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Abstract
Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a

functionalized area. This area is often larger than the area of the sensor. Both the sign and

magnitude of the average magnetic field experienced by the sensor from a magnetic bead

depends on the location of the bead relative to the sensor. Consequently, the signal from

multiple beads also depends on their locations. Thus, a given coverage of the functionalized

area with magnetic beads does not result in a given detector response, except on the aver-

age, over many realizations of the same coverage. We present a systematic theoretical

analysis of how this location-dependence affects the sensor response. The analysis is done

for beads magnetized by a homogeneous in-plane magnetic field. We determine the

expected value and standard deviation of the sensor response for a given coverage, as well

as the accuracy and precision with which the coverage can be determined from a single

sensor measurement. We show that statistical fluctuations between samples may reduce

the sensitivity and dynamic range of a sensor significantly when the functionalized area is

larger than the sensor area. Hence, the statistics of sampling is essential to sensor design.

For illustration, we analyze three important published cases for which statistical fluctuations

are dominant, significant, and insignificant, respectively.

Introduction
In medicine and biology it is often of great interest to quantify the presence of biomolecules
accurately. For example, in molecular oncology the ability to detect cancer biomarkers deter-
mines how early the disease can be discovered [1].

Magnetic labels used with magnetoresistive sensors offer an alternative to fluorescence
detection that may provide higher sensitivity, lower detection thresholds, and wash-free assay
protocols [2–4]. Magnetic sensors detect the presence of magnetic beads that are magnetized
either by an externally applied field [2–11], by the magnetic field created by the sensor current
[12], or by on-chip current lines [13]. As with fluorescent labels, magnetic labels are biologi-
cally attached through a sandwich assay to ensure high specificity and affinity. However, the
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antibody or DNA capture probes often occupy an area larger than the sensor, which is typically
a 0.5 − 10 μmwide stripe or an array of such stripes. Consequently, magnetic beads will be ran-
domly distributed both on top of and outside of the sensor structure. However, the signal
depends on the bead locations relative to the sensor. For randomly distributed beads, this can
cause problems, as the signal from some beads may cancel the signal from others, depending
on their relative location [14]. The sensor signal can be described in terms of the degree to
which surface is covered by magnetic beads (in short, the bead coverage) defined as the pro-
jected area of the beads relative to the total area over which the beads are distributed. For a
given bead coverage, the sensor signal changes from sample to sample because bead locations
differ between samples. These fluctuations in the signal have not been considered in the litera-
ture on magnetic biosensors.

Here, we derive the expected value and standard deviation of the signal from a single sensor
at fixed coverage and with fluctuations due to statistical sample-to-sample variations in bead
locations. The presented approach is generally applicable. The specific condition chosen in this
study is magnetic field sensors showing a linear in-plane field response and where the signal is
due to magnetic beads magnetized by a homogeneous in-plane magnetic field. These may
include, for example, spin-valve giant magnetoresistance sensors [2–9], tunneling magnetore-
sistance sensors [7] and anisotropic magnetoresistance sensors [11]. We compare these results
with the sensor noise characteristics and with limitations due to the discrete nature of magnetic
beads. We estimate the lowest detectable sensor coverage and the dynamic range of sensor sig-
nals. Finally, we analyze three relevant cases from the literature.

Theory

Assumptions and definitions
We assume the magnetic beads to be spherical with radius R. Further, we assume that the
beads are superparamagnetic with constant magnetic susceptibility χ and no magnetic rema-
nence. Moreover, we assume all beads to be magnetized by a homogeneous external field,Hext,
which is applied in the y-direction. This field creates a constant magnetic dipole moment,
mbŷ ¼ 4p

3
R3wHext, in each bead. Each magnetic bead produces a dipole field that perturbs the

external field experienced by the sensor. Later, we will revisit and discuss the validity of these
simplifying assumptions.

The magnetoresistive sensors used to detect the presence of magnetic beads typically consist
of a magnetic stack in a rectangular geometry of area A = ℓw × w, where ℓw and w respectively
denote the length and the width of the sensor, and ℓ is the sensor aspect ratio. We choose a
coordinate system with origin at the center of the sensor (Fig 1).

We assume that the sensor output voltage (e.g., from aWheatstone bridge) is proportional
to the average y-component of the magnetic field, i.e.,

V ¼ G� 1

A

Z
A

HyðrÞ dx dy ¼ G� Havg
y ; ð1Þ

where G is the sensitivity. By comparing the sensor output to a reference sensor, the field per-
turbation from magnetic beads can be separated from the external field. We therefore let Havg

y

denote the average magnetic field from only the magnetic beads.
The magnetic beads may attach via specific biological interactions to biomolecules within a

functionalized surface area, A0. We will refer to A0 as the functionalized area and assume that
beads are independently distributed, each bead with the same uniform probability density
within this area. Unless otherwise specified, we assume that the functionalized area is quadratic
and symmetrically placed with respect to the sensor stripe such that A0 = a × a. Because of the
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random distribution of beads, the sensor signal will vary between experiments even if the same
number of beads is detected in each experiment. We refer to these random sample-to-sample
variations as configurational fluctuations or statistical sampling fluctuations. In the best case
scenario where electrical noise can be neglected, these still produce fluctuations of the sensor
output and thereby limit the minimum coverage of magnetic beads that can be assessed reliably
from measurements on a single sensor.

