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    Introduction 
 Angiogenesis, the formation of new blood vessels from existing 

vasculature, is crucial for many physiological and pathological 

processes including, but not limited to, fetal development, tis-

sue repair, and tumor growth. Originally, angiogenesis was 

believed to primarily rely on the expansion of local vascular en-

dothelial (VE) cells; however, the process is much more com-

plicated and involves coordination of vascular cells with fi bro-

blasts, immune cells of blood and tissue origin, and circulating 

blood components. Numerous studies have demonstrated the 

involvement of recruited bone marrow (BM) – derived cells 

(BMDCs) in neovascular development ( Lyden et al., 2001 ; 

 Ziegelhoeffer et al., 2004 ;  Peters et al., 2005 ). Although the 

identity and origin of these cells remains unclear and somewhat 

controversial, a role for BMDCs in angiogenesis has been docu-

mented by multiple groups ( Yang et al., 2004 ;  Khakoo and Finkel, 

2005 ;  Peters et al., 2005 ;  Grunewald et al., 2006 ;  Jin et al., 

2006 ). These BMDCs appear to promote angiogenesis through 

the release of proangiogenic factors at sites of neovasculariza-

tion to stimulate expansion of local blood vessels ( Ziegelhoeffer 

et al., 2004 ;  Grunewald et al., 2006 ;  Ruiz et al., 2006 ). Despite 

growing evidence depicting a key regulatory role of these cells 

in angiogenesis, the mechanisms underlying BMDC release, re-

cruitment, and retention at sites of neovascularization are just 

now beginning to be investigated. 

 As in leukocyte adhesion and traffi cking, specifi c key 

steps of BMDC recruitment are potentially mediated by cell ad-

hesion molecules ( Eliceiri and Cheresh, 2001 ;  Mahabeleshwar 

et al., 2007 ). The primary class of receptors known to mediate 

cell adhesion to other cells and extracellular matrix are integ-

rins. Although many integrins have been shown to be involved 

in various aspects of angiogenesis, one of the most intriguing 

players remains integrin  �  v  �  3  ( Carmeliet, 2002 ). The vast ma-

jority of studies have focused on the regulatory function of en-

dothelial  �  v  �  3  in angiogenesis ( Reynolds et al., 2002 ,  2004 ; 

 Mahabeleshwar et al., 2006 ); however, this receptor is also pres-

ent on a variety of BMDCs. It has been suggested that  �  3  integ-

rin is a common surface marker for tissue-specifi c stem cells 

and its expression was found to be correlated to the properties 

of quiescent hematopoietic stem cells ( Umemoto et al., 2006 ). 

A
ngiogenesis is dependent on the coordinated ac-

tion of numerous cell types. A key adhesion mol-

ecule expressed by these cells is the  �  v  �  3  integrin. 

Here, we show that although this receptor is present on 

most vascular and blood cells, the key regulatory function 

in tumor and wound angiogenesis is performed by  �  3  in-

tegrin on bone marrow – derived cells (BMDCs) recruited 

to sites of neovascularization. Using knockin mice ex-

pressing functionally stunted  �  3  integrin, we show that 

bone marrow transplantation rescues impaired angiogen-

esis in these mice by normalizing BMDC recruitment. We 

demonstrate that  �  v  �  3  integrin enhances BMDC recruit-

ment and retention at angiogenic sites by mediating cellu-

lar adhesion and transmigration of BMDCs through the 

endothelial monolayer but not their release from the bone 

niche. Thus,  �  3  integrin has the potential to control pro-

cesses such as tumor growth and wound healing by regu-

lating BMDC recruitment to sites undergoing pathological 

and adaptive angiogenesis.

 The angiogenic response is dictated by  �  3  integrin 
on bone marrow – derived cells 
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 Results 
 BM transplantation (BMT) restores 
normal tumor growth and wound healing 
in DiYF mice 
 We have previously shown that endothelial cell function and 

angiogenesis are impaired in DiYF mice. In this study, we in-

vestigate the role of  �  3  integrin in BMDC recruitment to sites of 

neovascularization. To this end, we performed a series of BMT 

and assessed the role of BM in angiogenesis-dependent re-

sponses, i.e., tumor growth and wound healing. 

 In accord with our previous fi ndings ( Mahabeleshwar 

et al., 2006 ), the growth of implanted B16F10 melanoma was 

reduced about twofold in DiYF mice compared with WT coun-

terparts. Transplantation of WT BM into irradiated DiYF hosts 

(WT → DiYF) normalized tumor growth to that of control WT 

mice receiving WT marrow (WT → WT;  Fig. 1 A ). These results 

were corroborated using murine RM1 prostate carcinoma cells 

( Fig. 1 B ). Alternatively, transplantation of DiYF BM into irra-

diated WT hosts (DiYF → WT) resulted in stunted B16F10 and 

RM1 tumor growth, a difference similar to that observed in 

mice not undergoing BMT. These data suggest that reduced 

tumor growth in DiYF mice is at least partially a consequence 

of altered BMDC  �  3  integrin function. 

 To illustrate that the observed BMT angiogenic rescue ef-

fect wasn ’ t specifi c to our tumor model, we examined wound 

healing. By analyzing wound closure, we found diYF mice dis-

played an early (3 – 7 d) wound healing delay (extent of closure) 

and extended time to complete closure ( Fig. 1 C , top). Whereas 

reconstitution of DiYF mice with WT BM restored the wound 

healing process, transplantation of DiYF BM into WT mice re-

duced the extent of wound closure 3 d after surgery compared 

with WT mice with WT BM ( Fig. 1 C , bottom). Gross inspec-

tion of healing wounds illuminated an angiogenic defect as the 

potential causative factor in the delay exhibited by DiYF mice, 

a condition corrected by BMT with WT marrow. These data 

demonstrated that impaired tumor growth and wound healing in 

DiYF mice are a consequence of altered  �  3  integrin function of 

BMDCs and not of local remodeling tissues and that BM recon-

stitution may reverse such angiogenic defects. 

 DiYF angiogenic defects are reversed in 
mice transplanted with normal BM 
 Having previously reported angiogenic defects in implanted tu-

mors of DiYF mice ( Mahabeleshwar et al., 2006 ), we further 

investigated the phenotype of these defects and whether they 

were BM dependent. Histological examination of B16F10 

and RM1 tumor, as well as wound sections, illuminates this 

angiogenic defect (Fig. S1 A, available at http://www.jcb.org/cgi/

content/full/jcb.200802179/DC1). Double staining of B16F10 

tumor sections with the endothelial cell marker CD31 and the 

pericyte marker neuro/glial cell 2 chondroitin proteoglycan 

(NG2) revealed a substantial (greater than threefold) decrease 

in both CD31- and NG2-positive blood vessel densities in 

tumors of DiYF hosts ( Fig. 2 A ). Total VE cell and pericytes 

positive areas in tumor tissues were also decreased (by 55 and 

45%, respectively) in DiYF hosts (Fig. S1 B, top left) with no 

 One of the most intriguing aspects of  �  3  integrin function 

in angiogenesis is the reported discrepancy between the effects 

of  � v �  3  inhibitors on pathological angiogenesis and the pheno-

type of the  �  3  integrin knockout mice ( Brooks et al., 1994a , b ; 

 Eliceiri and Cheresh, 1999 ,  2001 ;  Reynolds et al., 2002 ; 

 Taverna et al., 2004 ;  Mahabeleshwar et al., 2006 ;  Weis et al., 

2007 ). Importantly, recent studies using  �  3  integrin knockout 

mice clearly demonstrate not suppressing but the stimulatory 

role of  �  v  �  3  on angiogenesis in certain tissues ( Kanamori et al., 

2006 ;  Weis et al., 2007 ). These studies further emphasize the 

need to solidify the very complex role of  �  3  integrins in the reg-

ulation of physiological and pathological neovascularization. 

