment to distinguish the effect of Tmod3 KD on GLUT4
translocation and insertion into the PM, as Latrunculin B has
been shown to disrupt GLUT4 vesicle fusion with the PM but not
its intracellular translocation (14). Incubation of the cells with
Latrunculin B causes dispersion of the actin filaments and much
of cortical actin (31). Interestingly, under Latrunculin B
treatment, GLUT4 appeared to be mostly concentrated
Frontiers in Endocrinology | www.frontiersin.org 6
perinuclear and partially dispersed. As shown in the
representative images (Figure 2F) and quantifications
(Figure 2G), although the disruption of cortical F-actin with
Latrunculin B resulted in accumulation of GLUT4 signal in the
TIRF zone, concurrently significant reduction of GLUT4 surface
exposure at the PM was observed despite of AMPK activation.
Together, these results indicate that Tmod3 is required for
GLUT4 insertion into the PM but not trafficking to the
cell periphery.

Tmod3 Is Phosphorylated by AMPK
at Ser25
To investigate the functional role of Tmod3 in AMPK-mediated
GLUT4 insertion into the PM and glucose uptake, we decided to
first determine whether Tmod3 was an AMPK substrate, and if
so, to identify the phosphorylation site. We performed sequence
analysis and discovered the presence of an AMPK consensus
phosphorylation motif [LLGKLS*ESEL, Ser25] near the a-helix1
region at the N-terminus of Tmod3 (Figure 3A). The
phosphorylation motif is present in Tmod2 and Tmod3, but
not in Tmod1 or Tmod4 (Figure 3A). Sequence analysis of
Tmod3 shows that the consensus AMPK phosphorylation motif
is conserved in human, mouse and rat Tmod3 sequence (Figure
3A). We then examined and confirmed a direct interaction
between Tmod3 and AMPK by standard GST-pull-down assay
(Figure 3B). To determine whether Tmod3 was a direct AMPK
substrate, we performed an in vitro kinase assay and found that
Tmod3-WT was phosphorylated in the presence of AMPK
(Figure 3C). To ascertain Tmod3 as a potential AMPK
substrate, we co-expressed FLAG-Tmod3-WT with or without
mouse Myc-AMPK-a2-WT in HEK293T cells and treated the
cells with AICAR. As shown in Figure 3D , Tmod3
phosphorylation rapidly peaked at 15 minutes under AICAR
treatment. As expected, AMPK phosphorylation was readily
detected throughout AICAR treatment (Figure 3D). Similarly,
FLAG-Tmod3-WT was co-expressed with either constitutively
active (Myc-AMPK-a2-CA) or kinase inactive (Myc-AMPK-a2-
DN, K45R mutation) AMPK and subjected to immuno-
precipitation using anti-FLAG M2 affinity gel. FLAG-Tmod3-
WT was phosphorylated in the presence of constitutively active
form of AMPK but not the kinase-inactive form of AMPK
(Figure 3E). Finally, in vivo studies in C57BL/6 mice
(Supplementary Figure 4A ) and in L6 myotubes
(Supplementary Figure 4B) showed increased Tmod3
phosphorylation under AMPK activation. These data
collectively demonstrate that Tmod3 is a novel substrate for
AMPK signaling.