In the following analysis, it is convenient to express lengths in units of the sensor width, w,
and areas in units of w2. The resulting dimensionless variables are denoted by tilde, e.g., ~x ¼
x=w and ~A ¼ A=w2. Moreover, we will define the normalized dimensionless magnetic field as
~H ¼ H=ðwHext

~R3Þ.

Sensor response to single bead
A single homogeneously magnetized bead with center located at ~r0 produces a dipole magnetic
field at ~r with y-component

~Hy;1ð~r; ~r0Þ ¼
1

3

3ð~y � ~y0Þ2
j~r � ~r0j5

� 1

j~r � ~r0j3
 !

: ð2Þ

The average over the sensor area, ~A, of the dipole field in Eq (2) is

~H avg
y;1 ð~r0Þ ¼ I ~x0 þ ‘

2
; ~y0 þ 1

2

� �
� I ~x0 þ ‘

2
; ~y0 � 1

2

� �

�I ~x0 � ‘
2
; ~y0 þ 1

2

� �
þ I ~x0 � ‘

2
; ~y0 � 1

2

� �
;

ð3Þ

Fig 1. Sensor and functionalized area. Illustration of the sensor area A = ℓw ×w (blue) and functionalized
area A0 = a × a (blue + green), with definition of geometrical parameters and the coordinate system.

doi:10.1371/journal.pone.0141115.g001
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where

Ið~x0; ~y0Þ ¼
�~x0~y0

3ð~y2
0 þ ~z20Þj~r0j‘

: ð4Þ

The average magnetic field from a single magnetic bead, Eq (3), depends strongly on the
bead position r0 relative to the sensor. This is illustrated for a square sensor in Fig 2, where the
signal from a single bead is plotted as function of its position ð~x0; ~y0Þ in the ~x~y-plane for
~z0 ¼ 0:1. Depending on whether the bead is over the sensor area or outside the sensor area, a
negative or positive sensor output is obtained and the response shows a negative peak when
~y0 ¼ �0:5 is approached from within the sensor area and a corresponding positive peak just
outside the sensor area [14].

Thus, depending on the sensor geometry and the functionalized area, both positive and neg-
ative signals are possible. When beads are located both inside and outside the sensor area, we
have found that the sensor signal is often dominated by the signal from beads outside the sen-
sor area as these are typically placed at a lower height [15]. Here, we determine the expected
value and the standard deviation of the sensor response, taking into account statistical fluctua-
tions. Both of these values are experimentally measurable as estimates based on many repeated
experiments with identical sensors (assuming negligible sensor noise) and experimental condi-
tions, as the average sensor response and its sample standard deviation, respectively. More
importantly, these parameters are essential to predict the outcome of the individual experiment
under the best possible conditions.

Assuming that a single magnetic bead is located with equal probability at any point within
the functionalized area, it is convenient to define the configurational expected value of a

Fig 2. Sensor signal vs. bead position. Contour plots of the normalized sensor signal ~Havg
y ð~r0Þ as function of

bead position ~r0 ¼ ð~x0; ~y0; ~z0Þ for fixed ~z0 ¼ 0:1. Calculations were carried out for a square sensor (ℓ = 1).
Note, that global minima and maxima are found near the sensor edge (black frame) at ~y 0 ¼ �0:5.

doi:10.1371/journal.pone.0141115.g002
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function f ð~r0Þ as

E½f � � 1
~A0

Z
~A0

f ð~r0Þ d~x0 d~y0 : ð5Þ

Using this notation, the expected value, S1, of the normalized magnetic field and its variance,
s2
1, for a single bead placed randomly on A0 are

S1 ¼ E½ ~Havg
y;1 � ð6Þ

s2
1 ¼ E½ð ~Havg

y;1 Þ2� � E½ ~Havg
y;1 �2: ð7Þ

We note that S1 and σ1 depend on ~A, ~A0 and ~z0. Below, to keep the notation simple, general

results are expressed in terms of S1 and σ1, with their dependence on ~A, ~A0 and ~z0 understood,
whereas their dependence on ~a and ~z0 is explicitly written when a square functionalized area
with A0 = a2 is assumed.