 Expression levels of  �  v  �  3  on the surface of myeloid cells 

were shown to be regulated by cytokines and chemokines 

( De Nichilo and Burns, 1993 ). Cytokines and chemokines also 

play vital roles in the mobilization and homing of BMDCs 

( Grunewald et al., 2006 ;  Ruiz et al., 2006 ). Stromal derived 

factor-1 (SDF-1), a CXC chemokine family member, controls nu-

merous homeostatic, developmental, and pathological processes 

through interaction with its cognate receptor, CXCR4, which is 

highly expressed by BMDCs ( Epstein, 2004 ;  Burger and Kipps, 

2006 ;  Ruiz et al., 2006 ). Emerging evidence indicates that the 

SDF-1/CXCR4 axis plays a pivotal role in the mobilization of 

hematopoietic cells from BM into peripheral blood and in dic-

tating positional engraftment of these cells at angiogenic sites 

( Orimo et al., 2005 ;  Grunewald et al., 2006 ). 

 The importance of BMDCs in neovascular development 

( De Palma et al., 2005 ;  Grunewald et al., 2006 ), the unique pat-

tern of  �  3  integrin expression and cellular regulation ( Chandhoke 

et al., 2004 ;  Mahabeleshwar et al., 2006 ;  Umemoto et al., 2006 ), 

and the intriguing, yet controversial, role of  �  3  integrin receptor 

in angiogenesis ( Brooks et al., 1994a ;  Eliceiri and Cheresh, 

1999 ;  Reynolds et al., 2002 ;  Taverna et al., 2004 ;  Kanamori et al., 

2006 ) has prompted us to focus on the role of this integrin in the 

biology of BMDCs in angiogenesis. As a basic experimental 

model, we used knockin mice (DiYF mice) in which  �  3  integrin 

tyrosines 747 and 759 are mutated to phenylalanine. We have 

previously shown that defective tyrosine phosphorylation of  �  3  

integrin in DiYF mice resulted in abnormal  �  3  function denoted 

by impaired endothelial cell adhesion, spreading, migration, and 

tumor angiogenic defects ( Mahabeleshwar et al., 2006 ). This 

mutation is not limited to endothelial cells but affects numerous 

cell types involved in the regulation of angiogenesis, including 

platelets, leukocytes, and, potentially, other BMDCs. Previous in 

vitro studies have indicated that Y747 phosphorylation is crucial 

for  �  v  �  3  integrin function on myeloid cell lines ( Blystone et al., 

1997 ;  Chandhoke et al., 2004 ). The present study is based on our 

surprising initial fi nding that transplantation of wild-type (WT) 

BM completely rescues angiogenic defects in tumors and wounds 

of DiYF mice. We have crossed DiYF mice with GFP-expressing 

transgenic mice to create DiYF/GFP mice as a source of BM to 

delineate the role of  �  3  integrin in the release and recruitment of 

BMDCs to sites of angiogenesis. Our analysis revealed that  �  v  �  3  

integrin on BMDCs plays a key role in tumor associated patho-

logical angiogenesis as well as in wounds via regulation of 

BMDC adhesion and transmigration into sites of neovasculariza-

tion, but not their release from the bone niche. 
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 Histological examination of B16F10 and RM1 tumor 

sections from DiYF hosts undergoing BMT with WT donor 

marrow revealed a possible restoration of angiogenesis (Fig. 

S1 C). This was confi rmed immunohistochemically by double 

staining B16F10 tumor sections with anti-CD31 and -NG2 

antibodies ( Fig. 2 D  and Fig. S1 D). The density of SMA-

positive vessels in tumor sections of WT marrow recipient 

DiYF mice was similar to that of WT mice receiving WT 

marrow ( Fig. 2 E ). Conversely, we performed BMT wherein 

WT BM was reconstituted with DiYF marrow. Although 

immunohistochemical analysis of B16F10 tumor sections in 

these mice revealed no statistically signifi cant difference in 

blood vessel density (Fig. S1 E), transplantation of DiYF BM 

into WT mice caused a reduction in blood vessel and pericyte 

area compared with WT mice receiving WT BM ( Fig. 2 F ). 

SMA-positive vessel densities in tumor sections of DiYF → WT 

mice were also reduced by  > 40% compared with WT → WT 

mice ( Fig. 2 G ). Thus, transplantation of DiYF BM into WT mice 

accompanying differences in blood vessel size (Fig. S1 B, top 

right). Colocalization of endothelial cells and pericytes in tumor 

vasculature revealed no morphological differences between 

B16F10 tumor sections regardless of host genotype. A reduc-

tion in the basement membrane protein laminin was also 

evident in tumors of DiYF hosts (Fig. S1 B, middle left). In ad-

dition, smooth muscle actin (SMA), a myofi broblast and adult 

smooth muscle pericyte marker, exhibited a fourfold decrease in 

DiYF B16F10 tumor sections compared with WT mice ( Fig. 2 B ). 

Immunohistochemical analysis revealed a decrease in von 

Willebrand factor vessel density ( Fig. 2 C ) and area (Fig. S1 B, 

bottom) in DiYF mice wound tissues compared with WT mice. 

Reduced staining for these vascular markers has previously been 

shown in RM1 tumor sections ( Mahabeleshwar et al., 2006 ) 

and is consistent with that of healing wounds of DiYF mice 

( Fig. 2 C  and Fig. S1 B, middle right) as well. These data illus-

trate the angiogenic defects of implanted tumors and wounds of 

DiYF mice. 

 Figure 1.    Reduced tumor growth and delayed 
wound healing in DiYF mice are BM dependent.  
(A) Weights of subcutaneous B16F10 tumors in 
WT and DiYF mice (11 d after implantation) or 
mice undergoing BMT (13 d) with WT or DiYF 
donor marrow. Data represent mean  ±  SEM ( n  = 
10 per group). (B) Weights of subcutaneous RM1 
tumors in WT and DiYF mice (9 d after implan-
tation) or mice undergoing BMT with WT donor 
marrow (11 d after implantation). Representative 
tumors are depicted above their respective data-
set. Data represent mean  ±  SEM (without BMT,  
n  = 14 per group; with BMT,  n  = 18 per group). 
(C) Analysis of wound healing in WT and DiYF 
mice. Gross visualization of healing wounds 3 
(top left) and 7 (bottom left) d after wound cre-
ation in WT and DiYF mice not undergoing (top 
left) and undergoing (bottom left) BMT with WT 
or DiYF donor marrow. Percentage of wound clo-
sure in WT and DiYF mice (top right) and WT and 
DiYF mice (bottom right) undergoing BMT. Data 
represent mean  ±  SEM (WT and DiYF,  n  = 10 per 
group; WT → WT,  n  = 16; WT → DiYF,  n  = 12). *, 
P  <  0.05.   
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hosts were  � 70% larger than those formed in DiYF counter-

parts (0.323  ±  0.034 vs. 0.191  ±  0.051 g,  n  = 10, P  <  0.05), a dif-

ference paralleling that of nondepleted WT and DiYF mice 

(0.493  ±  0.051 vs. 0.346  ±  0.046 g,  n  = 10, P  <  0.05). Immuno-

histochemical analysis of tumor sections with laminin revealed 

that the difference in tumor vascular density between WT and 

DiYF mice remained after platelet depletion (unpublished data), 

a difference similar to that of WT and DiYF mice. Thus, al-

though platelets are indeed important for tumor progression and 

angiogenesis, impaired platelet function is not the predominant 

contributor to altered tumor progression in DiYF mice. 