To confirm whether the identified AMPK phosphorylation
motif is the target site for AMPK in Tmod3, we expressed FLAG-
Tmod3-WT and its mutants in HEK293T cells in the presence or
absence of Myc-AMPK-a2-CA, pulled down using anti-
phospho-serine antibody conjugated to protein A/G Sepharose
beads, and immunoblotted to detect phosphorylated Tmod3
using anti-FLAG antibody. As shown in Figure 3F, Tmod3-
WT and Tmod3-S27A, but not Tmod3-S25A or Tmod3-S25A/
S27A, were phosphorylated, confirming that Ser25 is the site of
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FIGURE 2 | Continued
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FIGURE 2 | Tmod3 is essential for AMPK-mediated GLUT4 insertion into the PM and glucose uptake. (A, B) Diminished AICAR-stimulated GLUT4 insertion into the
PM in Tmod3-KD cells. L6 myoblasts stably expressing Myc-GLUT4-mCherry were serum starved for 2 hours and treated with or without 2 mM AICAR for 30
minutes. In fixed and non-permeabilized cells, cell surface Myc-GLUT4-mcherry signals were detected with anti-Myc mouse monoclonal antibody followed by Alexa
Fluor-488 goat anti-mouse secondary antibody. The samples were subjected to confocal microscopic imaging. Intensity of Myc at PM was quantified against
intensity of total mCherry in the whole cell. Data in each group were normalized and expressed as a percentage of AICAR-treated scrambled control cells. Data are
presented as mean ± SEM of about 100 cells in each group from three independent experiments (ANOVA with Dunnett’s multiple comparison test). **p<0.01 versus
Scrambled AICAR treated group. Scale bar: 10 mm. (C) Impaired [3H]-2-Deoxyglucose uptake in Tmod3-KD L6 myoblasts. After serum starvation for 2 hours,
Tmod3-KD and scrambled control cells were treated with DMSO as control, AICAR (2 mM) or AICAR plus Compound C (CC) (10 µM) for 30 minutes. Data are
presented as mean ± SEM of three independent experiments (ANOVA with Dunnett’s multiple comparison test). **p<0.01 and ***p<0.001 versus AICAR treated
scrambled group. (D, E) AICAR-induced GLUT4 translocation and insertion into the PM were examined by TIRF- and epifluorescence-microscopy in L6 myoblasts.
L6 myoblasts expressing Myc-GLUT4-mCherry were serum starved for 2 hours and treated with or without AICAR (2 mM) for 30 minutes. The cells were fixed and
labeled with anti-Myc antibody followed by Alexa Fluor 488-conjugated goat anti-mouse secondary antibody (green) under non-permeabilized condition. TIRF-
mCherry and TIRF-Myc signals were detected using TIRF microscope. Data are presented as the ratio of cell surface TIRF-Myc signals to total Epi-mCherry and
mean ± SEM of about 30 cells in each group from three sets of independent experiments (ANOVA with Dunnett’s multiple comparison test). **p<0.01 versus
scrambled AICAR-treated group. Scale bar: 10 mm. (F, G) Latrunculin B inhibits GLUT4 insertion into the PM but not GLUT4 translocation to the periphery of the
cell. L6 myoblasts expressing Myc-GLUT4-mCherry were serum starved for 2 hours and pre-treated with Latrunculin B (10 µM) for 30 minutes followed by AICAR
(2 mM) for 30 minutes. The cells were fixed and labeled with anti-Myc antibody followed by Alexa Fluor 488-conjugated goat anti-mouse secondary antibody (green)
under non-permeabilized condition. TIRF-mCherry and TIRF-Myc signals were detected using TIRF microscope. Data are presented as the ratio of cell surface TIRF-
Myc signals to total Epi-mCherry and mean ± SEM of about 30 cells in each group from three sets of independent experiments (ANOVA with Dunnett’s multiple
comparison test). **p<0.01 and ***p<0.001 versus AICAR treated Scrambled group. Scale bar: 10 mm.
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AMPK phosphorylation on Tmod3. This finding was further
corroborated by autoradiography (Figure 3G) and mass
spectrometry analysis (Figure 3H). Taken together, these
results experimentally demonstrate that Tmod3 is directly
phosphorylated by AMPK at Ser25.

