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Sediments from Tibetan lakes in NW China are potentially sensitive recorders of climate change and its
impact on ecosystem function. However, the important plankton members in many Tibetan Lakes do not
make and leave microscopically diagnostic features in the sedimentary record. Here we established a
taxon-specific molecular approach to specifically identify and quantify sedimentary ancient DNA
(sedaDNA) of non-fossilized planktonic organisms preserved in a 5-m sediment core from Kusai Lake
spanning the last 3100 years. The reliability of the approach was validated with multiple independent genetic
markers. Parallel analyses of the geochemistry of the core and paleo-climate proxies revealed that Monsoon
strength-driven changes in nutrient availability, temperature, and salinity as well as orbitally-driven changes
in light intensity were all responsible for the observed temporal changes in the abundance of two dominant
phytoplankton groups in the lake, Synechococcus (cyanobacteria) and Isochrysis (haptophyte algae).
Collectively our data show that global and regional climatic events exhibited a strong influence on the
paleoecology of phototrophic plankton in Kusai Lake.

ibetan lake sediments have been extensively studied to understand past climate change in the Tibetan

Plateau in NW China, especially during the Holocene'. It is now well-established that the first half of

the Holocene was largely warm (~11-~5 ka ago), but the climate generally became colder with a greater
variability during the last ~5 ka’. These climatic variations were largely driven by changes in the magnitudes of
solar insolation and earth’s orbit®. Kusai Lake sediments on the Northern Tibetan Plateau archive the solar
insolation variations and the changes of the ocean-atmospheric circulation pattern since the last 3770 years*.
The overall climate in the Kusai Lake region was warm between ~3770-2550 years before the present (abbre-
viated as cal. yr BP hereafter, where the year 1950 AD was defined as the present), but gradually cooled between
~2550-2150 cal. yr BP, and became dry and cold in the last 2150 years®. Four distinct winter monsoon periods
were recognized and are coincident with the four well-recognized sunspot minima (Wolf, Sporer, Maunder, and
Dalton)*.

These dramatic climate events have likely caused major changes in the general plankton ecology of Tibetan
lakes. Indeed, the temporal changes in the abundance of Chlorophyceae Pediastrum in Luanhaizi Lake were found
to correlate with the Holocene surface water temperatures®. An increase in planktonic diatoms and a simultan-
eous decrease of epiphytic diatoms in Chenco Lake was indicative of freshening and expansion of the lake during
the Little Ice Age (LIA)".
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Microscopic analysis of fossil plankton is a widely used approach
in paleoclimate studies, but the majority of plankton does not have
fossilizing diagnostic features and is thus excluded from micropa-
leontological observations. However, these non-fossilizing plankton
are often sensitive to climate changes and can be useful for paleocli-
mate studies®. For example, a recent molecular ecological survey
showed that non-fossilizing planktonic picocyanobacteria, notably
Synechococcus belonging to subalpine cluster I, proliferated in
Tibetan lakes, and their community structure responded to salinity
change'®. Unfortunately, due to the lack of fossilizing features these
important environmental indicator taxa cannot be studied in sedi-
mentary records using conventional micropaleontology. Even if
intact Synechococcus cells were preserved in the fossil record, a clas-
sification at this taxonomic level would not be possible based on
morphological characteristics alone. Likewise, molecular surveys
revealed high eukaryotic microbial (protist) diversity in Tibetan
lakes, including those that do not make the microfossil record™.
Yet, these eukaryotes can be important to paleoclimate studies
because in Tibetan lakes, protist genetic diversity clearly responded
to environmental gradients such as salinity"'.