 Recruitment of DiYF BMDCs to sites of 
neovascularization is impaired 
 Because BMT rescued the angiogenic phenotype of DiYF 

mice, we next assessed whether recruitment of BMDCs into 

yields tumor angiogenic defects as well. These data therefore 

indicate that  �  3  integrin function of BM cells plays a key role 

in angiogenesis. 

 Platelet defects are not causative in the 
DiYF angiogenic defect 
 Because the DiYF mutation affects  �  IIb  �  3  signaling and platelet-

dependent responses ( Law et al., 1999 ), we next assessed to 

what extent, if any, that platelets contribute to the abnormal an-

giogenesis exhibited by DiYF mice. Using an anti-mouse GPIb �  

antibody, platelets were depleted in both WT and DiYF mice 

causing a  > 90% reduction in circulating platelets compared with 

control IgG. This reduced platelet level was maintained during 

the entire experiment through repeated antibody treatment. Al-

though platelet depletion resulted in a reduction of tumor growth 

in both WT and DIYF mice, tumors in platelet-depleted WT 

 Figure 2.    The angiogenic phenotype of DiYF mice is BM de-
pendent.  (A) Immunofl uorescent detection of CD31 (red) and 
NG2 (green) in B16F10 tumor sections from WT and DiYF 
mice (left). Microvessel density in B16F10 tumors from WT 
and DiYF mice (right). Bar, 100  μ m. Data represent mean  ±  
SEM. **, P  <  0.01. (B) SMA-positive microvessel density of 
B16F10 tumor sections from WT and DiYF mice. Data rep-
resent mean  ±  SEM. *, P  <  0.05. (C) von Willebrand fac-
tor (vWF) – positive microvessel density of tissue sections from 
10-d-old wounds of WT and DiYF mice. Data represent mean  ±  
SEM. *, P  <  0.05. (D) Immunofl uorescent detection of CD31 
(red) and NG2 (green) in B16F10 tumor sections from WT 
and DiYF mice after BMT with WT donor marrow (left). Bar, 
200  μ m. Insets depict similarities in vessel cellular organiza-
tion. CD31 and NG2 microvessel density in B16F10 tumors 
from WT and DiYF mice after BMT with WT donor marrow 
(right). Data represent mean  ±  SEM. (E) SMA microvessel 
density in B16F10 tumors from WT and DiYF mice after 
BMT with WT donor marrow. Data represent mean  ±  SEM. 
(F) Immunofl uorescent detection of CD31 (red) and NG2 
(green) in B16F10 tumor sections from WT mice after BMT 
with WT or DiYF donor marrow (left). Bar, 200  μ m. CD31 
and NG2 microvessel area in B16F10 tumors from WT mice 
after BMT with WT or DiYF donor marrow (right). Data repre-
sent mean  ±  SEM. *, P  <  0.05. (G) SMA microvessel density 
in B16F10 tumors from WT mice after BMT with WT and DiYF 
donor marrow. Data represent mean  ±  SEM. *; P  <  0.05.   
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tumor neovasculature, they are situated in close proximity 

to blood vessels and might affect angiogenesis by secreting 

key effectors. This is further supported by several other stud-

ies emphasizing the role of promyeloid cells in tumor vascula-

ture ( Grunewald et al., 2006 ;  Shojaei et al., 2007 ,  2008 ; 

 Purhonen et al., 2008 ). These groups demonstrated that BMDCs 

do not incorporate into endothelium. A recent study using B16 

melanoma clearly shows the lack of markers such as CD31, 

von Willebrand factor, and VEGFR2 on BMDCs ( Purhonen 

et al., 2008 ). Moreover, several comprehensive studies conclu-

sively show that it is the population of myeloid cells from BM 

that makes all the difference in tumor growth ( Shojaei et al., 

2007 ,  2008 ). 

 Studies using models of ischemia have shown that the ma-

jority of BMDCs recruited to sites of insult are leukocytes, macro-

phages, T lymphocytes, and fi broblasts ( Ziegelhoeffer et al., 

2004 ). By costaining B16F10 tumor sections for GFP and CD45, 

a marker for leukocytes or hematopoietic cells, including hema-

topoietic progenitor/stem cells except erythrocytes and platelets, 

we found that BM-derived GFP +  cells were frequently CD45 

positive ( Fig. 5 A ) with the extent of GFP + CD45 +  double posi-

tive cells in DiYF/GFP → WT mice reduced in comparison to 

that of WT/GFP → WT mice. This alludes to an essential role for 

 �  3  integrin signaling in the recruitment of CD45 +  cells from BM 

into sites of angiogenesis. 

 The majority of GFP +  cells were located at the periphery 

of tumors and immunofl uorescent visualization of the macro-

phage marker F4/80 indicated a good portion of these cells to be 

positive (33.6% in WT mice and 45.0% in DiYF mice; Fig. S3 A); 

however, the extent of perivascularly colocalized F4/80 +  and 

GFP +  cells was low (6.1% in WT mice and 17.0% in DiYF 

the developing vasculature was defective in these mice. To 

monitor the extent of BMDC recruitment, DiYF mice were 

crossed with GFP-expressing transgenic WT (WT/GFP) mice. 

The resultant DiYF/GFP and normal WT/GFP mice were used 

as donors for BMT experiments. In brief, WT/GFP marrow 

was transplanted into WT mice (WT/GFP → WT) and DiYF 

mice (WT/GFP → DiYF) and WT marrow was reconstituted 

with donor DiYF/GFP marrow (DiYF/GFP → WT). More than 

80% of nucleated cells and 95% of platelets in blood expressed 

GFP 8 wk after BMT. 

 Analysis of B16F10 tumors formed in chimeric mice re-

vealed large numbers of GFP +  cells located within the tumor 

periphery and in the vicinity of tumor vasculature ( Fig. 3 A ). 

GFP +  cell numbers were elevated in WT/GFP → WT and WT/

GFP → DiYF mice compared with those from DiYF/GFP → WT 

mice (Fig. S2, available at http://www.jcb.org/cgi/content/full/

jcb.200802179/DC1). Importantly, there was no signifi cant dif-

ference in the presence of GFP +  cells in tumors from WT/GFP → WT 

and WT/GFP → DiYF mice ( Fig. 3 B ), indicating that recruit-

ment of BMDCs and not host vasculature deficiencies are 

responsible for the impaired angiogenesis exhibited by DiYF 

mice. These fi ndings were confi rmed by assessing infi ltration of 

BMDCs into healing wounds 7 d after wound initiation. As 

shown previously ( Fig. 1 C , bottom right), histological analysis 

of wound tissues at this time point revealed almost complete 

wound closure and vascular similarities in WT and DiFY mice. 