Sensor response to multiple beads
When multiple beads are present, the sensor signal is the sum of their individual contributions.
We assume that steric interactions (excluded volume effects) between these beads are negligi-
ble. Further, we assume that magnetostatic interactions between the beads and between the
beads and the sensor are negligible. Then the beads are independently and identically distrib-
uted (iid) and the single bead analysis applies to each of these beads. Later, we will revisit and
discuss the validity of these simplifying assumptions. Then, the expected value and variance of
the summed bead response from N beads are

SN ¼ E½
XN

i¼1
Havg

y;i � ¼ N S1 ð8Þ

s2
N ¼ s2½

XN

i¼1
Havg

y;i � ¼ N s2
1: ð9Þ

Often, the exact number of beads is not known, and it is more convenient to describe the
response in terms of the bead coverage, ϕ. It is the surface area covered by the beads (when pro-
jected onto the surface) divided by the total functionalized area,

� � NpR2=A0 ¼ Np~R2=~a2 : ð10Þ

The bead coverage can be estimated independently by, e.g., microscopy, scanning electron
microscopy or fluorescence. We note that ϕ has a limited range with maximum less than one,
because a close-packed monolayer of spheres leaves surface area uncovered,

0 � � � �max � p
2
ffiffi
3

p � 0:91 : ð11Þ

There is also a lowest non-zero value ϕ1 for ϕ, corresponding to a single bead being present
in the functionalized area,

�1 � p~R2

~a2
: ð12Þ

The value of ϕ1 also describes the smallest possible increment in ϕ, since the bead coverage
is incremented by addition of whole beads.

The assumption of iid is justified when the bead coverage is low. A calculation analogous to
that leading to Eq (6) in Ref. [16] gives that the assumption of iid beads is a good approximation
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as long as � <
ffiffiffiffiffi
�1

p
=2. The results for larger values of ϕ are only approximative and would be

subject to correction terms due to excluded volume effects in a more accurate model.
The expected value and variance of the normalized magnetic field can be written in terms of

ϕ as

S� ¼
�A0

pR2
S1 ¼

�~a2

p~R2
S1ð~a; ~z0Þ; ð13Þ

s2
� ¼

�A0

pR2
s2
1 ¼

�~a2

p~R2
s1ð~a; ~z0Þ2: ð14Þ

If σϕ > Sϕ, a single measurement of the bead coverage cannot be trusted. The signal-to-stan-
dard deviation ratio (SDR) is defined as the expected value of the signal measured in units of its
standard deviation,

SDR � jSN j
sN

¼ jS1j
s1

ffiffiffiffi
N

p
¼ jS1ð~a; ~z0Þj

s1ð~a; ~z0Þ
~a
~R

ffiffiffi
�

p

r
: ð15Þ

Absolute values are used because both positive and negative average values of the signal
may occur. Eq (15) accounts for statistical sampling fluctuations in the signal for samples with
identical N or, equivalently, identical ϕ, under the assumption of negligible sensor noise. Since
beads were assumed iid, SDR is proportional to N1/2 or, equivalently, ϕ1/2. Note again that S1
and σ1 depend on ~A, ~A0, and ~z0, so the simple prediction above based on iid is valid only when
these parameters are fixed.

For convenience below, let ϕstat denote the bead coverage corresponding to SDR = 1. Solving
Eq (15) with SDR = 1, we obtain

�stat ¼
pR2

A0

s1

S1

� �2

¼ p
s1ð~a; ~z0Þ
S1ð~a; ~z0Þ

~R
~a

� �2

: ð16Þ

ϕstat is the minimum bead coverage required to ensure a signal of the same magnitude as the
statistical sampling fluctuations for a single sampling of the magnetic bead distribution.

Finally, it is also relevant to consider the bead coverage, ϕnoise, that gives rise to a signal of
the same magnitude as the sensor output voltage noise, Vnoise. Using the definition of the nor-
malized variables, Eqs (1) and (13), we obtain

�noise ¼
pVnoise

jGwHext
~R ~A0S1j

¼ pVnoise

jGwHext
~R~a2S1ð~a; ~z0Þj

: ð17Þ

Note, that ϕ1, ϕstat, and ϕnoise may all affect the lower limit of bead coverages that can be
resolved. Making the practical simplifying assumption that one of the mechanisms dominates,
we can define the resolution as

�res � maxf�1; �stat; �noiseg : ð18Þ

Hence, the maximum possible dynamic range (DR) for the bead coverage readout is

DR � �max

�res

¼ 0:91

maxf�1; �stat; �noiseg
: ð19Þ

Experimentally, the signal for a close-packed magnetic bead monolayer can be approxi-
mated by the signal measured when the functionalized area is saturated with magnetic beads.
To compare calculations to experiments, it is convenient to express the signal standard
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deviation, σϕ, for a given bead coverage ϕ in terms of the saturation (full scale) signal, Sϕmax
.

From Eqs (13)–(15), we obtain

s�

S�max

¼
ffiffiffiffiffiffiffiffiffi
�

�max

s ffiffiffiffiffiffiffiffiffi
�stat

�max

s
¼

ffiffiffiffiffiffiffiffiffi
S�
S�max

s ffiffiffiffiffiffiffiffiffi
�stat

�max

s
: ð20Þ

The latter factor,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�stat=�max

p
, defines the magnitude of the signal standard deviation relative

to saturation and the first factor gives the scaling with the bead coverage or the signal with
respect to their maximum values.