Fortunately, several studies have shown that temporal changes in
bacterial and eukaryotic plankton, including those that are absent in
the fossil record, can be reconstructed from Holocene and even
Pleistocene marine and lake sediments using the sedimentary ancient
DNA (sedaDNA) methods®*'>'®. The level of preservation of
sedaDNA can be validated by a comparison with the concentration
of recalcitrant fossil lipid biomarkers derived from the same source
organisms. For example, long-chain alkenones (LCAs) are known to
be only biosynthesized by haptophyte algae within the order
Isochrysidales'?, and the ratio of LCAs to DNA of haptophytes
has been used to confirm the preservation of sedaDNA in lacustrine
and marine sediments'**'. Previous studies have shown that cyano-
bacteria and haptophytes are abundant in Tibetan lakes and can
respond to environmental changes'®'"'®.

Here, we investigated temporal changes in photosynthetic cyano-
bacteria and protist communities in Kusai Lake, Tibetan Plateau in
NW China (35°37'-35°50" N, 93°38'-94°15" E, elevation 4470 m,
Fig. 1), through the analysis of a subset of ancient genetic marker
genes (23S rDNA, the 16S-23S rDNA internal transcribed spacer-
ITS, and 18S rDNA) combined with LCA analysis. We further
studied the response of the paleo-planktonic communities in Kusai

Lake to important environmental changes in the Northern Tibetan
Plateau over the past 3100 years. The results showed that specific
paleo-limnological conditions were important in shaping paleo-
planktonic communities of the lake, and regional and even global
climate events may be the driving force behind these limnological
changes.

Results

A sediment core (length 5 m, diameter 5.5 cm) was recovered in
June 2010 for this study from the same site cored previously in
Kusai Lake*. An age model was established by a linear regression
of the radiocarbon age (Table 1) against sediment depth (Fig. 2a)
with an age of ~3100 year at the bottom of the core (i.e. 3060 cal. yr
BP). A "C reservoir effect of 3030 years was inferred from the inter-
cept of the linear regression, which is similar to those reported in
previous studies for Kusai Lake* and other Tibetan lakes***. This age
model resulted in a sedimentation rate of 0.2 cm/year, which again is
similar to a previously published value®. Our previous study* used a
combination of high-resolution **C, *'°Pb, and *’Cs dating methods
to establish a robust age model for a sediment core of a similar length
from the same site of Kusai Lake. In this study, our nine "*C ages as
well as geochemistry (total organic carbon-TOC, total nitrogen-TN,
mineralogy, and salinity) were well-correlated with reported prev-
iously*, indicating that our age model is robust. The age of each
sample interval was established with a Bayesian age-depth model
by using the Bacon 2.2 software® (Fig. 2b). According to this age
model, our TOC and sedaDNA records have a time resolution of 10—
25 years which is the same as our previous geochemistry-based
paleoclimate study for Kusai Lake®, but higher than many paleocli-
mate studies™’, except for those varve-based studies®**".

The measured TOC/TN ratio in the Kusai Lake sediments was
generally lower than 10 with an average of 5.5 (Supplementary Fig.
S1). This result suggests that organic matter in the Kusai Lake sedi-
mentary record was mainly of autochthonous algal origin®®, consist-
ent with a previous study*. The concentration of LCAs, a group of
specific lipid biomarkers for haptophyte algae that can be used to
check for DNA degradation, ranged from 3 to 2276 ngg™' TOC. The
abundance of LCAs was positively correlated with the number of the
preserved 23S rDNA copies of the haptophyte genus Isochrysis
(Fig. 3, Spearman’s rs = 0.674, p = 0.000).
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Figure 1 | A location map of Kusai Lake. The blackness scale in degree indicates slope shade of the Kusai Lake catchment (the map did not show all the
catchment). The map was visualized and modified by using the software Global Mapper v10.02, based on the digital elevation maps from the Shuttle
Radar Topography Mission (http://srtm.csi.cgiar.org/)*’. The coring site was indicated by the asterisk on the map.
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Table 1 | “C AMS ages analyzed on TOC and calibrated ages for Kusai Lake

depth(cm) 1“C age/yr BP(15 ) reservoir-corrected '“C age by 3030 yr calendar age/cal. yr BP(25)
34 3255 + 25 225+ 25 269-308
60 3390 + 30 360 + 30 421-499
100 3585 =25 555 =25 523-562
130 3910 + 30 880 + 30 729-832
264 4520 + 30 1490 + 30 1306-1416
350 5080 = 25 2050 = 25 1945-2069
380 5200 =+ 40 2170 + 40 2055-2318
414 5440 + 40 2410 = 40 2345-2542
493 6202 = 25 3172 £ 25 3360-3446