Similar to our tumor model, recruitment of GFP +  cells to wound 

tissues was impaired in DiYF/GFP → WT mice compared with 

mice receiving WT/GFP marrow regardless of genotype ( Fig. 3 C ). 

In fact, there was no signifi cant difference in the presence of 

GFP +  cells in wound tissues of WT/GFP → WT and WT/GFP →
 DiYF mice. Results of our tumor and wound studies emphasize 

the importance of BMDCs in angiogenic processes and indicate 

that  �  3  integrin function is essential for BMDC recruitment to 

sites of neovascularization. 

 The majority of tumor-infi ltrating BMDCs 
are of hematopoietic origin 
 The localization of BMDCs in tumor neovasculature of DiYF/

GFP → WT, WT/GFP → WT, and WT/GFP → DiYF mice was 

examined by double staining of tumor sections for GFP (to 

visualize recruited BMDCs) and CD31 or VE-Cadherin (endo-

thelium markers), laminin (blood vessel basement membrane), 

or SMA. BMDCs were prominent in the vicinity of blood ves-

sels of B16F10 and RM1 tumors but were distinctly separate 

from the endothelial lining stained by CD31 or VE-Cadherin 

( Fig. 4 A  and Fig. S3 B, available at http://www.jcb.org/cgi/

content/full/jcb.200802179/DC1). GFP-positive cells were situ-

ated adjacent to both the basement membrane ( Fig. 4 B ) and 

SMA-positive cells ( Fig. 4 C ). Western analysis of B16 F10 

tumor lysates (WT/GFP → WT and DiYF/GFP → WT) showed 

decreased expression levels of GFP in tumors with DiYF/

GFP → WT compared with WT/GFP → WT (Fig. S3, C and D). 

Additionally, Western analysis of DiYF/GFP → WT also exhibited 

reduced expression levels of VE-Cadherin and CD31 compared 

with WT/GFP → WT (Fig. S3, C and D). Our results indicate 

that although BMDCs did not directly incorporate into the 

 Figure 3.    Infi ltration of BMDCs is  �  3  integrin dependent.  (A) Immuno-
fl uorescent detection of SMA (red) and GFP (green) on B16F10 tumor 
tissues in WT mice after BMT with WT/GFP or DiYF/GFP donor marrow. 
Bar, 100  μ m. (B) Quantifi cation of GFP-positive cells in B16F10 tumor 
sections from WT and DiYF mice after BMT with WT/GFP or DiYF/GFP 
donor marrow. Data represent mean  ±  SEM. *, P  <  0.05; **, P  <  0.01. 
(C) Quantifi cation of GFP-positive cells in wound tissue (day 7) sections 
from WT and DiYF mice after BMT with WT/GFP or DiYF/GFP donor 
marrow. Data represent mean  ±  SEM. *, P  <  0.05; **, P  <  0.01.   
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systemic SDF-1. Therefore, the SDF-1 content in tumors and 

plasma from WT and DiYF mice were determined. Although 

SDF-1 plasma levels in tumor-bearing WT and DiYF mice were 

closely matched (Fig. S4 A, available at http://www.jcb.org/

cgi/content/full/jcb.200802179/DC1), tumor concentrations of 

SDF-1 in DiYF mice were  � 50% less than that of WT mice 

( Fig. 6 A ). SDF-1 levels in leukocytes, BM cells, endothelial 

cell culture medium, and smooth muscle cell culture medium 

were similar for WT and DiYF mice (Fig. S4, B and C). Trans-

plantation of WT marrow into DiYF mice normalized the levels 

of SDF-1 in tumor tissues ( Fig. 6 B ). 

 SDF-1 has been shown to mediate the recruitment and 

retention of CXCR4 +  BMDCs to angiogenic blood vessels ( Jin 

et al., 2006 ). Immunohistochemical staining of tumor tissues for 

CXCR4 showed that the majority of GFP +  cells in tumor sec-

tions were also CXCR4 positive ( Fig. 6 C ). As noted previously 

in  Fig. 5 , there was an apparent defect in recruitment of CXCR4 +  

cells to tumor tissues of animals with DiYF but not WT BM re-

gardless of the host tissue genotype ( Fig. 6 C ). To ensure that 

the discrepancy between apparent quantities of tumor resident 

GFP + CXCR4 +  cells was not caused by variations in systemic 

availability of transplant groups, FACS analysis including dif-

ferential blood cell counts was used to determine the levels of 

circulating CXCR4 +  cells as well as cell populations in the 

blood of WT and DiYF mice or mice with implanted tumors. 

Our data showed no signifi cant differences in circulating cell 

populations (Fig. S4, D and E) except for those expressing 

CXCR4. Approximately 10% of circulating leukocytes were 

CXCR4 + . Of these,  � 30% expressed  �  3  integrin ( Fig. 6 D ). The 

amount of circulating CXCR4 +  cells in DiYF blood was mar-

ginally higher than in WT blood ( Fig. 6 E ). The presence of 

tumors almost doubled the amounts of CXCR4 +  cells in the 

circulation of both WT and DiYF mice. Although the percent-

ages of CXCR4 +  cells in DiYF and WT blood were slightly dif-

ferent in nontumor-bearing mice, the percentage of  �  3 -positive 

CXCR4 +  cells in DiYF mice was signifi cantly higher in DiYF 

tumor-bearing mice compared with WT tumor-bearing mice 

( Fig. 6 F ). Analysis of cells fl ushed from bones of WT and DiYF 

mice indicated no differences in CD34 + , CXCR4 + , or Sca1 +  cell 

quantities in nontumor- and tumor-bearing mice (Fig. S4 F). 

These data indicate that the release of BMDCs into the circula-

tion is normal or above normal in DiYF mice and, therefore, 

does not account for the observed defects in BMDC recruitment 

to sites of neovascularization and alludes to potential retention 

defi ciencies of recruited DiYF BMDCs. 

 Other parameters such as MMP-2 and MMP-9 as well as 

osteoclast activity are known to infl uence BMDC mobilization 

in vivo ( Heissig et al., 2002 ;  Kollet et al., 2006 ;  Cheng et al., 

2007 ). We found elevated levels of total and active MMP-2 and 

MMP-9 in BM aspirates from WT and DiYF mice bearing tu-

mors compared with nontumor-bearing counterparts; however, 

there were no differences between WT and DiYF mice not bear-

ing or bearing tumors (Fig. S5, A and B, available at http://www

.jcb.org/cgi/content/full/jcb.200802179/DC1). Moreover, osteo-

clast activity as determined by circulating levels of bone-spe-

cifi c tartrate-resistant acid phosphatase (TRAcP) 5b were found 

to be similar between WT and DiYF animals in tumor-bearing 

mice;  Fig. 5 B ). Macrophage depletion with clodronate further 

reduced tumor size in DiYF mice (Fig. S3 E). Limited numbers 

of other hematopoietic cell types, such as granulocytes and 

monocytes (both are Gr-1 positive) and T-lymphocytes (CD3 

positive) were located near the periphery of tumors but no obvi-

ous differences between DiYF/GFP → WT and WT/GFP → WT 

mice were found. By using a combination of anti-CD45, -F4/80, 

-CD3, and -Gr-1 antibodies for immunofl uorescence analysis, 

along with visualization of GFP, we found that  > 95% of GFP +  

cells in B16F10 tumors and  > 97% in RM1 tumors were positive 

for at least one of these markers ( Fig. 5 C ). Hence, the majority 

of BMD tumor-infi ltrating cells were of hematopoietic origin. 