Tmod3 Phosphorylation Is Required for
AMPK-Mediated GLUT4 Insertion Into the
PM and Glucose Uptake
To determine the effects of Tmod3 phosphorylation at Ser25 on
AMPK-mediated GLUT4 insertion into the PM and glucose
uptake, we stably expressed WT or mutants in Tmod3-depleted
L6 myoblasts (Figure 4A) using lenti-viral particles and
performed TIRF-based Myc-GLUT4-mCherry assay under
non-permeabilized conditions. Upon activation of AMPK,
significant GLUT4 insertion into the PM was detected in
Tmod3-depleted myoblasts expressing Tmod3-WT or
phospho-mimetic mutant (S25D) as evidenced by strong green
signals from antibody recognition of surface-exposed Myc
epitope (Figures 4B, C). In contrast, Tmod3-KD myoblasts
expressing phospho-defective mutant (S25A) showed nearly
undetectable GLUT4 surface exposure (Figures 4B, C),
suggesting that Tmod3 phosphorylation is required for GLUT4
insertion into the PM in response to AMPK activation.
Consequently, significantly enhanced glucose transport
capacity was observed in Tmod3-S25D expressing myoblasts
upon AMPK activation, whereas almost no AMPK-enhanced
glucose uptake was detected in Tmod3-S25A expressing
myoblasts (Figure 4D). As expected, Compound C treatment
led to significant reduction in glucose uptake in cells expressing
Tmod3-WT or its mutants (Figure 4D). These data show that
Tmod3 phosphorylation is essential in AMPK-mediated GLUT4
insertion into the PM and glucose uptake in L6 myoblasts.

AMPK-Mediated Tmod3 Phosphorylation
Regulates Cortical F-Actin Remodeling
We previously demonstrated that phosphorylation of Tmod3,
albeit at a different site (Ser71), regulates insulin-induced F-actin
Frontiers in Endocrinology | www.frontiersin.org 8
remodeling (14). To examine whether AMPK-stimulated
phosphorylation of Tmod3 at Ser25 regulates GLUT4
translocation by inducing F-actin remodeling, we first
established L6 myoblasts stably expressing Lifeact-tdTomato
(Supplementary Figure 5A). Lifeact, a 17 amino-acid peptide,
when fused to tdTomato, stains F-actin structures without
interfering actin dynamics in vitro or in vivo (32). Upon AMPK
activation, increased F-actin remodeling was observed inWT cells
as shown by increased Lifeact-tdTomato fluorescence under
TIRFM (Figures 5A, B and Supplementary Figure 5B and
Supplementary Movies 1A, B). In contrast, F-actin remodeling
was largely absent in response to AMPK activation in Tmod3-KD
cells (Figures 5A, C and Supplementary Figure 5C and
Supplementary Movies 1C, D), suggesting that Tmod3 is
required for AMPK-induced F-actin remodeling in L6
myoblasts. We next generated L6 myoblasts stably co-
expressing Lifeact-tdTomato and Tmod3-WT or Tmod3
phosphorylation mutants. Compared to mock treatment
(control), AMPK activation by AICAR induced cortical F-actin
remodeling as shown by increased Lifeact-tdTomato fluorescence
under a TIRF microscope in cells expressing Tmod3-WT or
Tmod3-S25D, but not in cells expressing Tmod3-S25A (Figures
5D–G and Supplementary Figures 5D–F and Supplementary
Movies 2A–F). Together, these data show that AMPK-induced
phosphorylation of Tmod3 at Ser25 induces cortical F-
actin remodeling.

Phosphorylation of Tmod3 Does Not
Regulate Core Tmod3: Tropomyosin:
Actin Complex Formation
A characteristic feature of F-actin capping proteins is their ability
to bind with monomeric G-actin (33). We thus examined the
ability of Tmod3 to bind with G-actin by using an in vitro actin-
cross-linking assay, followed by SDS-PAGE and immuno-
blotting with anti-Tmod3 and anti-actin antibodies (Figures
6A, B). Compared with Tmod3-WT, the phospho-defective
mutant Tmod3-S25A showed increased Tmod3: Actin complex
formation (Figure 6C), to a similar extent as Tmod3-S71A (14).