Ancient planktonic communities in Kusai Lake were characterized
with a range of molecular techniques. Total planktonic communities
were identified with denaturing gradient gel electrophoresis (DGGE)
followed by sequencing of distinct bands using universal primers
targeting the 23S rDNA fragments of cyanobacteria and chloro-
plasts®®. The DGGE gel images illustrated major temporal changes
in the ancient phytoplankton community structure of Kusai Lake
(Fig. 4). The sequence analyses of all distinct DGGE bands
(GenBank accession numbers KC598134-K(C598180) revealed
that the community was dominated by the picocyanobacterium
Synechococcus (up to 96% similarity to Synechococcus sp. PCC 7920)
in the upper 200-cm of the core (~1400 cal. yr BP to the present) and
haptophyte Isochrysis (up to 96% similarity to Isochrysis galbana
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FACHB-861) in the lower 300 cm (~3060 to ~1400 cal. yr BP;
Fig. 4; Supplementary Fig. S2). Furthermore, the universal phyto-
planktonic primers also detected sequences of Gloeotilopsis-related
species (Ulvophyceae, Chlorophyta), which occurred frequently
throughout the core (Fig. 4). In addition, sequences of Chlorella-
related species (Trebouxiophyceae, Chlorophyta) and Bigelowiella-
related species (Chlorarachniophyte) were occasionally detected
throughout the core (Fig. 4).

To further confirm the presence of cyanobacteria in the sediment
core, cloning and sequencing was performed targeting the ITS region
of picocyanobacteria®. The ITS sequences (GenBank accession
numbers KC841412-KC841428) confirmed the existence of
Synechococcus in Kusai Lake, which belonged to a unique lineage,

Linear age-depth model
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Figure 2 | Geochronology of the Kusai Lake sediment core. (a) A linear model fit of "“C age versus depth. The '“C ages showed a reservoir effect of about
3030 years, which is in agreement with a previously published reservoir effect for Kusai Lake*; (b) A Bayesian age-depth model of the Kusai Lake sediment

core. This model was used for obtaining ages of all sub-samples.
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Figure 3 | A comparison of total LCA content with the gPCR-determined abundance of Isochrysis in the Kusai Lake sediment core. (a) Temporal
change of total LCA content; (b) Temporal change of the 23S rDNA copies per gram of TOC. Statistical analysis showed that they were non-parametrically

correlated with each other (Spearman’s rg = 0.674, p = 0.000).

different from other Tibetan lakes' (Supplementary Fig. S3). To
further verify the presence and abundance of haptophytes, DGGE,
sequencing of distinct DGGE bands, and qPCR were performed with
haptophyte-specific 185 rDNA primers". These 18S rDNA hapto-
phyte sequences (JX988774-JX988776) also confirmed the existence
of three phytotypes of Isochrysis in Kusai Lake, which were closely
related to haptophytes in Tso Ur Lake of Tibet'® (Supplementary Fig.
S4 and S5).