The above expressions include the discrete nature of the magnetic beads, the position
dependence of the signal from magnetic beads, the statistical sampling of a bead distribution,
and the sensor noise in the evaluation of the sensitivity and dynamic range of the bead coverage
on an area over the sensor. Thus, this provides a much more complete picture of the biosensing
capability of a sensor system than considerations of only the sensor noise.

Results and Discussion
In this section, we first present and discuss the effects of the size of the functionalized area and
the bead size. Then we discuss the validity of the simplifying assumptions and finally we apply
the developed theory to analyze three important cases found in the literature.

Impact of size of functionalized area
In this subsection, we study the impact of the size of the functionalized area relative to the sen-
sor area. For simplicity, we consider a square sensor (ℓ = 1) and a square functionalized area of

side length a. Fig 3 shows (a) Sϕ/ϕ, (b) s�=
ffiffiffi
�

p
, and (c) the corresponding signal-to-standard

deviation (SDR) vs. ~a ¼ a=w calculated for the indicated values of ~z0 and ~R ¼ 0:01.
If the functionalized area is small compared to the sensor size ð~a 	 1Þ, the average mag-

netic field from a single bead depends only weakly on the bead position within A. Moreover,
the average bead field, Havg

y;1 ðr0Þ (Fig 2), is well approximated by a constant term plus a small

quadratic term in ~y0. Upon insertion in Eq (6), the constant term dominates and S1 is approxi-
mately constant. This, combined with Eq (13), gives that Sϕ is proportional to the area covered
by magnetic beads, ~a2. Further, upon insertion in Eq (7), the quadratic dependence ofHavg

y;1 ðr0Þ
on ~y0 gives that σ1 shows a quadratic dependence on ~a. This, combined with Eq (14), gives that
σϕ is proportional to ~a3. Consequently, σϕ grows faster than Sϕ for increasing ~a and the SDR-
value is proportional to ~a�1. The results are observed to be essentially independent of ~z0 for
~a < 1 when the beads are close to the sensor (~z0 	 1); see coincidence of blue and green
curves where ~a < 1 in Fig 3.

If the functionalized area is larger than the sensor size (~a > 1), S1 and σ1 are proportional to
~a�3 and ~a�2, respectively. Thus, when the beads are at the same height over and outside the sen-
sor area, Sϕ is proportional to ~a�1 and it decreases to zero for large values of ~a. The value of σϕ
approaches a constant, i.e., it becomes independent of ~a for ~a > 1 (Fig 3b). This shows that the
statistical signal fluctuation is not reduced by increasing ~a when ~a > 1. When σϕ is constant,
the SDR is proportional to Sϕ and thus the SDR decreases as ~a�1. The value of ~z0 only weakly
influences the value of Sϕ. However, it has a strong impact on σϕ, which increases significantly
with ~z0 at low values of ~z0. This is due to the increasing magnitude of the sensitivity peaks in
the sensor response near the sensor edge at ~y0 ¼ �0:5 for low ~z0.

The results clearly indicate that for this geometry of the functionalized area and a fixed
value of ~z0, it is beneficial to restrict the beads to a central area on top of and within the sensor
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Fig 3. Sensor signal characteristics vs. size of functionalized area. The expected normalized signal as a function of ~a or A0 for a constant surface
coverage. ‘ ¼ 1; ~R ¼ 0:01.

doi:10.1371/journal.pone.0141115.g003
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area. The optimum choice of the size of this area depends on the magnetic field noise of the
sensor. The size of the functionalized area should be large enough to support a resolution of ϕ
and a dynamic range matching assay requirements (Eq (19)). Moreover, the above consider-
ations indicate that for small values of ~z0, it may be advantageous to avoid using the area near
the sensor edge at ~y0 ¼ �0:5, since beads located in this area give rise to a high signal, but also
to an even higher statistical fluctuation of the signal.

Impact of magnetic bead size
In this section, we study the impact of the bead size on the sensor signal and on the range of
values of ϕ that can be reliably quantified experimentally. For simplicity, we consider a square
sensor (ℓ = 1). We assume that the sensor area is given a protective coating of thickness h, such
that the height of a magnetic bead over the sensor is given by z0 = h + R. We will consider
square bead functionalized areas with a = w (~a ¼ 1) and a = 2w (~a ¼ 2), respectively. Fig 4a

shows the dimensionless normalized sensor signal V=ðGwHextÞ ¼ ~R3S� for ϕ = ϕmax and ϕ = ϕ1,

as function of the normalized bead radius ~R for ~h ¼ 0:05. The horizontal line in the figure

Fig 4. Characteristics of signal and bead coverage vs. bead size. (a) The normalized sensor signal and statistical standard deviation for the maximum
surface coverage (solid and dashed red lines) and for a single bead (solid and dashed green lines) along with a sensor noise level chosen to Vnoise/(GχHext) =
3 
 10−4 (blue line). (b) Values of ϕmax (red line), ϕ1 (green line), ϕstat (orange line) and ϕnoise (blue line). The calculations were performed for square sensors (ℓ
= 1), the indicated values of ~a, and ~h ¼ 0:05.

doi:10.1371/journal.pone.0141115.g004
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indicates the normalized sensor noise level, chosen for illustrative purposes to Vnoise/(GχHext)
= 3 × 10−4. Fig 4b shows the corresponding values of ϕ.