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FIGURE 3 | Tmod3 is phosphorylated by AMPK at Ser25. (A) Schematic diagram of different domains of Tmod3 with identified phosphorylation site as shown in the
upper panel. AMPK consensus sequence is present in both Tmod2 and Tmod3 but not in Tmod1 or Tmod4 as shown in the lower panel. (B) GST pull-down assay
showing AMPK-Tmod3 interaction. GST-fused Tmod3-WT was purified from BL21 bacterial cells and incubated with lysates of HEK293T cells expressing Myc-
AMPK-WT. The interaction was detected using anti-Myc antibody. (C) In vitro kinase assay showing Tmod3 phosphorylation by AMPK. Purified full-length mouse
Tmod3 was incubated with recombinant AMPK and g-32P-ATP. The samples were analyzed by SDS-PAGE and autoradiography. (D) Kinetics of AICAR-induced
phosphorylation of Tmod3. AICAR induced phosphorylation of Tmod3 in AMPK-dependent manner. HEK293T cells co-expressing FLAG-Tmod3-WT and Myc-
AMPK-WT were either untreated or treated with AICAR (2 mM) for indicated periods of time. Anti-FLAG M2 affinity gel was used for immuno-precipitation of
phosphorylated Tmod3 from the cell lysates followed by immuno-blotting with anti-Phospho Serine antibody. (E) Tmod3 interacts with and is phosphorylated by
constitutively active (CA) AMPK-a2 but not kinase-inactive (DN) AMPK. AMPK-mediated phosphorylation of Tmod3 in HEK293T cells following co-expression of
FLAG-Tmod3-WT with AMPK-CA or AMPK-DN were detected by pull-down using anti-FLAG M2 affinity gel followed by immuno-blotting with anti-Phospho Serine
antibody. (F) AMPK phosphorylates Tmod3 at Ser25. FLAG-Tmod3 and its mutants co-expressed with Myc-AMPK-CA were pulled down using anti-phospho-Serine
antibody conjugated to protein A/G Sepharose beads and phosphorylated Tmod3 signals were detected using anti-FLAG antibody. (G) Ser25 is the phosphorylation
target of AMPK as demonstrated by autoradiography assay. (H) Identification of Ser25 residue in Tmod3 as the phosphorylation site of AMPK by mass
spectrometry. Data are representative of three independent experiments except for panel (H).
Frontiers in Endocrinology | www.frontiersin.org April 2021 | Volume 12 | Article 6535579

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Shrestha et al. Tmod3 Mediates AMPK Regulation of GLUT4
Interestingly, the phosphomimetic mutant Tmod3-S25D had no
effect on Actin: Tmod3 complex formation. The finding that
phosphorylation of Tmod3 at Ser25 has little effect on its binding
to G-actin suggests that the observed cortical F-actin remodeling
mediated by Tmod3 Ser25 phosphorylation is not due to altered
Tmod3:Actin complex formation.

Within the N-terminal domain of Tmod3, a-helix-1 and a-
helix-3 were proposed to be involved in Tmod3 interaction with
tropomyosin, while a-helix-2 in Tmod3 binding with G-actin
and tropomyosin-dependent F-actin capping (34–36). The
binding affinity of tropomodulin to actin filaments increases in
the presence of a tropomyosin (37). We previously demonstrated
that Tmod3 could interact with Tpm3.1, the shorter form of gTm
(tropomyosin), but not with other isoforms of tropomyosin in
adipocytes under insulin-stimulated conditions (14). However,
Tmod3 mutant with defective tropomyosin interacting domains,
Tmod3-L29G/L134D (Tmod3-LL), completely lost binding with
Frontiers in Endocrinology | www.frontiersin.org 10
Tpm3.1 indicating the importance of Tmod3:Tpm3.1 interaction
for efficient insulin-stimulated GLUT4 translocation and glucose
uptake in adipocytes (14). Consistent with previous studies, we