High resolution temporal changes of the three dominant genera
across the entire length of the core: Synechococcus, Isochrysis, and
Gloeotilopsis, were reconstructed with both genus-specific gPCR and
DGGE band intensity. Both methods showed a comparable trend in
the down core quantitative distribution of the three genera
(Supplementary Fig. S6). Furthermore, the down core variation pat-
terns of the Isochrysis abundance generated from 18S rDNA and 23S
rDNA were remarkably similar (Supplementary Fig. S7), indicating
that Isochrysis was the main haptophyte genus in Kusai Lake during
the last 3100 years, and that both independent marker genes were
equally well preserved and accurately represented the quantitative
temporal changes of Isochrysis abundance. For consistency, the
qPCR results from the 23S rDNA were used for the following data
analyses and discussion.
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The abundances of both total phytoplankton and Synechococcus were
positively correlated with TOC content (Figs. 5a-c; Supplementary
Table S2). The abundances of two dominant genera, Synechococcus
and Isochrysis, were correlated either negatively (Periods I and III,
~1400 cal. yr BP to the present and ~3060 to 1970 cal. yr BP, respect-
ively) or positively (Period II, ~1970 to 1400 cal. yr BP) (Figs. 5c-d and
Supplementary Tables S3-S6). In comparison, Gloeotilopsis was a minor
constituent and did not correlate with the abundance of the other two
genera.

Discussion

Haptophyte nucleic acid and specific lipid biomarker LCAs are often
compared to evaluate the extent of sedimentary DNA degradation in
marine and lacustrine sediments'>*!, because LCAs can be preserved
in ancient lacustrine sediments as old as Miocene® and they consti-
tute a suitable reference for the presence of past haptophyte algae.
The positive correlation between the total LCA abundance and the
Isochrysis gene copy numbers for the Kusai Lake sediment core
(Fig. 3) demonstrated that planktonic DNA was well preserved in
the Kusai Lake sediments and can be used to study the ancient
plankton community in response to paleoclimate change.
Furthermore, the consistency of Synechococcus and Isochrysis abun-

1520 - 1910 cal yr BP 2320 -3030 calyr BP

5309540 narsso s 16 0 3 o 4
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- related to Bigelowiella natans - related to Chlorella vulgaris

Figure 4 | Variations of DGGE patterns of the homologous 23S rDNA fragments of both cyanobacteria and chloroplast of eukaryotic algae along the
depth of the sediment core from Kusai Lake. The red and black arrows mark DGGE bands that represent the Synechococcus and the Isochrysis, respectively,
which were the dominant phytoplanktonic groups in the core. The yellow arrows mark the lower abundance Gloeotilopsis. The blue and green arrows
mark Bigelowilla and Chlorella, respectively, which were only occasionally present at some depths.
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Figure 5 \ Temporal changes of TOC content (a) and the abundances of the total plankton (b), Synechococcus (c), and Isochrysis (d) in comparison
with temporal changes of 8'*O values of a stalagmite from Dongge Cave in Southern China* (e) and the sunspot number®” (f). The abundances of

Synechococcus and Isochrysis were correlated either negatively (Periods I and III) or positively (Periods II). The three yellow bars refer to Bond events 0, 1,
and 2%, The green bar refers to a previously unrecognized cold period C1. Bond event 0 coincides with the Little Ice Age®. A green-to-red color scale is

used to indicate Asian monsoon strength.

dances derived from both gPCR and DGGE results, and the consist-
ency in Isochrysis abundance derived from the qPCR results of both
23S and 18S rDNA copies demonstrated the reliability of our results.

The detection of Synechococcus and Isochrysis in Kusai Lake (both
in modern lake, i.e., the water-sediment interface, and the ancient
sedimentary record) is consistent with previous studies where their
presence has been reported in Tibetan lakes'*'® and in the Antarctic
Ace Lake®. Freshwater strains of Synechococcus have also been
reported from inland lakes such as Lake Constance”, but this

cyanobacterial genus is most widely distributed in oceanic settings™.
Isochrysis is a typical coastal/lacustrine haptophyte alga'®. These two
plankton lineages in inland Kusai Lake had probably evolved from an
oceanic assemblage in the ancient Tethys Sea. Indeed, stratigraphic
evidence suggests that the Hoh Xil Basin, where Kusai Lake is cur-
rently located, was a rift valley or ocean basin (the north margin of
the Tethys Ocean) before Late Permian (>250 Ma)>".