The normalized sensor signal for a close-packed monolayer (ϕ = ϕmax, red lines) in Fig 4a

first increases sharply with increasing ~R and then assumes an approximately constant value.

This response to an increase in ~R results from an increase in the magnetic volume, which
increases the signal, and a decrease of the sensitivity near the sensor edges at ~y0 ¼ �0:5 due to

the increase in ~z0. When ~R is low, the number of beads is correspondingly higher, and therefore
the increase of signal for ϕ = ϕmax is significantly steeper than that observed for a single mag-

netic bead (ϕ = ϕ1). For ~a ¼ 1, the signal is generated by a single magnetic bead when ~R � 0:5.
For ~a ¼ 2, the signal has both positive and negative contributions (Fig 2). Increasing values of
~R modify the sensitivities near all sensor edges. As a result, the overall signal for ~a ¼ 2 becomes
slightly larger than for ~a ¼ 1. For higher values of ~a, however, we observe that the signal
decreases towards zero as expected (data not shown). For sensors with a larger aspect ratio (ℓ
> 1), the sensor edges at ~x0 ¼ �‘=2 are of smaller relative importance, and we generally expect
a decrease of the signal magnitude for a fixed value of ~z0 when ~a > 1. We have studied the

effect of the thickness ~h of the sensor coating and found it to influence the result only weakly

when ~h 	 1. From Fig 4a, we note for a single bead, that the signal standard deviation is
smaller than the signal for ~a ¼ 1, but larger than the signal for ~a ¼ 2.

Expressed in terms of the degree of coverage, ϕ, Fig 4b shows that both ϕ1 and ϕstat increase

slowly with increasing ~R. For ~a ¼ 1, ϕ1 is about an order of magnitude larger than ϕstat for all

values of ~R and thus dominates ϕres. Hence, for this case, the statistical sampling fluctuations
are not important. However, for ~a ¼ 2, we find that ϕres is dominated by ϕstat and that the

dynamic range is significantly reduced. The value of ϕnoise is found to diverge for ~R ! 0 due to

the signal decrease in this limit, and it becomes essentially constant for higher values of ~R.
Note, that ϕnoise depends on the size of the functionalized area (Eq (17)).

How to optimize the choice of bead size. The above considerations show how the mag-
netic bead size can be chosen to optimize the magnetic biosensing readout to obtain the lowest
limit of detection (LOD) or to have the largest dynamic range. The lowest LOD is obtained
when ϕ1 is significantly larger than both ϕnoise and ϕstat, as the sensor then can detect the binding
of a single magnetic bead. We note for the two values of ~a investigated that ϕ1> ϕstat only occurs
for ~a ¼ 1, and hence that it is difficult for ~a ¼ 2 to identify a unique condition with the lowest
LOD. For ~a ¼ 1, it should be noted that once the bead size is above the limit where a single bead

can be detected, only little can be gained by a further increase of ~R towards 0.5. On the contrary,
the dynamic range decreases significantly and approaches a value of 1, and this may make it dif-
ficult to assess and resolve the level of unspecific binding of beads to a negative control sensor.

The considerations also show that for given sensor parameters, it is possible to identify an
operating condition that maximizes the dynamic range in ϕ and hence the dynamic range for

the biosensor. This is obtained for the value of ~R corresponding to the minimum value of ϕres
obtained as the value of ϕ where ϕnoise = max{ϕ1, ϕstat}. For the parameters used in Fig 4, this is

observed for ~R � 0:05 (~a ¼ 1) and for ~R � 0:03 (~a ¼ 2), corresponding to dynamic ranges of
2.0 and 1.5 orders of magnitude, respectively. Note that the value of ϕnoise also depends on the
sensor operation conditions, i.e., on the excitation field,Hext. Also note that for real sensors,
there may be a height difference between the magnetic beads on top of the sensor area and out-
side the sensor area, which will modify the behavior compared to the results above [15]. Finally,
note that the above considerations do not include the diffusion and binding kinetics of the beads
to the functionalized area, which may affect the time to reach equilibrium and the stability of the
result.
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Validity of simplifying assumptions
The results presented above were based on a number of simplifying assumptions. Here, we dis-
cuss the validity of these assumptions and the anticipated consequences of relaxing them.

Magnetic bead properties. We assumed that the beads have a constant magnetic suscepti-
bility. Generally, the magnetic field sensors are operated at low magnetic fields (< 5 mT) to
ensure that the sensors operate in their linear regime and to reduce constraints on the electro-
magnets producing the magnetic excitation field. Generally, magnetic beads and nanoparticles
show very small deviations from linear behavior for such small magnetic fields (see, e.g., [17]),
and therefore the assumption of constant magnetic susceptibility is justified in most cases. A
realistic sample of magnetic beads also displays a distribution of bead sizes and magnetic
moments. Above, we found that the dependence on the magnetic bead position easily can
cause substantial signal variation. We therefore expect that this effect usually will dominate
over the effect of a distribution of magnetic bead properties, unless the dispersion of bead prop-
erties is extreme. However, if a system geometry is applied for which the signal depends only
weakly on bead positions (e.g., if beads are placed only on the central area of a sensor), then it
may be relevant to account also for a dispersion in bead properties in the statistical analysis of
the sensor signal.

