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Abstract
Motivated by modelling epidemics like COVID-19, this paper proposes a generalized
chain binomial process which integrates two types of infectives, those with symptoms
and those without. Testing of infectives and vaccination of susceptibles are then incor-
porated as preventive protective measures. Our interest relates to the distribution of
the state of the population at the end of infection and to the reproduction number R0
with the associated extinction condition. The method uses the construction of a family
of martingales and a branching approximation for large populations, respectively. A
more general branching process for epidemics is also constructed and studied. Finally,
some results obtained are illustrated by numerical examples.
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1 Introduction

For many infectious diseases, an unknown fraction of the infected persons has no
symptoms but is able to transmit the infection. These cases, called asymptomatic, can
have a significant impact on the spread of the disease. The importance of asymptomatic
carriers has been studied for various epidemics, including salmonella, Ebola andmany
other bacterial or viral infections (see e.g. Potasman 2017; Chisholm et al. 2018;
Aguilar and Gutierrez 2020).

The respiratory disease COVID-19 is caused by the novel coronavirus SARS-
CoV-2. For a person with symptoms, the average incubation period appears to be
approximately 5 days. Once the disease is declared, such a symptomatic infective is
generally treated at home or in the hospital: it is thus removed from the infection
process.

Amajor problem is causedby thenumber of asymptomatic carriers.Various samples
were taken in early 2020 to get an idea of the prevalence of asymptomatic infectives.
A large-scale testing in Iceland showed that about 50% of the people who tested
positive for COVID-19 were asymptomatic. In an Italian village at the epicentre of the
epidemic, the estimated proportion of asymptomatics was around 50 to 75%. A survey
in Belgium showed that more than 70% of positive tests in retirement homes were
asymptomatic, for both residents and nurses. It is now recognized that the number
of asymptomatic cases depends on many factors such as age and genetic factors,
and that it may involve 20% and more of infected cases. Furthermore, preliminary
analyzes suggest that antibodies for an asymptomatic infectious person provide natural
immunity after about 10 days.

On the basis of these observations, we propose to build a stochastic epidemic
model of SIR type (Susceptible-Infected-Removed) with two classes of infectives,
symptomatic and asymptomatic. The corresponding periods of infection can be con-
sidered to be approximately constant, of length respectively 5 or 10 days, so that we
formulate the model on a discrete time scale. In this context, the traditional SIR model
is the chain binomial process, called the Reed-Frost model, which we will modify in
order to incorporate asymptomatic carriers as an additional vector for the spread of
the disease.

There is an abundant mathematical literature on epidemic models and their appli-
cations. Much material, pioneering and more recent, can be found in the books
of Diekmann and Heesterbeek (2000) and Brauer et al. (2019) for a deterministic
approach, and in the books by Daley and Gani (1999), Andersson and Britton (2000)
and Britton and Pardoux (2019) for a stochastic approach.

SIR epidemics relate to infectious diseases which lead to a state of final elimination,
by death or immunization for example. Their stochastic versions arousedmuch interest
and is now a standard subject of applied probability. For recent works, we refer e.g.
to Lefèvre and Picard (2015), Ball (2019) and Simon (2020). Models incorporating
several types of infectives like here have been studied by different authors. Let us
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mention e.g. Picard and Lefèvre (1990), Scalia-Tomba (1990), Ball andClancy (1995),
Ball and Britton (2007), Leung et al. (2018) and Lefèvre and Simon (2020).

The modelling of COVID-19 is currently the subject of much research. A large
part concerns the deterministic approach but there are some papers on the study or
simulation of stochastic models; see e.g. Britton et al. (2020) and Gouriéroux and Lu
(2020). An originality of the present epidemic model is that it describes the spread
of an infectious disease such as COVID-19 quite realistically using a stochastic SIR
process ofMarkovian structure.Ourmain purpose is to determine the exact distribution
of the state of the population when the infectionwill die out. Approximating branching
processes are also discussed and provide the reproduction number R0 which is a classic
tool for outbreak monitoring by health authorities. Note that other questions are of
important practical interest. In particular, the evolution of the infection over timewould
make it possible to measure the pressure exerted on the hospital system. We hope to
study this topic in a future work.