found that L6 myoblasts expressed at least the following
tropomyosin isoforms: Tpm2.1, Tpm1.6, Tpm1.7, Tpm4.2 and
Tpm3.1 (Figure 6D) (38). To identify the cognate interacting
partner for Tmod3, we generated stable L6 myoblasts expressing
FLAG-Tmod3-WT or Tmod3 mutants and performed co-
immunoprecipitation analysis by using anti-FLAG M2 affinity
gel, followed by antibody detection of different tropomyosin
isoforms. We found that Tmod3 exhibited apparent interaction
with Tmp1.6, Tpm1.7 and Tpm3.1 but not with Tpm2.1 or
Tpm4.2 (Figure 6E). Consistent with our previous report (14),
Tmod3-L29G/L134D (Tmod3-LL) mutant showed significantly
decreased binding to Tpm3.1 under both mock and AMPK
activated conditions. Interestingly, the Tmod3: tropomyosin
interaction was not affected by the AMPK-induced Tmod3
A B
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C

FIGURE 4 | Tmod3 phosphorylation is required for AMPK-mediated GLUT4 insertion into the PM and glucose uptake. (A) Western blot analysis showing
endogenous Tmod3 expression in scrambled control L6 myoblasts and FLAG-tagged Tmod3 mutants in Tmod3-KD L6 myoblasts. Tmod3 expressions were
detected by anti-Tmod3 rabbit antibody and anti-FLAG mouse antibody. Tubulin was used as the loading control. (B, C) Tmod3-WT and phospho-mimetic mutant
Tmod3-S25D promotes GLUT4 insertion into the PM upon AMPK activation. L6 myoblasts co-expressing Myc-GLUT4-mCherry and Tmod3-WT or mutants were
serum starved for 2 hours and treated with or without AICAR (2 mM) for 30 minutes. The cells were fixed and labeled with anti-Myc antibody followed by Alexa Fluor
488-conjugated goat anti-mouse secondary antibody (green) under non-permeabilized condition. TIRF-mCherry and TIRF-Myc signals were detected using TIRF
microscope. Data are presented as the ratio of cell surface TIRF-Myc signals to total Epi-mCherry and mean ± SEM of 100 cells in each group from three sets of
independent experiments (ANOVA with Dunnett’s multiple comparison test). *p<0.05. Scale bar: 10 mm. (D) L6 myoblasts expressing Tmod3-WT or mutants were
serum starved for 2 hours, treated with DMSO as control, AICAR (2 mM) and Compound C (CC) (10 µM) as inhibitor for 30 minutes for [3H]-2-Deoxyglucose uptake
assay. Data are presented as mean ± SEM of three independent experiments (ANOVA with Dunnett’s multiple comparison test). *p<0.05.
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phosphorylation at Ser25, which is at the start of a-helix-1
(Figure 6E). Expression of Tmod3-LL mutant inhibits
insulin-stimulated glucose uptake in adipocytes (14), but in
case of L6 myoblasts expressing Tmod3-LL significant increase
in glucose uptake was observed under AMPK activation (Figure
6F). Collectively, these data show that AMPK-induced
phosphorylation of Tmod3 promotes GLUT4 insertion into the
PM and glucose uptake in L6 myoblasts results from a
mechanism independent of core Tmod3: tropomyosin: actin
complex formation.
Frontiers in Endocrinology | www.frontiersin.org 11
DISCUSSION

Both contraction and insulin acutely stimulate recruitment of
existing GLUT4 to the PM of the skeletal muscle and adipocytes
independent of transcription and translation (39, 40). Recent
discovery of Tmod3 as a novel Akt2 substrate has provided a
molecular mechanism underlying insulin-stimulated GLUT4
insertion into the PM and glucose uptake in adipocytes (14).
In the muscle, glucose transport occurs via two major pathways,
insulin-dependent and insulin-independent signaling pathways.