Magnetic interactions between beads. In the analysis above, we neglected dipole interac-
tions between magnetic beads. These interactions may modify the magnetic response of the
beads as well as their distribution. Hence it is relevant to discuss the validity of this assumption
in some detail. The magnetic dipole interaction between two magnetic beads can be considered
negligible when the magnetic dipole field from a bead is much smaller than the external mag-
netizing field,H. Following the analysis of [14], this assumption corresponds to the criterion
wR3=ð3r3bbÞ 	 1, where rbb is the center-to-center separation of two beads. Due to demagnetiza-
tion effects, the upper limit of the magnetic susceptibility for a homogeneously magnetized
sphere is χ = 3. Thus, we can reduce the criterion to R3 	 r3bb. As rbb � 2R, this criterion is seen
to be fulfilled for all cases but the most dense packing of magnetic beads. When magnetic inter-
actions are significant, the effective magnetic susceptibility of an ensemble of beads may be
larger than that based on non-interacting beads and therefore a dense packing of beads will
give a correction to the signal calculated assuming non-interacting beads. In that case our pre-
dictions are only estimates, lower bounds on the true results.

Magnetostatic field from sensor structure. In the analysis above, we also neglected the
influence of the magnetostatic field due to the magnetic layers of the sensor structure. The
magnetic field close to the surface of a structure that is magnetized along the external magnetic
field, will be parallel to the external field outside the structure and antiparallel to the external
field on top of the structure. Consequently, the contribution to the sensor signal from beads
magnetized by the magnetostatic field will generally not suffer from the cancellation effects
observed for a homogeneous magnetic field [9]. Therefore, as the signals are superposed, a sig-
nal may be observed even when the signal due to beads magnetized by the homogeneous mag-
netic field is zero. In our calculations, we have assumed that the signal due to the external
magnetic field dominates. The signal due to the magnetostatic field from the sensor depends
highly on the detailed sensor design and operation and is thus not easy to include in our gen-
eral considerations. For specific sensor designs and operating conditions, we recommend
including these in the signal estimates when relevant. The two contributions to the signal can
be superposed to find the total signal. The variance of the total signal is more complicated to
calculate, however, because the two contributions are correlated. Therefore, variances of the
individual signals do not add up to the variance of the total signal sum, s2

1, which must be cal-
culated for the combined signal. We emphasize that even if the signal itself is dominated by the
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magnetostatic field contribution (e.g., if contributions due to beads magnetized by the homoge-
neous external magnetic field mostly cancel each other), the fluctuations in the signal due to
the external magnetic field cannot be neglected. Due to the strong position-dependence, these
are likely to dominate the statistical fluctuations of the total sensor signal.

Bead probability distribution. We also assumed that the beads are independently and
identically distributed. We have already discussed the validity and impact of this assumption in
the theory section on the Sensor response to multiple beads. Finally, we assumed that the beads
are uniformly distributed. This assumption is plausible and the simplest possible case. This
simplicity simplified our presentation and derivations above. It is easily repeated for a more
general assumption about the distribution of beads. A non-uniform distribution could result
from the protocol of the assay. For example, a magnetic-field-accelerated incubation may
enhance the probability of beads binding at certain locations. As long as the beads are indepen-
dently distributed, our calculation of the statistical variance of the signal remains valid with lit-
tle change. One just cannot characterize the bead distribution fully using the constant magnetic
bead coverage that we introduced for a uniform distribution. However, the signal and its fluc-
tuations are dominated by contributions from areas near the sensor edge at ~y0 ¼ �0:5. There-
fore, even for a non-uniform probability distribution for the magnetic beads, the results
obtained for the uniform case may have a high predictive value for the relative importance of
the statistical fluctuations in the signal, as long as the uniform bead coverage matches the actual
density of beads near the edge of the sensor.

Case Studies
In this section, we use the theoretical framework from the theory to analyze the signal and
dynamic range in terms of our simple presented model for three quite different GMR-based
magnetic biosensors from the literature, presented by Graham et al. [5], Martins et al. [6], and
Gaster et al. [2]. Details on the geometrical parameters of the sensors, including the height dif-
ference between beads on the sensor area and outside the sensor area, are given in the Supple-
mentary Material, Section S1 in S1 Table.