 Reduced SDF-1 concentration in tumor 
tissues of DiYF mice leads to impaired 
recruitment of CXCR4 +  BMDCs 
 A key factor for BMDC retention in angiogenic tissues is SDF-1, 

a chemokine produced by, but not limited to, mural cells such as 

perivascular fi broblasts and smooth muscle cells ( Kucia et al., 

2005 ;  Orimo et al., 2005 ;  Grunewald et al., 2006 ). DiYF angio-

genic defects are accompanied by reduced numbers of SMA-

positive cells, which may result in decreased levels of local and 

 Figure 4.    Localization of BMDCs in the area of blood vessels in tumor 
tissues.  (A) Immunofl uorescent detection of CD31 (red) and GFP (green) 
in B16F10 (top) and RM1 (bottom) tumor sections from WT and DiYF 
mice after BMT with WT/GFP or DiYF/GFP donor marrow. Bar, 50  μ m. 
(B) Immunofl uorescent detection of laminin (red) and GFP (green) in B16F10 
tumor sections from WT and DiYF mice after BMT with WT/GFP donor 
marrow. Bar, 100  μ m. (C) Immunofl uorescent detection of SMA (red) and 
GFP (green) in B16F10 tumor sections from WT and DiYF mice after BMT 
with WT/GFP or DiYF/GFP donor marrow. Bar, 100  μ m.   
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affect adhesion of circulating BM-derived CXCR4 +  cells to the 

endothelial lining as well as their transmigration. To investigate 

this possibility, CXCR4 +  cells were isolated from peripheral 

blood of WT and DiYF mice and their ability to adhere and 

transmigrate through an endothelial monolayer was assessed. 

The presence of tumors promoted a threefold increase in the ad-

hesion of WT CXCR4 +  cells to endothelium but had no effect on 

the adherence of DiYF CXCR4 +  cells ( Fig. 7 A ). Likewise, 

DiYF CXCR4 +  cells had an impaired ability to transmigrate 

through the endothelial monolayer compared with WT CXCR4 +  

cells ( Fig. 7 B ). However, WT CXCR4 +  cell migration was two-

fold that of DiYF cells without tumor and increased in the pres-

ence of tumor, whereas the presence of tumor had no notable 

effect on DiYF CXCR4 +  cell migration. These data illustrate the 

importance of fully functional  �  3  integrin signaling in processes 

associated with recruitment into and retention of recruited BM-

derived CXCR4 +  cells at angiogenic sites. 

mice (Fig. S5 C). As such, the impaired accumulation of 

BMDCs at angiogenic sites in DiYF mice is not a consequence 

of defects in their release from BM. 

 Collectively, these data emphasize the importance of the 

SDF-1/CXCR4 axis in BMDC recruitment and the importance 

of BMDC  �  3  integrin function in this process. As mobilization 

of BMDCs is similar in WT and DiYF mice, it is easy to specu-

late that  �  3  integrin on BM cells is crucial to recruitment pro-

cesses after mobilization such as transendothelial migration and 

retention of recruited cells. 

  �  3  function is crucial for adhesion and 
endothelial transmigration of CXCR4 +  cells 
 Many integrins are known to control cellular adhesion and trans-

migration through endothelium, which, in turn, controls lym-

phocyte homing and subsequent immune responses ( Mackay, 

1995 ). It is possible that the DiYF mutation of  �  3  integrins could 

 Figure 5.    Identifi cation of tumor infi ltrating BMDCs.  (A) Immuno-
fl uorescent detection of GFP (a and d) and CD45 (Ab and Ae) 
along with the merged image (Ac and Af). Sections are of 
B16F10 origin in WT mice after BMT with WT/GFP (a – c) or 
DiYF/GFP (d – f) donor marrow. (B) Immunofl uorescent detection 
of GFP (green) and F4/80 (red) in B16F10 tumor sections from 
WT mice after BMT with WT/GFP (a) or DiYF/GFP (c) donor mar-
row. Blood vessels marked as V. (b and d) Higher magnifi cations 
of enclosed boxes in a and c, respectively. (C) Immunofl uorescent 
detection of CD45+F4/80+Gr-1+CD3 (a and e) and GFP (b and f) 
along with merged images of B16F10 (c and g) and RM1 
(d and h) tumor sections from WT mice after BMT with WT/GFP 
(a – c) or DiYF/GFP (e – h) donor marrow. Arrows indicate GFP-
positive cells that are negative for CD45+F4/80+Gr-1+CD3. 
Bars, 100  μ m.   
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 Discussion 
 Our previous studies showed that defective  �  3  integrin signaling 

in DiYF mice resulted in inhibition of tumor growth and angio-

genesis in vivo and impaired endothelial cell responses in vitro 

( Mahabeleshwar et al., 2006 ). The present study was initiated as 

a result of a preliminary fi nding wherein transplantation of WT 

BM completely rescued defective angiogenesis in DiYF mice. 

The fi ndings presented in this paper are depicted in  Fig. 8  with 

the key points summarized as follows. The course of tumor- and 

wound-associated angiogenic responses are dependent on BM 

cell  �  3  integrin function and not resident host tissue. Defects in 

platelet function stemming from the DiYF mutation are not 

causative of the angiogenic defects displayed by DiYF mice. 

The recruitment of DiYF BMDCs to sites of neovascularization 

is compromised compared with that of WT BMDCs. The ma-

jority of recruited BMDCs are negative for endothelial or 

smooth muscle cell markers, but appear to express CD45, Gr1, 

CD3, and CXCR4, indicating the hematopoietic origin of these 

cells. SDF-1 levels are reduced in tumors grown in DiYF mice 

compared with WT, a condition corrected by BMT. Impaired  �  3  

integrin activity has little effect on the process of BMDC re-

lease into the circulation; however, DiYF CXCR4 +  BMDCs ex-

hibit defective adhesion and transmigration through endothelial 

monolayers compared with WT counterparts. These data indi-

cate that  �  3  integrin activity on circulating CXCR4 +  BMDCs, 

but not  �  3  integrin on resident endothelial cells or platelets, 

plays a governing role in angiogenesis through regulating BMDC 

recruitment to angiogenic sites and adherence to and transmi-

gration through endothelium. 

 A defi nitive role for  �  3  integrin in the regulation of angio-

genesis remains elusive. Confl icting data regarding  �  3  integrin ’ s 

role in the development of neovasculature have been reported. 

Although  �  v  �  3  inhibitors defi ne a proangiogenic function ( Brooks 

et al., 1994a , b ), studies using  �  3  knockout mice suggest nega-

tive regulatory angiogenic properties ( Reynolds et al., 2002 ). 

Interestingly, increased tumor vascularization and tumor growth 

in  �  3 -null mice could be reversed by marrow repopulation with 

WT donor marrow ( Taverna et al., 2004 ), thus implicating BM 

as a key factor in the neovascularization processes. Although 

the impaired angiogenesis exhibited by DiYF knockin mice al-

ludes to a proangiogenic role for  �  3  integrin in angiogenic re-

sponses similar to that described using inhibitors of  �  v  �  3 , this 

impairment can be rescued through BMT with WT marrow, a 

response mirrored in  �  3  knockout mice. 