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FIGURE 5 | AMPK-mediated Tmod3 phosphorylation regulates cortical F-actin remodeling. (A) Representative time-lapse images of F-actin remodeling in Tmod3-
KD or scrambled control L6 myoblasts stably expressing Lifeact-tdTomato. The cells were serum starved, treated with or without AICAR (2 mM) and imaged for 30
minutes at an interval of 15 seconds. Scale bar: 10 mm. (B, C) Representative examples of TIRF-Lifeact-tdTomato F-actin remodeling analysis. Measurement on the
ventral regions away from the edge after the removal of background fluorescence, TIRF intensities of ROIs measured over time were normalized to the intensity
measured at the zero time point, averaged and plotted against the time to indicate the time course of F-actin remodeling. N = 8-10 cells per condition were
analyzed. (D) Representative time-lapse images of F-actin remodeling in L6 myoblasts stably expressing Lifeact-tdTomato and Tmod3-WT or mutants under AICAR-
stimulated condition. The cells were serum starved, treated with or without AICAR (2 mM) and imaged for 30 minutes at an interval of 15 seconds. Scale bar: 10 mm.
(E–G) Representative examples of TIRF-Lifeact-tdTomato F-actin remodeling analysis. Measurement on the ventral regions away from the edge after the removal of
background fluorescence, TIRF intensities of ROIs measured over time were normalized to the intensity measured at zero time point, averaged and plotted against
the time to indicate the time course of F-actin remodeling. N = 8-10 cells per condition were analyzed.
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In the insulin-independent pathway, contraction of skeletal
muscles activates AMPK, which stimulates glucose uptake by
promoting GLUT4 translocation and insertion into the PM (1,
41). Contraction and direct activation of AMPK-mediated
mechanisms remain intact in insulin-resistant individuals (42–
44). As such, the molecules at which AMPK- and insulin-
signaling pathways converge in the stimulation of GLUT4
insertion into the PM may provide drug targets to bypass the
failure in insulin-mediated GLUT4 translocation and insertion
into the PM, such as in insulin-resistant patients and animals.

Insulin signaling and its regulation of GLUT4 trafficking and
glucose uptake, including identification of insulin-Akt substrates
and understanding of their mechanism of action, have been
under intense investigations over the last three decades. In the
Frontiers in Endocrinology | www.frontiersin.org 12
case of GLUT4 regulation, several key target substrates of Akt
have been identified and characterized, for example AS160,
Synip, myosin Va, PIKfyve, CDP138, Grp1 and Tmod3 (14,
21, 45–49). These studies have provided significant insights in
understanding how insulin signaling regulates GLUT4
translocation and insertion into the PM. However, much less is
known regarding mechanisms involved in GLUT4 translocation
and glucose transport other than the insulin signaling pathway.

In this report, we identify that Tmod3 is a novel AMPK
substrate and provide evidence to show that phosphorylation of
Tmod3 is required for AMPK-mediated GLUT4 insertion into
the PM and glucose uptake. First, upon silencing of Tmod3 in L6
myoblasts, AMPK-mediated GLUT4 insertion into the PM and
glucose uptake were largely abolished. Second, sequence analysis,
April 2021 | Volume 12 | Article 653557
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FIGURE 6 | AMPK-mediated Tmod3 phosphorylation regulates its binding to monomeric G-actin independent of Tmod3: Tropomyosin interaction. (A) Recombinant
proteins of Tmod3-WT and mutants were prepared and visualized by Coomassie Brilliant Blue staining and confirmed by Western blotting using anti-Tmod3 rabbit
antibody. (B) Recombinant proteins of Tmod3-WT and mutants were subjected to in vitro actin cross-linking assay in the presence or absence of G-actin at
equimolar ratio and cross-linked with EDC/sulfo-NHS cross-linkers for 45 minutes at room temperature. The cross-linking assays were terminated by adding 2X SDS
sample buffer, followed by Western blotting with anti-b-actin rabbit antibody and anti-Tmod3 rabbit antibody. Data are representative of three independent
experiments. (C) Quantification of actin: Tmod3 complex by densitometry. Data are presented as mean ± SEM of three independent experiments (ANOVA with
Dunnett’s multiple comparison test). **p<0.01. (D) Expression of different tropomyosin isoforms in L6 myoblasts. (E) L6 myoblasts stably expressing FLAG-Tmod3-
WT and mutants were serum starved for 2 hours and treated with or without 2 mM AICAR for 30 minutes. Anti-FLAG M2 affinity gel was used for immuno-
precipitation followed by immuno-blotting with mouse monoclonal anti-a-Tm9d, CG1 and gTm9d, rabbit polyclonal dTm9d and mouse anti-FLAG antibodies. Data
are representative of three independent experiments. (F) L6 myoblasts expressing Tmod3-WT and Tmod3-LL were serum starved for 2 hours, treated with DMSO
as control and AICAR (2 mM) for 30 minutes for [3H]-2-Deoxyglucose uptake assay. Data are presented as mean ± SEM of three independent experiments (ANOVA
with Dunnett’s multiple comparison test). **p<0.01.