The temporal changes of the Synechococcus and Isochrysis abun-
dances may have been caused by the changes of nutrient level and
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temperature in Kusai Lake over the past 3100 years. In general,
Synechococcus spp. are thought to be fast-growing r-strategists that
respond quickly to nutrient pulses®. In contrast, slow-growing
eukaryotic algae (including Isochrysis) can be regarded as K-strate-
gists that respond less quickly to environmental disturbances, but are
superior competitors under low nutrient conditions®. Likewise,
these two plankton groups generally have different temperature res-
ponse patterns. For example, a recent study on marine phytoplank-
ton communities showed that a decline in sea surface temperature
from 23 to 13°C resulted in a decrease in cyanobacterial abundance
(including Synechococcus and Prochlorococcus), but stimulated the
growth of haptophytes such as Isochrysis®. Therefore, the relative
abundance of Synechococcus and Isochrysis may be linked to the
temporal variations of nutrient availability and temperature in
Kusai Lake. Changes in the Asian Monsoon strength over the course
of the last 3100 years could have impacted these limnological condi-
tions of Kusai Lake* and associated changes in the plankton com-
munity. Namely, a Monsoon-driven increase in precipitation is
expected to result in increased terrestrial runoff of nutrients and is
also associated with warmer-than-usual surface water temperatures.
Indeed, the 6'°0O values of a stalagmite from Dongge Cave in south-
ern China® and the amount of precipitation in Delingha from about
440 km away from Kusai Lake® suggest that the Periods I and IIT in
the Kusai Lake record correspond to the times of varying summer
Monsoon intensity. During these two periods, the abundance of

Synechococcus was positively correlated with the strength of Asian
summer monsoon and the amount of precipitation (Fig. 5¢ and 5e;
Fig. 6a and 6c), whereas the Isochrysis abundance showed a negative
correlation with these two paleoclimate indicators (Fig. 5d and 5e;
Fig. 6a and 6d). In particular, a low abundance of Synechococcus (and
a high abundance of Isochrysis) was coincident with the well-estab-
lished low temperature periods, e.g., Bond event 0 and 2°*. In addi-
tion, the abundance of Synechococcus was low at ~2520-2250 cal. yr
BP (marked by the wide green bar labeled C1 in Fig. 5), suggesting
that this was also a cold period.

Unlike the Periods I and III, where increased nutrient level and
temperature resulted in an increased vs. reduced growth of
Synechococcus and Isochrysis, respectively, low temperatures assoc-
iated with the reduced monsoon intensity during the Period II might
have been a major control for the reduced growth of both
Synechococcus and Isochrysis (e.g., the yellow bar during the Period
IT on Fig. 5, which also corresponds to Bond event 1°*). A reduction of
both cyanobacterial (e.g., Synechococcus) and haptophyte (e.g.,
Isochrysis) abundance was observed in North Atlantic Ocean waters
when surface water temperatures dropped below 12°C*. Thus, the
surface water temperatures of Kusai Lake during the Period II might
have been at or below 12°C and must have been colder than those
during the Periods I and IIL

In addition to nutrient and temperature, salinity appears to be
important in affecting the relative abundance of these two plankton
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Figure 6 | An enlargement of the recent 1000 years in Period I from Fig.

5 showing the comparisons between the sunspot number* (a), paleo-

precipitation in Delingha® (b, about 440 km away from Kusai Lake), abundances of Synechococcus (c) and Isochrysis (d), and TOC content (e).
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groups as well, as indicated by the shift in the dominance of
Synechococcus over Isochrysis at ~1400 cal. yr BP. The abundance
ratio of Synechococcus over Isochrysis, as determined by qPCR of the
23S rDNA, was much greater than 1 in the last 1400 years, coincident
with increased precipitation of salt minerals (Fig. 7). In contrast, this
ratio was mostly lower than 1 for most of the time between 1400 and
3060 cal. yr BP when there was no salt mineral precipitation.
Therefore these data suggest that salinity is another environmental
parameter that could have influenced temporal changes in the
abundance of these two major plankton groups in Kusai Lake, with
Isochrysis likely being more adapted to a salinity lower than <15%o%,
while the Kusai Lake-specific Synechococcus must have adapted to a
higher salinity. This salinity effect was also observed on the distri-
bution of isoprenoidal glycerol diakyl glycerol tetraethers (iGDGT)
in Kusai Lake, a lipid biomarker for lake archaea (Fig. 7d)*.
Specifically, iGDGT composition changed dramatically from
iGDGT group 1 to iGDGT group 2 at the same time when we
observed the shift in the quantitative abundance distribution of
Synechococcus and Isochrysis (i.e., 1400 cal. yr BP) (Fig. 7d). This
shift in iGDGT distribution suggests a coinciding change in either
archaeal community composition or lipid composition in response
to an abrupt salinity change at 1400 cal. yr BP.