 Thus, results of both  �  3  knockin and knockout models 

suggest pathological angiogenesis is dependent on the function 

of this integrin on BM cells rather than residential endothelium. 

Because both knockout and knockin of  �  3  integrin are known to 

affect the function of platelet  �  IIb  �  3 , an obvious explanation for 

the results of BMT studies would be the regulatory role of platelet 

 Figure 6.    The SDF-1/CXCR4 axis regulates angiogenesis in DiYF mice.  
(A) Levels of SDF-1 in WT and DiYF B16F10 tumors. Data represent mean  ±  
SEM (duplicate measurements of  n  = 10 [WT] and  n  = 8 [DiYF] tumors 
each group). *, P  <  0.05. (B) Levels of SDF-1 in WT and DiYF B16F10 
tumors after BMT with WT donor marrow. Data represent mean  ±  SEM (du-
plicate measurements of  n  = 6 per group). (C) Immunofl uorescent detection 
of GFP (a, d, and g) and CXCR4 (b, e, and h) along with the merged 
image (c, f, and i). Sections are of RM1 origin in WT (a – c and g – i) and DiYF 
(d – f) mice after BMT with WT/GFP (a – f) or DiYF/GFP (g – i) donor marrow. 
(D) Peripheral blood analysis of  �  3  

+  and CXCR4 +  cells in nontumor- and 
B16F10 tumor-bearing WT and DiYF mice. (E) Percentage of circulating 
CXCR4 +  cells in nontumor- and B16F10 tumor-bearing WT and DiYF mice. 

Data represent mean  ±  SEM ( n  = 5 per group). (F) Percentage of circulat-
ing CXCR4 +  �  3  

+  cells in B16F10 tumor-bearing WT and DiYF mice. Data 
represent mean  ±  SEM ( n  = 5 per group). **, P  <  0.01.   
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 Our results using BMT of GFP-expressing WT and DiYF 

mice revealed recruitment defi ciencies of DiYF BMDCs in 

comparison to WT BMDCs. Several recent studies have dem-

onstrated stimulatory roles for BMDCs in angiogenic processes 

( De Palma et al., 2005 ;  Orimo et al., 2005 ;  Grunewald et al., 

2006 ), potentially explaining the overall reduced angiogenic 

response observed in DiYF mice. These reports defi ne dis-

tinctly different roles of BMDCs in angiogenesis with some 

purporting direct incorporation of BMDCs into developing 

vasculature ( Lyden et al., 2001 ;  Peters et al., 2005 ), whereas 

others illustrate a supporting, paracrine role of these BMDCs 

( De Palma et al., 2005 ;  Grunewald et al., 2006 ). In our model, 

BMDCs were found to be adjacent to endothelial cells or to 

SMA-positive pericytes and outside of the laminin basement 

membrane, similar to the reports of others ( Ziegelhoeffer et al., 

2004 ). With little to no recruited BMDCs displaying endothe-

lial or pericyte characteristics, results from our model suggest 

a more supporting, paracrine-like function of BMDCs in an-

giogenesis. At the same time, we observed that the majority of 

recruited BMDCs appear to be of hematopoietic origin as they 

express CD45, F4/80, CD3, and Gr1. Similar papers by others 

 �  IIb  �  3  in angiogenesis. Indeed, platelets were recently shown to 

regulate pathological vascularization in certain models ( Brill 

et al., 2004 ;  Italiano et al., 2007 ). In addition, thrombocytopenia, 

as well as the inhibition of platelet aggregation by a highly spe-

cifi c  �  IIb  �  3  integrin antagonist, resulted in a reduction of retinal 

neovascularization in a hypoxia-induced mouse model of an-

giogenesis ( Rhee et al., 2004 ). Considering these data, impaired 

platelet functions of DiYF mice should elicit angiogenic defects 

and stunted tumor growth, both of which should be capable of 

being abrogated or reduced through the depletion of circulating 

platelets. Platelet depletion reduced the angiogenic response in 

both WT and DiYF mice; however, the absence of circulating 

platelets failed to normalize the angiogenic and tumor growth 

differences between WT and DiYF mice. Thus, it appears that 

platelets are not solely responsible for the effects of BMT. This 

fi nding is in agreement with prior work suggesting that  �  IIb  �  3  

inhibitors fail to modify blood vessel development or platelet –

 tumor interactions in vitro ( Brill et al., 2004 ;  Kisucka et al., 

2006 ). Therefore, in DiYF mice there is a functional defect in 

other types of BMDCs that substantially contribute to the an-

giogenic phenotype. 

 Figure 7.    Circulating CXCR4 +  cells from DiYF mice 
exhibit impaired adhesion to and migration through 
endothelium.  (A) Relative number of adherent CXCR4 +  
cells from the peripheral blood of nontumor- and 
B16F10 tumor-bearing WT and DiYF after plating 
on an endothelial monolayer. Data represent mean  ±  
SEM and are representative of nine independent 
experiments. (B) Relative number of endothelial mono-
layer transmigrating CXCR4 +  cells from the peripheral 
blood of nontumor- and B16F10 tumor-bearing WT 
and DiYF after plating on an endothelial monolayer. 
Data represent mean  ±  SEM and are representative of 
fi ve independent experiments. **, P  <  0.01.   

 Figure 8.    Model depicting steps in the angio-
genic process affected by defective  �  3  integrin 
as exemplifi ed by the DiYF mouse.  Although 
impaired  �  3  function in the DiYF mouse does 
not affect the mobilization of BMDCs from the 
BM niche, it weakens adhesion and decreases 
migration functions, which, in turn, reduce 
the overall recruitment and retention of BMDCs, 
resulting in elevated levels of circulating 
CXCR4 +  BMDCs. This leads to dampened vas-
cular sprouting and an inhibition of angiogen-
esis. Defective endothelial cell function in DiYF 
mice appears to play a recessive role in this 
process. Low levels of SDF-1, a result of this an-
giogenic defect, further potentiate the reduced 
recruitment and retention of CXCR4 +  cells.   
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mice. SDF-1, along with its receptor CXCR4, is a key chemo-