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in vitro and in vivo biochemical assays, together with mass
spectrometry analysis identified Ser25 as the AMPK
phosphorylation target site on Tmod3. And third, in Tmod3-
KD cells, stable expression of Tmod3-WT or Tmod3-S25D, but
not Tmod3-S25A, was able to rescue the defect in AMPK-
mediated GLUT4 insertion into the PM and glucose uptake.
Tmod3 has been shown to be phosphorylated by Akt2 at Ser71
under insulin stimulation, however, mutation in Ser25 to Ala
showed no effect on the Tmod3 phosphorylation Akt2 activation
suggesting that Tmod3 phosphorylation at these two different
sites are regulated by two different pathways (14). Although
AS160 was previously proposed to be a substrate for AMPK and
AS160 phosphorylation by AMPK was shown to be involved in
the regulation of glucose uptake, AMPK-phosphorylation of
AS160 very likely acts during GLUT4 translocation from
intracellular space to the periphery, at steps upstream of
GLUT4 insertion into the PM, similar to its role under insulin
stimulation (9). This notion is supported by the fact that AS160
phosphorylation by AMPK could only partially bypass insulin
resistance, which suggests that a more distal target of AMPK
activation plays a more direct role in AMPK-mediated GLUT4
insertion into the PM and glucose uptake (27, 50). Considering
that Tmod3 phosphorylation by AMPK acts at or near
membrane fusion steps, we believe that Tmod3 fits the
description and is the first AMPK substrate that is directly
involved in the regulation of GLUT4 insertion into the PM.

Exercise enhances insulin-stimulated GLUT4 translocation
and glucose uptake (51). The underlying mechanisms
responsible for exercise-induced improvements in insulin
sensitivity are still unclear. However, during exercise
contraction-mediated improvements in insulin sensitivity are
associated with increase in AMPK activity, which promotes
GLUT4 translocation to the plasma membrane (42) and
increases glucose uptake (27). Similarly, in post exercise state,
increase in Akt deactivates TCB1D4 and increases GLUT4
translocation to the plasma membrane (52). Here we report
Tmod3 as a novel AMPK substrate and an essential mediator of
AMPK-dependent GLUT4 translocation and glucose uptake in
myoblasts. In our previous study we have reported that
phosphorylation of Tmod3 by Akt2 mediates GLUT4
translocation and glucose uptake in adipocytes under insulin
stimulation (14). Given that Tmod3 has both AMPK- and Akt2-
mediated phosphorylation sites, its phosphorylation may be
involved in such insulin sensitivity enhancement upon exercise.