Lastly, orbitally-driven changes in solar radiation could have
played a role in affecting the relative growth of photosynthetic
Synechococcus and Isochrysis. Whereas direct measurements of
photoactive light intensity are not available for the ancient Kusai lake
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region, a previously published proxy for light intensity (e.g., sunspot
numbers)®” can be used to make correlations. Specifically, the abund-
ance of Synechococcus was positively correlated with a previously
published sunspot number®” (Figs. 5c¢ and 5f, Fig. 6b and 6c). In
contrast, the abundance of Isochrysis showed a negative correlation
with the sunspot number (Figs. 5d and 5f, Figs. 6b and 6d). These
data suggest that Synechococcus was adapted to greater light intensity
than Isochrysis. This differential light requirement is in agreement
with an observation in the Sargasso Sea, where Synechococcus spp.
were most abundant in surface waters, whereas eukaryotic algae
(including Isochrysis) reached highest densities in deeper waters,
where the light intensity was only 0.5% of the surface intensity™.

In summary, the composition and abundance of dominant plank-
ton groups in Kusai Lake was influenced by climate-driven changes
in nutrient level, temperature, salinity, and light intensity.
Specifically, through the 3100-year record, the timing of the temporal
changes in the quantitative abundance of Synechococcus and
Isochrysis was coincident with those of some well-recognized cli-
matic events including the Asian summer monsoon strength, the
amount of precipitation in northern Tibetan Plateau, the Holocene
ice-rafting events in the North Atlantic (e.g., Bond events 0, 1, and
2%%), the sunspot number variation”, and the Little Ice Age (LIA) in
the Sargasso Sea®. Such climatic-biotic coupling has been faithfully
preserved in Kusai Lake sediments for more than 3100 years, likely
because DNA degradation of phototrophic organisms decreased
under dark and anoxic conditions, which allowed amplification of
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Figure 7 | Temporal changes in the abundance ratio of Synechococcus over Isochrysis in relation to salinity as indicated by: (a) sediment soluble
salt content®’; (b) abundance of anhydrite®; (c) abundance of halite®; (d) iGDGT cluster group; (e) the abundance ratio of Synechococcus over Isochrysis
as determined by qPCR of the 23S rDNA fragment. The vertical dashed line refers to the time when the abundance ratio changed from mostly <1 to >1.
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relatively large DNA fragments from the Holocene sediments of
Kusai Lake. Furthermore, our results demonstrated that the Kusai
Lake sediments not only recorded local and regional (such as paleo-
precipitation and Asian monsoon) but also global paleoclimatic
events (such as North Atlantic ice rafting events). Therefore Kusai
Lake and possibly other lakes on the Tibetan Plateau continue to be
important sites for studying microbial response to the decadal to
centennial Asian monsoon variations and other regional and global
paleoclimatic changes.