The paper is organized as follows. In Sect. 2, we introduce a generalized chain
binomial epidemic process that explicitly takes into account the existence of asymp-
tomatic infectives. In Sect. 3, the total population is assumed of finite size so that
the extinction of the epidemic is certain. We build a family of martingales for the
process and determine the distribution of the final state of the population. In Sect. 4,
the initial susceptible population is assumed infinite and the number of contacts per
infective constant on average. We approximate the process by a branching model and
deduce from it the corresponding reproduction number and the associated condition
of almost sure extinction. In Sect. 5, possible testing of infected cases is added as a
preventive protection against the spread of infection. We adapt the previous reasoning
by martingales and obtain the distribution of the new final state of the population as
well as the reproduction number under testing. In Sect. 6, vaccination of all susceptible
individuals is considered at the start of the epidemic in order to seriously reduce future
contaminations. The vaccine efficacy is believed to depend on specific characteristics
of the susceptible, so that the initial susceptible population is now subdivided into sev-
eral distinct homogeneous groups.We generalize themethods used before to obtain the
distribution of the numbers of susceptibles escaping infection in the different groups,
and to determine the reproduction number under vaccination. In Sect. 7, the population
is considered large enough to describe the epidemic by a general branching process
with two types of individuals. We give the condition of extinction of the model and
we derive, when this condition is satisfied, the probability generating function of the
total numbers of infectives, symptomatic or not. In Sect. 8, we numerically illustrate
some of the results provided in the paper.

2 Chain binomial model with asymptomatics

The Reed-Frost chain binomial model is the most known SIR stochastic epidemic
process in discrete time. It is concerned with a closed and homogeneously mixing
population. Initially there are, say, n ≥ 1 susceptibles,m ≥ 1 infectives and 0 removed
case. Each infective has a constant latent period and an infectious period that is reduced
to a single point in time. At this point, it infects any susceptible present with the prob-
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ability p, all possible infections being independent. After that, the infective recovers
or is detected and isolated, thus being removed from the infection process.

Specifically, consider the time scale t ∈ N0. We denote by St and It the numbers of
susceptibles and infectives present at time t . Let Rt be the number of removed cases
up to time t . The population being closed, we have St + It + Rt = n + m for all t .
The spread of the disease evolves according to the following bivariate Markov chain.
Write Bin(k; θ) for a binomial distribution that counts successes in a sequence of k
independent experiments where each gives success or failure with the probabilities θ

and 1− θ , respectively. Given (St , It ), the population state at time t + 1 is defined by

St+1 =d Bin(St ; q It ),

It+1 = St − St+1 =d Bin(St ; 1 − q It ). (2.1)

Obviously,

Rt+1 = Rt + It = n + m − St ,

since the population size is always n + m.
The epidemic terminates at time T ≥ 1 when there are no more infectives in the

population (i.e. with IT = 0). A key measure of the total extent of the epidemic is
given by the ultimate number of susceptibles ST . The study of its distributions has
received considerable attention. We refer e.g. to Lefèvre and Picard (1990) for exact
results and Barbour and Utev (2004) for approximation results. The Reed-Frost model
is also used as a template to build many more elaborate variants (see e.g. Martin-Löf
1986; Picard and Lefèvre 1990; Neal 2006; Ball 2019).

Incorporating asymptomatics For certain diseases, asymptomatic carriers play an
important role in the spread of infection. As mentioned in the Introduction, this is the
case for the current COVID-19 epidemic. On the one hand, some of those infected
show clear, often severe, symptoms usually after about 1 week. Due to the control
measures, these people are then treated at home or in the hospital, so that they are
considered withdrawn from the population. During this week, however, they are able
to transmit the infection to susceptibles. On the other hand, another part of the infected
people shows no symptoms, or very mild. They acquire natural immunity after about
2 weeks, which then removes them from the infection process. Before that, they can
also infect susceptibles, usually to a lesser extent due to a lower viral load.