The actin cytoskeleton remodeling is important for insulin-
induced GLUT4 translocation in L6 myotubes (53–55) and
epitrochlearis skeletal muscle of rat (56). The small Rho family
GTPase Rac1 has been shown to play an important role in this
aspect (53–55, 57–59). Activation of Rac1 has been shown to be
independent of activating AMP resulted by increased metabolic
stress (60, 61) whereas AMPK is activated by this increase in
intracellular AMP level (62). However, Rac1 can be activated
rapidly by mechanical stress or stretching during muscle
contraction (63), a stimulus that does not activate AMPK (64,
65). Similarly, Rac1 and AMPK mediate glucose uptake in
muscle but stretch-induced glucose transport is mediated by
Frontiers in Endocrinology | www.frontiersin.org 13
Rac1 only (63), not by AMPK (65, 66). It has been shown that
AMPK and Rac1 together contribute for muscle glucose
transport during ex vivo contraction, whereas only Rac1
regulates muscle glucose uptake during submaximal exercise in
vivo (67). Rac1 and AMPK thus rely on distinct signals for
activation during muscle contraction indicating that AMPK and
Rac1 are activated via different and independent mechanisms in
muscle. It has been shown that exercise in mice and humans
activates Rac1 in muscles and chemical inhibition or silencing of
Rac1 in muscle leads to partial impairment in contraction-
induced glucose uptake in mouse muscle, indicating the role of
cytoskeletal components in contraction-induced glucose uptake
in muscle (51, 68). As such, Tmod3, which regulates actin
filaments by capping filaments at their pointed ends (34), may
regulate AMPK-mediated GLUT4 translocation through F-actin
remodeling. Consistent with this notion, we observed significant
cortical F-actin enrichment and increased rate of both ventral
and peripheral F-actin remodeling in response to AMPK
activation (Figures 5A, B, and Supplementary Figure 5B). In
contrast, change of F-actin remodeling rate was not detected in
Tmod3-KD myoblasts under the same condition (Figures 5A, C,
and Supplementary Figure 5C). Moreover, the cellular response
of cortical F-actin enrichment and F-actin remodeling rate in
response to AMPK activation was restored by exogenous
expression of Tmod3-WT or Tmod3-S25D (Figures 5D–G,
and Supplementary Figures 5D, F), but not by Tmod3-S25A,
closely correlating to their ability to rescue the defect of GLUT4
insertion into the PM and glucose uptake due to Tmod3 KD
(Figures 4B–D).

Structurally, Tmod3 contains an N-terminal domain with
three functional a-helices and caps the pointed ends of actin
filaments (69–71). a-helix-1 and a-helix-3 bind to tropomyosin
(69, 70) and a-helix-2 caps pointed ends of actin filament in a
tropomyosin-dependent manner (70, 72) forming a co-polymer
along the length of actin filament (73). There are about 40
tropomyosins, and tropomodulins bind to specific types of
tropomyosin (74). The type of tropomodulin-tropomyosin pair
regulates its interactions with actin binding proteins and myosin
motors, thereby determines the functional capacity of the
filament (74–76). Since both the a-helix-1 and a-helix-3 of
Tmod3 are necessary for the interaction with a tropomyosin,
Tmod3 mutant harboring both L29G in the a-helix-1 and
L134D in the a-helix-3 (Tmod3-LL), equivalent to L27E and
I131D mutations in Tmod1 (77), has completely lost its binding
to Tpm3.1 in adipocytes (14). Consistently, Tmod3-LL exhibited
diminished binding to Tpm3.1 in myoblasts under both basal
and AMPK activation conditions (Figure 6E). More
importantly, Tmod3-WT and its phosphorylation mutants
(S25A and S25D) also did not show altered interaction with
tropomyosins under AMPK activation (Figure 6E). In addition
to this, expression of Tmod3-LL significantly increased glucose
uptake under AMPK activation (Figure 6F) showing that
Tmod3-LL does not affect AMPK-stimulated glucose uptake,
in contrast to decreased glucose uptake under insulin
stimulation in adipocytes (14). The finding that Tmod3
interaction with Tpm3.1 is not dependent on AMPK-induced
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phosphorylation of Tmod3 suggests that the Tmod3:
tropomyosin interaction is not a limiting step in AMPK-
mediated GLUT4 insertion into the PM and glucose uptake.
Based on our findings and the above discussion, a plausible
model emerges that Tmod3 phosphorylation at Ser25 regulates
cortical F-actin enrichment and remodeling to promote GLUT4
insertion into the PM and glucose uptake in response to AMPK
activation through a mechanism independent from the
regulation of core Tmod3:tropomyosin:actin complex (Figure
7). This may involve additional actin regulatory proteins, such as
cofilin and gelsolin, but the detailed mechanism remains to
be determined.
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