Methods

Kusai Lake is a deep (>50 m), saline (salinity 28.5%o), and alkaline lake (pH 8.3). The
lake is located on the junction between a Tertiary rift basin and a Late Indosinian fold
belt in the Hoh Xil region of the Northern Tibetan Plateau (Fig. 1). The lake is fed by
Kusai River at its southwestern margin and has no outflow. The lake area is
~254.4 km” with a catchment area of ~3700 km*. The Kusai Lake region is char-
acterized by a strong continental climate indicated by high amplitude fluctuations in
annual and daily temperatures (mean annual temperature ~—4.5°C, the highest
summer temperature 15.0°C, and the largest summer day-and-night temperature
difference 15.5°C). Mean annual precipitation (250 mm) is significantly lower than
mean annual evaporation (1600 mm), resulting in a strong arid climate®.

A sediment core (5.5 cm diameter, 5-m length) was recovered from the south-
eastern part of Kusai Lake at a water depth of 14.5 m using UWITEC coring equip-
ment (Fig. 1). The core was cased inside transparent plasticizer-free polyvinyl
chloride tubes. After retrieval, the core was cut into 40-cm segments with a sterile saw
blade. The ends of these core segments were sealed with plastic caps. All the sediment
core segments were kept and transported on dry ice. Once in the laboratory, the core
segments were stored at —80°C until analysis.

After thawing at room temperature, the core segments were dissected at a 2-cm
depth interval (with a total of 250 subsamples) with a flame-sterilized knife and spoon
in a UV-sterilized room. External portions of the cores were discarded.
Approximately 5 g of sediments from the inner portion of each subsample were
collected into a sterile 50-mL centrifuge tube for DNA extraction, and 10 g of sedi-
ments were collected into a 50-mL centrifuge tube for geochemical analyses
(including TOC, TN, and "C dating). Approximately 60-70 g of sediments were
collected for lipid biomarker analysis. Subsets of 250 sediment subsamples were
selected for TOC and TN analyses (243 samples), radiocarbon dating (9 samples),
LCA analysis (74 samples), and DNA-based planktonic composition and abundance
using qPCR (233 samples) and DGGE (94 samples) analyses. All distinct DGGE
bands were sequenced for the 23S rDNA for plankton species identification.

Approximately 0.5 g sediment subsamples were acidified with 1 N HCI, rinsed
repeatedly with deionized water, and dried at 50°C. TOC and TN were measured with
a 2400 Series I CHNS/O Analyzer (PerkinElmer, Waltham, MA, USA). The geo-
chronology of the core was established with "*C dating of 9 subsamples using accel-
erator mass spectrometry (AMS) at Beta Analytic Inc. (Miami, Florida, USA) and the
Rafter Radiocarbon Laboratory (GNS Science, New Zealand). The radiocarbon ages
were converted to calendar years before 1950 using the Calib6.1 program*'.

Extraction and analysis of alkenones were based on published methods*. Sedim-
ents (~5 g) were freeze-dried, homogenized, and ultrasonically extracted with
methanol, DCM/methanol (1:1, v/v), and DCM, sequentially. This extraction pro-
cedure was repeated twice. The supernatants were combined as total lipid extracts
(TLEs) and dried under a gentle flow of N,. TLEs were saponificated with 6% KOH/
methanol at 70°C for 2h, extracted using DCM for 6 times, and were then combined
as the neutral fraction. The neutral compounds were separated with a silica gel
column using hexane/DCM (9: 1, v/v) and DCM/methanol (1: 1, v/v) as eluents for
the apolar fraction and the polar fraction, respectively. The polar fraction was deri-
vatised with BSTFA prior to analysis. After being dried with N,, the polar fraction was
dissolved in hexane. Long chain alkenones (LCAs) in the polar fraction were analyzed
using an Shimadzu 2010 Ultra-plus GC-MS equipped with a ZB-5MS fused silica
capillary column (60 m X 0.25 mm id; 0.25 pm film thickness). The GC temperature
was ramped from 70 to 150°C at 40°C/min, from 150°C to 310°Cat 2°C/min and then
held at 310°C for 40 min, with helium as the carrier gas. LCAs were identified with
GC-MS and quantified by internal standards (preganol).