attractant for hematopoietic progenitor/stem cell mobilization, 

traffi cking, recruitment, and retention ( Petit et al., 2007 ). As 

perivascular cells, these recruited CXCR4 +  hematopoietic cells 

promote and stabilize neovessels by releasing angiogenic fac-

tors and providing physical support ( Petit et al., 2007 ). In fact, 

defective vascularization was noted in SDF-1 or CXCR4 knock-

out embryos ( Ara et al., 2005 ). In our model, all of the vascula-

ture-associated BMDCs were CXCR4 positive, indicating that 

these cells were recruited by its ligand, SDF-1. Elevated plasma 

SDF-1 levels stimulates CXCR4 +  BMDC mobilization ( Hattori 

et al., 2001 ;  Heissig et al., 2002 ). We did not fi nd any notable 

differences in plasma SDF-1 levels in WT or DiYF mice. Other 

factors associated with BMDC mobilization and osteoclast 

function, such as BM resident MMP-2 and MMP-9 or serum 

TRAcP levels, were also found to be similar in WT and DiYF 

mice. However, increased blood CXCR4 +  or CXCR4 +  �  3  
+  cell 

numbers were observed in DiYF or tumor-bearing DiYF mice 

compared with WT or tumor-bearing WT mice. Therefore, de-

creased recruitment of BMDCs into tissues and defective adhe-

sive and migratory capacities and hence retention of DiYF 

CXCR4 +  BMDCs were causal in the increased levels of circu-

lating CXCR4 +  or CXCR4 +  �  3  
+  cells in  �  3  integrin – defective 

DiYF or tumor-bearing DiYF mice. Interestingly, we found that 

the levels of SDF-1 in tumors from DiYF mice were lower than 

tumor-bearing WT mice. The major source of SDF-1 in periph-

eral tissues are VE cells, epithelial cells, stromal fi broblasts, and 

SMA-positive myofi broblasts ( Fedyk et al., 2001 ;  Orimo et al., 

2005 ;  Ruiz et al., 2006 ). Thus, in our model, defective recruit-

ment of BMDCs and impaired angiogenesis were accompanied 

by reduced SDF-1 expression, which, in turn, further augmented 

the angiogenic defect in DiYF mice. Transplantation of WT BM 

restored these defects, including SDF-1 levels, in DiYF mice. 

 In sum, this study establishes a new role for  �  3  integrin in 

the regulation of angiogenesis, one that may infl uence not only 

the interpretations of numerous preclinical studies using  �  v  �  3  

inhibitors but also the development of new anti- as well as pro-

angiogenic strategies. 

 Materials and methods 
 Mice 
 8 – 12-wk-old WT or DiYF mice were on a C57BL/6 background as de-
scribed previously ( Law et al., 1999 ). WT/GFP mice were purchased from 
The Jackson Laboratory. DiYF/GFP mice were bred from DiYF and GFP 
heterozygote mice. All animal procedures were performed in accordance 
with the guidelines of the Institutional Animal Care and Use Committee of 
the Cleveland Clinic. 

 Subcutaneous tumor and wound healing models 
 Mice were injected subcutaneously with 10 6  B16F10 melanoma or RM1 
prostate tumor cells ( Chen et al., 2005 ). Tumors were harvested 9 (RM1 in 
WT and DiYF mice), 11 (B16F10 and RM1 in BMT WT and DiYF mice), or 
13 d (B16F10 in BMT WT and DiYF mice) after implantation, weighed, 
and processed for histological and immunohistochemical staining. 

 A back punch wound healing model was used as described else-
where ( Hoffman et al., 2006 ). Digital photographs were taken at the time 
of injury and on days 3, 7, 10, and 13 thereafter. Pictures were taken 
using a microscope (SMZ 1000; Nikon) equipped with a digital camera 
(DXM1200F; Nikon). The wound area was analyzed by tracing the wound 
margin from images and calculating pixel area with ImagePro Plus soft-
ware (v5.1; Media Cybernetics). Wound healing area was calculated as 
a percentage of area of the original wound. 

emphasize the role of hematopoietic cells in angiogenic in vivo 

models ( Ziegelhoeffer et al., 2004 ;  Grunewald et al., 2006 ;  

Jin et al., 2006 ). In addition, we, along with others ( Grunewald 

et al., 2006 ), have found that CXCR4 appears to be a marker 

expressed on the vast majority of recruited BMDCs. Therefore, 

in our model, BMDCs have a prominent stimulatory role in 

neovascularization without direct incorporation into blood 

vessels. Moreover, the functional activity of  �  3  integrin on 

BMDCs is crucial for their recruitment. 

 Because BMDC recruitment to neovascularizing sites is a 

multistep process ( Lindbom and Werr, 2002 ;  Grunewald et al., 

2006 ;  Lamagna and Bergers, 2006 ;  Vestweber, 2007 ), we as-

sessed whether impaired activity of  �  3  integrin infl uences the 

process of BMDC release from the BM niche into the circula-

tion. The latter process is known to be triggered by angiogenic 

factors produced by injured tissues and tumors ( Hattori et al., 2002 ; 

 Lindbom and Werr, 2002 ;  Grunewald et al., 2006 ;  Kopp et al., 

2006 ).  �  3  integrin is crucial for osteoclast-mediated bone resorp-

tion ( Zhao et al., 2005 ), which, in turn, contributes to the release 

of cells from the BM niche into blood ( Kollet et al., 2006 ). How-

ever, similar to the experiments by  Zhao et al.  ( 2005 ), we 

observed no major differences in bone resorptive function of 

tumor-bearing WT and DiYF mice, indicating that the DiYF mu-

tation does not impair  �  3  integrin activity on osteoclasts. Thus, 

even though DiYF mice exhibited higher numbers of circulating 

CXCR4 +  BMDCs compared with WT, it appears that  �  3  integrin 

activity affects not the release of CXCR4 +  cells from BM, but 

rather their recruitment from the circulation into tissues. Vascu-

lar walls present a barrier to circulating cells for relocating from 

the blood stream to sites of angiogenesis. The recruitment of 

BMDCs into surrounding tissues involves sequential inter-

actions with endothelium and extravascular tissue components 

( Lindbom and Werr, 2002 ;  Schenkel et al., 2004 ;  Millan et al., 

2006 ). First, transmigrating BMDCs need to establish transient 

and dynamic adhesive contacts with endothelium. Previous stud-

ies have shown that  �  v  �  3  integrin serves as a heterotypic ligand 

for CD31 ( Buckley et al., 1996 ), a molecular marker for endo-

thelial cells, and controls the arrest and extravasation of hemato-

poietic cells ( Lindbom and Werr, 2002 ). Moreover,  �  v  �  3  integrin 

on monocytes, neutrophils, and other leukocyte subsets plays a 

key role in the transition between tight adhesion to the VE and 

subsequent diapedesis ( Weerasinghe et al., 1998 ;  Lindbom and 

Werr, 2002 ). Our previous study demonstrated that the DiYF 

mutation impairs adhesion and migration of endothelial cells 

( Mahabeleshwar et al., 2006 ). In this study, we found that this 

mutation affected the ability of BM-derived CXCR4 +  cells to 

adhere to and transmigrate through an endothelial monolayer. 

Therefore, functional activity of  �  3  integrin is crucial for the ad-

hesion and transmigration of BMDCs at sites of neovasculariza-

tion, which, in turn, is crucial for the angiogenesis-dependent 

responses of tumor growth and wound healing. 

 Angiogenic factors released by peripheral tissues promote 

mobilization of BMDCs, especially CXCR4 +  cells from the BM 

niche ( Hattori et al., 2002 ;  Hiratsuka et al., 2002 ;  Grunewald 

et al., 2006 ;  Kopp et al., 2006 ). Indeed, our data showed higher 

CXCR4 +  cell numbers in the circulating blood of both tumor-

bearing WT and DiYF mice compared with nontumor-bearing 
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 Western blot analysis 
 BM cells were isolated by fl ushing the femurs and tibiae of WT and DiYF 
mice with ice-cold PBS. Cells were collected by centrifugation at 2,000 
rpm for 5 min and lysed in buffer composed of 50 mM Tris-HCl, pH 7.4, 
150 mM NaCl, 1% NP-40, 1% Triton X-100, 1% sodium deoxycholate, 
0.1% SDS, 5 mM iodoacetamide, 2 mM phenylmethylsulfonyl fl uoride, 
2 mM EDTA, 10 mM NaF, 10 mM Na 2 P 2 O 7 , 10  μ g/ml leupeptin, 4  μ g/ml 
pepstatin, and 0.1 U/ml aprotinin. Cell lysates were cleared and superna-
tants were assayed for protein concentration using the Bradford protein 
assay method (Bio-Rad Laboratories). Cell lysates were denatured using 
Laemmli sample buffer, and proteins were separated by SDS-PAGE and 
then probed with the indicated antibody. Where appropriate, nitrocellu-
lose membranes were stripped and blotted with anti-actin antibody as a 
loading control. Antibodies used were anti – MMP-2 and  – MMP-9 (Santa 
Cruz Biotechnology, Inc.) and anti –  � -actin (Sigma-Aldrich). 