To simplify themodel a little, we suppose that a symptomatic infective contaminates
any susceptible present at 1 point of time with the probability p = 1 − q, whereas
an asymptomatic infective can do it at 2 points of time with the same probability
pa = 1− qa . In addition, a susceptible infected becomes either symptomatic with the
probability π or asymptomatic with the probability 1 − π .

Take a week as the time unit, and therefore the time scale t ∈ N0. We denote by
St the number of susceptibles at time t , It the number of infectives with symptoms
at time t , J (1)

t and J (2)
t the numbers of asymptomatics at time t who begin their

first and second week of infection and with sum Jt = J (1)
t + J (2)

t , Rt the number
of removed symptomatics (i.e. declared and treated cases) up to time t and Vt the
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total number of removed asymptomatics (i.e. immunized persons) up to time t . Write
Mult(k; θ1, . . . , θ j ) for a multinomial distribution resulting from a sequence of k
independent experiments where each gives j possible outcomes with the respective
probabilities θ1, . . . , θ j of sum 1. By referring to (2.1), we assume this time that given

(St , It , J
(1)
t , J (2)

t , Vt ), the population state at time t + 1 is defined by

(St+1, It+1, J
(1)
t+1) =d Mult[St ; q It q Jt

a , π(1 − q It q Jt
a ), (1 − π)(1 − q It q Jt

a )],
J (2)
t+1 = J (1)

t ,

Vt+1 = Vt + J (2)
t . (2.2)

Note that given St − St+1, we thus have

(It+1, J
(1)
t+1) =d Mult(St − St+1;π, 1 − π). (2.3)

Initially, (S0, I0, J
(1)
0 , J (2)

0 , V0) = (n,m,ma, 0, 0) where n is often very large and
m+ma ≥ 1 to start an epidemic. By definition, St + It + Jt +Vt + Rt = n+m+ma ,
so that

Rt+1 = Rt + It = n + m + ma − St − Jt − Vt .

In the following, we focus on the end of the epidemic. This will happen at time
T as soon as the population no longer contains any infectives (i.e. when IT = JT =
0). At this time, the state of the population is given by (ST , VT ), the final numbers
of suceptible and immunized persons. Our objective in Sect. 3 is to determine the
distributionof the vector (ST , VT ), and therefore also that of the number RT of removed
symptomatics by

RT = n + m + ma − ST − VT . (2.4)

3 Final outcome of the epidemic

To derive the distribution of the population state at the end of the epidemic, we will
apply amartingalemethod that has proven to be efficient and robust in epidemic theory
since the pioneering paper by Lefèvre and Picard (1990). Consider here the process
{(St , It , J (1)

t , J (2)
t Vt ), t ∈ N0}.

Lemma 3.1 Let z ∈ R. For each integer k ∈ {0, . . . , n}, the process {Mk,t (z), t ∈ N0}
given by

Mk,t (z) =
(
St
k

)
[νk(z)]St−kqk It (zq2ka )J

(1)
t (zqka )

J (2)
t zVt , (3.1)
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constitutes a martingale provided that νk(z) is defined by

νk(z) = πqk + (1 − π)q2ka z. (3.2)

Proof Choose z arbitrarily in R, and let x, y, h1, h2 be four real numbers to be fixed
later. We will condition on Ft , the history of the epidemic until time t . From the
definition of J (2)

t+1 and Vt+1 in (2.2), we have

E(x St+1 y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 |Ft ) = zVt+J (2)
t h

J (1)
t

2 E(x St+1 y It+1h
J (1)
t+1

1 |Ft ). (3.3)

In addition, the expectation in the right-hand side of (3.3) can be expanded as

E(x St+1 y It+1h
J (1)
t+1

1 |Ft ) =
St∑
s=0

P(St+1 = s |Ft )x
s
E(y It+1h

J (1)
t+1

1 |Ft , St+1 = s)

=
St∑
s=0

(
St
s

)
(q It q Jt

a )s(1 − q It q Jt
a )St−s xsE(y It+1h

J (1)
t+1

1 |Ft , St+1 = s). (3.4)