Total DNA was extracted from 0.5 g wet sediments (233 sub-samples) using the
FastDNA SPIN Kit (MP Biomedical, OH, USA) in a laminar flow hood that was
thoroughly sterilized with ultraviolet radiation for 30 min and 6% sodium hypo-
chlorite according to a previously published protocol™. The hood was placed inside a
dedicated room designed for ancient DNA isolation. A blank control was included in
every step, from DNA extraction all the way to qPCR and sequencing such that any
contamination from the room, the hood, and chemical reagents would be detected. To
determine the identity of phytoplanktonic species preserved in the Kusai Lake sedi-
ments, the homologous 23S rDNA fragments of both cyanobacteria and chloroplast
of eukaryotic algae were amplified for 94 sediment sub-samples with PCR using the
GC-clamped specific primers p23SrV_f1 and p23SrV_r1 (Supplementary Table S1)*
followed by DGGE* and sequencing of distinct DGGE bands. A total of 47 distinct
DGGE bands were excised, re-amplified with the same primer set but without the GC
clamp, and sequenced with forward primer p23SrV_f1 on an ABI 3730 DNA
sequencer. The relative abundances of phytoplankton genera were calculated

according to the band intensities of the DGGE profiles by using the Quantity One™
Software (Bio-Rad, CA).

The 23S rDNA sequences and other DNA sequences (see below) were taxonom-
ically assigned to specific genera using the Basic Local Alignment Search Tool
(BLAST) in the NCBI database (http://www.ncbi.nlm.nih.gov). The research results
of the 23S rDNA sequences revealed that Synechococcus, Isochrysis, and Gloeotilopsis
were the dominant genera in the Kusai Lake sediment core. Therefore, gPCR was
performed to quantify the abundances of these three major groups. The forward
primers for Synechococcus and Gloeotilopsis and the reverse primer for Isochrysis were
designed for the quantification of these three planktonic groups using the BioEdit
5.0.6 software (Supplementary Table S1). The reverse primers for Synechococcus and
Gloeotilopsis, and the forward primer for Isochrysis were from a published study®.
Because of the low diversity of these plankton (see below), these newly designed
primers should accurately capture and quantify these genera. The newly designed
forward and reverse primers were extensively tested by amplifying and sequencing
the target DNA fragments. The results showed that these primers were specific to
Synechococcus, Isochrysis, and Gloeotilopsis in the Kusai Lake sediments. By using the
universal®® and specific primers (designed in this study) (Supplementary Table S1),
the dominant individual phytoplankton genera and the total phytoplankton com-
munity were quantified using QPCR according to a method described previously*.
The qPCR-determined abundances of the three phytoplankton groups
(Synechococcus, Isochrysis, and Gloeotilopsis) were compared with the DGGE-deter-
mined relative abundances (based on band intensity) to evaluate the validity of these
two different types of results. These comparisons were made for 94 sediment sub-
samples because this was the number of samples used for the DGGE analysis,
although qPCR was performed for 233 samples.

Additional genetic markers were used to confirm the identities of the dominant
cyanobacteria and haptophyte species in the Kusai Lake sediments (Supplementary
Table S1). To confirm the presence of cyanobacteria, the entire ITS fragment of
Synechococcus was amplified with the picocyanobacteria-specific primer set
Picocyal6S-F/Picocya23S-R followed by molecular cloning and sequencing®. In
addition, to verify the presence and abundance of haptophytes, DGGE, subsequent
sequencing of distinct DGGE bands, and qPCR were performed with taxon-specific
18S rDNA primers (Prym-429f/Prym-887r) targeting the 185 rDNA of haptophytes'*.
Again all these sequences were taxonomically assigned to specific genera using the
BLAST tool in the NCBI database. All reference sequences retrieved from the NCBI
database were then combined with these sample sequences to construct neighbor-
joining phylogenetic trees based on dissimilar distances. Pairwise comparisons were
made with the Jukes-Cantor distance model using the MEGA (molecular evolutionary
genetics analysis) program version 4.0 with 1000 bootstrap replications®.
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