 Measurement of MMP-2, MMP-9, and osteoclast activity 
 BM resident MMP-2 and MMP-9 levels were assessed using BM aspirate 
lysates from nontumor- and tumor-bearing WT and DiYF mice. Protein con-
tent and assay volumes were equalized before using the measurement kit 
(R & D Systems). Osteoclast activity was measured by quantifi cation of 
TRAcP 5b in the serum of tumor-bearing WT and DiYF mice using a com-
mercially available ELISA kit (Immunodiagnostic Systems, Inc). 

 Statistical analysis 
 The statistical difference between groups was determined using a two-
tailed Student ’ s  t  test or analysis of variance. P-values of 0.05 or less were 
regarded as statistically signifi cant. 

 Online supplemental material 
 Fig. S1 shows that decreased angiogenesis in DiYF mice is caused by im-
paired integrin  �  3  activation in BMDCs. Fig. S2 shows that infi ltration of 
BMDCs is integrin  �  3  dependent. Fig. S3 shows the localization of F4/80-
positive macrophages in a B16F10 tumor implanted in WT and DiYF mice 
transplanted with GFP-BM. Fig. S4 shows the SDF-1 levels in the plasma 
from WT and DiYF mice. Fig. S4 also shows the number of different types 
of circulating cells in blood in WT and DiYF mice. Fig. S5 shows MMP-2 
and MMP-9 contents in BM in WT and DiYF mice with or without B16F10 
tumors. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200802179/DC1. 
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 For BMT studies, mice (recipients) were lethally irradiated (9 Gy) fol-
lowed by BM reconstitution by tail vein injection with 10 7  BM cells isolated 
from the donor femurs. 8 wk after BMT, mice were used for tumor or wound 
healing experiments. 

 Platelet depletion and tumor implantation 
 Mice were injected subcutaneously with 10 6  B16F10 tumor cells and then 
randomly grouped into two groups. 30 min after tumor implantation, the 
experimental group received an intravenous infusion of rat anti-mouse 
GPIb �  (Emfret Analytics), whereas the control group received rat IgG (both 
at 2  μ g/g of body weight) in 200  μ l of sterile PBS. Injections of antibodies 
were repeated on days 3 and 6 to maintain low platelet counts. Platelet 
numbers in circulating blood were monitored using tail vein blood. Tumors 
were removed and analyzed on day 9. 

 Murine SDF-1 immunoassay 
 SDF-1 �  content in mouse plasma or tumor lysate was determined by an 
SDF-1 ELISA kit (R & D Systems). ELISA was performed using ELISA Kinetic 
microplate reader (MDS Analytical Technologies). Total protein content 
was quantifi ed by Bradford assay to equalize protein loading. 

 Flow cytometry 
 Erythrocytes were removed from blood samples using a mouse erythrocyte 
lysing kit (R & D Systems). The remaining cell population (10 6 ) was stained 
with phycoerythrin-conjugated rat anti-mouse CXCR4 antibody (R & D Sys-
tems) to determine CXCR4 +  cell quantities. Alternatively, double staining 
was performed with phycoerythrin-conjugated anti-mouse CXCR4 and rab-
bit anti-human  �  3  integrin as primary antibodies (Santa Cruz Biotechnol-
ogy, Inc.) and Alexa Fluor 488 – conjugated goat anti – rabbit IgG as the 
secondary antibody. Cells were permeabilized with 0.2% Triton X-100 for 
5 min before  �  3  integrin staining. FACS analyses were performed using 
FACSCalibur and data were analyzed using CellQuest Software (version 
3.8; BD). 

 Adhesion and transmigration of BMDCs 
 Peripheral blood cells were isolated and stained with a phycoerythrin-
conjugated anti-mouse CXCR4 antibody and sorted with a FACSVantage 
SE station (BD). CXCR4 +  cells were collected and further stained with 
FAST DiI (Invitrogen). Endothelial cells were isolated from WT mouse lung 
microvasculature as described previously ( Mahabeleshwar et al., 2006 ) 
and cultured as monolayers on fi bronectin-coated plates or in the upper 
chamber of a Boyden-type migration chamber. DiI-stained CXCR4 +  
BMDCs (10 4 ) were added on top of endothelial monolayers and incu-
bated for 1 (adhesion) or 18 h (transmigration) at 37 ° C in humidifi ed 5% CO 2  
air. Dishes of adherent cells were fi xed with 4% paraformaldehyde, 
washed, and photographed with an inverted fl uorescence microscope 
(DMIRB; Leica). Numbers of DiI-positive attached and spread cells on the 
endothelial cell monolayer were counted. Alternatively, transmigrated 
cells in the lower chamber of the migration chamber were collected and 
counted with an inverted fl uorescent microscope equipped with a camera 
(Retiga EX i ; QImaging). 

 Histology and immunohistochemistry 
 Tissues were fi xed with 4% paraformaldehyde and embedded in paraffi n 
or in OCT freezing medium. Histological and immunohistochemical stain-
ing was performed using standard techniques as described previously 
( Chen et al., 2005 ). The following primary antibodies were used: rat anti-
mouse CD31 (Research Diagnostics Inc.), rat anti-mouse F4/80 (AbD Se-
rotec), rat anti-mouse Gr-1 (BD), Cy3- �  – SMA (Sigma-Aldrich), rat anti-mouse 
CXCR4 (R & D Systems), rabbit anti-NG2 (Millipore), rabbit anti-GFP 
(AnaSpec, Inc.), rabbit anti-laminin (Sigma-Aldrich), rat anti-mouse CD45 
(BD), rabbit anti-goat VE-Cadherin (Santa Cruz Biotechnology, Inc.), and 
rat anti-mouse CD3 (eBioscience). All antibodies were used at a 1:100 di-
lution except for rabbit anti-GFP (1:500) and rabbit anti-laminin (1:1,000). 
Chromogenic visualization followed the Vectastain ABC kit protocol (Vec-
tor Laboratories). Secondary antibodies fl uorescently labeled with Alexa 
Fluor 488 or Alexa Fluor 594 (Invitrogen) were used for immunofl uores-
cence at a 1:200 dilution. All the slides were mounted with Vectashield 
mounting medium with DAPI (Vector Laboratories). Specimens were photo-
graphed using a research microscope system (DMR; Leica) or a laser-scanning 
confocal microscope (DMRXE TCS SP2; Leica), equipped with a camera 
(Retiga EX i ). Quantitative analysis of the positively stained area or density 
was performed using ImagePro Plus software as described previously 
( Chen et al., 2005 ). 
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