Graham et al. [5] use a 6 × 2 μm2 sensor stripe to detect the DNA-mediated binding of 250
nmmagnetic beads. They employ tapered current lines to attract and focus the magnetic beads
onto an area on and near the sensor stripe. For simplicity, we approximate the functionalized
area with a square centered with respect to the sensor stripe and with edge length a = 16 μm, cor-
responding to the length of the tapered part of the current line. The authors investigate experi-
mentally (in singlet) the sensor response to a series of three subsequent exposures to a suspension
of DNA-functionalized magnetic beads and correlate the sensor response to the number of mag-
netic beads on the sensor stripe observed in a microscope. They find a linear correlation between
the number of magnetic beads and the sensor response and conclude that concentrations in the
10 fM range, corresponding to the binding of a single magnetic bead, may be within reach.

Martins et al. [6] is a later study by the same group, in which they use a U-shaped sensor
stripe with total dimensions 80 × 2.5 μm2 and a U-branch length of 40 μm to detect the DNA-
mediated binding of 250 nm magnetic beads. The sensor stripe is placed inside a U-shaped cur-
rent line structure used to attract and focus the magnetic beads to the sensor stripe. The sensor
stripe is covered by a patch of gold (43 × 13 μm2), which is selectively coated with capture
DNA to define the functionalized area. The authors study the response vs. DNA concentration
and conclude that, using field-assisted hybridization, they can detect concentrations from 1 fM
to 10 pM corresponding to normalized signals ranging from 0.005 (1 fM) to 0.05 (saturation).
Error bars of about 5% (1 fM) to 10% (saturation) of the saturation signal are reported in their
dose-response curve. Values were obtained from measurements on at least five sensors.
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Gaster et al. [2] use a meandering sensor with 32 series-connected stripes of dimensions
100 × 0.75 μm2 to detect the binding of 50 nm magnetic beads in a sandwich assay for protein
detection. The functionalized area, defined by spotting of capture antibodies, is significantly
larger than the extent of the meandering sensor. For simplicity, we therefore assume this area
to be infinite. The authors study the response vs. antigen concentration and conclude that they
can detect and discriminate between concentrations in the range from 1 fM to 5 nM, corre-
sponding to rms signals ranging from 1 μV to 200 μV. Error bars corresponding to relative sig-
nal standard deviations of a few percent are reported. Values were obtained from
measurements on at least four nominally identical sensors on the same sensor chip.

Table 1 states the values of ϕ1, ϕstat, log10(DR) and Sϕmax
calculated from the geometrical

parameters given in S1 Table for the three cases. The results are given for the idealized case
where magnetic beads are only present on top of the magnetic sensor (first row) as well as for
the more realistic case where the functionalized area extends outside the sensor area as
described above (second row). The values of ϕnoise could not be assessed from the information
presented in the case studies.

For all three cases, we find for the idealized case (top rows) that ϕres is limited by the discrete
counting of individual beads—i.e., by ϕ1—under the assumption that the sensor noise is negli-
gible. We estimate values of the dynamic range to be 2.4 to 6 orders of magnitude. However,
when the beads are distributed on a more realistic functionalized area (bottom rows), the
results are dramatically different.

For Graham et al. [5], we find that a monolayer of magnetic beads gives rise to nearly zero
value of Sϕmax

and that ϕstat� ϕmax. Hence, the analysis predicts that statistical sampling fluctua-
tions prevent the assessment of the true average value of ϕ from a single sensor measurement.
The assumption of iid magnetic beads may be an oversimplification, but the above overall con-
clusion that poor statistical sampling prevents general assessment of ϕ from the measurement on
a single sensor chip remains valid even for a smaller functionalized area as the signal fluctuations
are dominated from contributions near the sensor edges. Due to the large value of ϕstat, a realistic
increase of the number of sensors will therefore not significantly improve the situation. A lower-
ing of the relative importance of the statistical fluctuation could be achieved by increasing the
sensor area and by limiting magnetic beads to be bound either inside or outside the sensor area.

For Martins et al. [6], a monolayer of beads still gives rise to nearly zero signal, and the posi-
tive value of Sϕmax

indicates that the signal is weakly dominated by contributions from magnetic
beads outside the sensor area. Inserting ϕstat in Eq (20) yields a relative statistical sampling fluc-
tuation at saturation for a single sensor of 29%. Assuming that five sensors were used to

Table 1. Sensor signal characteristics when the functionalized area is identical to the sensor area and
larger than the sensor area. Values of ϕ1, ϕstat, log10(DR), and Sϕmax

calculated from the geometrical parame-
ters given in S1 Table for the indicated cases from the literature and assuming independently and identically
distributed magnetic beads with an average bead surface coverage of ϕ. The top row for each case assumes
that magnetic beads are only present on top of the sensor area. The bottom row for each case assumes func-
tionalized areas extending outside the sensor area as described in the text.

ϕ1 [%] ϕstat [%] log10(DR) Sϕmax

Graham et al. [5] 0.4 2.3 
 10−2 2.4 -147

1.2 
 10−2 2.3 
 103 -1.4 -2

Martins et al. [6] 2.5 
 10−2 1.0 
 10−3 3.6 -253

8.8 
 10−3 7.5 1.1 9

Gaster et al. [2] 8.2 
 10−5 5.6 
 10−6 6.1 -686

0 7.2 
 10−4 5.1 705

doi:10.1371/journal.pone.0141115.t001
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determine the values presented by the authors, the corresponding relative standard deviation
on the mean is 13%. For the lowest DNA concentration (1 fM), the authors obtain a value of
about 0.005 compared to a saturation value of 0.05. Using Eq (20), we estimate a standard devi-
ation relative to saturation of 4%. Both values compare quite well with the respective error bars
of about 10% and 5% of the saturation value presented by the authors. Based on our analysis,
we conclude that the resolution of this sensor design still is likely to be limited by statistical
sampling fluctuations. The relative importance of the fluctuations could be reduced by limiting
the beads to be bound either inside or outside the sensor area.

For Gaster et al. [2], the signal is clearly dominated by the magnetic beads outside the sensor
area, which give rise to a positive value of Sϕmax

. Due to the large aspect ratio of the sensor and
the small magnetic bead size, our calculations predict that the statistical sampling fluctuations
are very small (ϕstat 	 ϕmax) and hence that the sensor signal, assuming negligible noise, has a
dynamic range of up to five orders of magnitude. Experimentally, the authors find quite small
standard deviations in their dose-response curve, which covers 2.2 orders of magnitude in the
signal. According to the considerations above, statistical sampling fluctuations are negligible
on this scale, so signal variations are likely due to sensor noise and/or variations in experimen-
tal conditions between experiments.

Conclusion
We have described the statistics of the magnetoresistive sensor signal as function of the functio-
nalized area for beads magnetized by a homogeneous in-plane magnetic field. We have pre-
sented a general theoretical framework to (1) estimate the relative importance of sample-to-
sample fluctuations of the sensor signal from a finite number of beads, and (2) assess the ability
to determine a reliable value of the bead coverage from a single sensor measurement.

We have exemplified and discussed the signal from of a square sensor with a square functio-
nalized area centered on the sensor area. We have studied the effect of the size of the functiona-
lized area for a fixed size of magnetic beads. The signal level grows with the size of the
functionalized area until it covers the sensor area, after which the signal decreases. The statisti-
cal sampling fluctuations of the signal increase with the size of the functionalized area (faster
than the signal) and remain constant when the functionalized area extends beyond the sensor
area. We also investigated the effect of the size of the magnetic bead for two sizes of the functio-
nalized area. The statistical sampling fluctuations are found to be unimportant when the mag-
netic beads are limited to the sensor area, and the bead size can be chosen to maximize the
dynamic range of the sensor signal or to obtain maximum sensitivity to the binding of a single
binding event. When the functionalized area is allowed to extend beyond the sensor area such
that beads contribute both positively and negatively to the sensor signal, the picture changes
dramatically and statistical sampling fluctuations are likely to play a key role for the sensor sig-
nal fluctuations and the resulting obtainable dynamic range. Further, we have discussed limita-
tions imposed by the simplifying assumptions and indicated how the effect of, e.g., the
magnetostatic field of the sensor can be considered for a more detailed analysis of specific sen-
sor designs.

Finally, we have used the theoretical framework to analyze three cases from the literature.
For Graham et al. [5], we found that the statistical sampling fluctuations are prohibitively large
and thus that the sensor system design is not feasible for accurate assessment of the bead cover-
age. For Martins et al. [6], we found that statistical sampling fluctuations are significant and
limit the ability to make accurate determinations of the bead coverage. For Gaster et al. [2], we
found that the statistical sampling fluctuations are so small that they are unimportant and
hence that the ability of the sensor to make accurate estimates of the bead coverage is limited
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by other factors. The results of the theoretical analysis are, at least qualitatively, in agreement
with the experimental results for the three cases. It would be interesting to compare the theo-
retical predictions to systematic experiments on a large number of magnetic sensors of differ-
ent designs, using different operating conditions with nominally identical bead coverages to
test the limits of the predictions. Unfortunately such experiments are not yet available in the
literature.

The results demonstrate how the presented theory can be used to take all relevant sensor
parameters into account—including the sensor noise, the statistical sample-to-sample fluctua-
tions and the discrete nature of the magnetic beads—to assess the applicability of a sensor
design and operation. We note that the presented general theoretical framework can be modi-
fied to deal with other experimental geometries and field excitation schemes, for example,
where magnetic beads are magnetized using the field from the sensor bias current [12] or on-
chip current lines [13]. Further, we have indicated how the effect of the magnetostatic field of
the sensor can be included in a future expansion of the model.

Future work involves using the framework to optimize operating conditions (magnetic bead
size and magnetic field) to maximize performance of existing designs and to compare to more
elaborate experimental studies.

Supporting Information
S1 Table. Geometrical parameters for the case studies. Dimensions of the GMR sensor and
magnetic beads used in the indicated literature case studies. The sensors have a width w and a
total length ℓw. R denotes the radius of the magnetic beads used in the studies. z0 = h + R and
zout0 ¼ hout þ R denote the bead center to sensor layer distance for beads on top of the sensor
area and outside the sensor area, respectively.
(PDF)
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