Using (2.3), the expectation in the right-hand side of (3.4) is given by

E(y It+1h
J (1)
t+1

1 |Ft , St+1 = s) = hSt−s
1 E[(y/h1)Bin(St−s;π)]

= (π y + (1 − π)h1)
St−s,

so that after insertion in (3.4),

E(x St+1 y It+1h
J (1)
t+1

1 |Ft ) =
St∑
s=0

(
St
s

)
(xq It q Jt

a )s[(π y + (1 − π)h1)(1 − q It q Jt
a )]St−s

= [(π y + (1 − π)h1)(1 − q It q Jt
a ) + xq It q Jt

a ]St . (3.5)

Thanks to (3.5), formula (3.3) becomes

E(x St+1 y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 |Ft )

= zVt+J (2)
t h

J (1)
t

2 [(π y + (1 − π)h1)(1 − q It q Jt
a ) + xq It q Jt

a ]St . (3.6)

Let us differentiate (3.6) k times, 0 ≤ k ≤ n, with respect to x . This yields

E(St+1,[k]x St+1−k y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 |Ft )

= zVt+J (2)
t h

J (1)
t

2 St,[k](q It q Jt
a )k [(π y + (1 − π)h1) (1 − q It q Jt

a ) + xq It q Jt
a ]St−k

= St,[k][(π y + (1 − π)h1) (1 − q It q Jt
a ) + xq It q Jt

a ]St−k qk It (h2q
k
a )

J (1)
t (zqka )

J (2)
t zVt ,
(3.7)
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after a little rearrangement. Inside (3.7), we now take y = qk , h2 = zqka and h1 =
h2qka = zq2ka , which gives

E(St+1,[k]x St+1−kqk It+1q
2k J (1)

t+1
a q

k J (2)
t+1

a zVt+1+Jt+1 |Ft )

= St,[k][(πqk + (1 − π)zq2ka ) (1 − q It q Jt
a ) + xq It q Jt

a ]St−k qk It (zq2ka )J
(1)
t (zqka )

J (2)
t zVt .

(3.8)

To get a martingale from (3.8), it then suffices to take

x = (πqk + (1 − π)zq2ka ) (1 − q It q Jt
a ) + xq It q Jt

a ,

i.e. x = νk(z) defined by (3.2). This leads to the announced martingale (3.1). ��
From Lemma 3.1, we deduce a system of n + 1 relations which allows to obtain

the distribution of (ST , VT ). Remember that RT then follows from (2.4).

Proposition 3.2 For z ∈ R,

E(

(
ST
k

)
[νk(z)]ST zVT ) =

(
n

k

)
[νk(z)]nqkm(zq2ka )ma , 0 ≤ k ≤ n, (3.9)

and these n + 1 relations provide us with the distribution of (ST , VT ).

Proof Let us consider the martingale (3.1) at the stopping time T . By the optional
stopping theorem, we directly deduce the system of n + 1 identities (3.9).

To check that (3.9) gives the distribution of (ST , VT ), we introduce in the left-hand
side of (3.9) the factor

∑n
s=0 1ST =s , which is equal to 1 of course. This leads to

n∑
s=k

(
s

k

)
[νk(z)]sE(1ST =s z

VT ) =
(
n

k

)
[νk(z)]nqkm(zq2ka )ma , 0 ≤ k ≤ n. (3.10)

The relations (3.10) form a triangular system of n+1 linear equations in the unknown
expectations ws(z) ≡ E(1ST =s zVT ), 0 ≤ s ≤ n. Thus, the ws(z) can be calculated
recursively for s = n, . . . , 0 by taking successively k = n, . . . , 0. For example,
denoting f (k, z) the right-hand side of (3.10), we get from k = n, n − 1 the two
equations

[νn(z)]nwn(z) = f (n, z),

[νn−1(z)]n−1wn−1(z) + n[νn−1(z)]nwn(z) = f (n − 1, z).

Now, by definition, ws(z) is a polynomial in z of degree ma + n − s. Let us
differentiate v times ws(z) with respect to z, ma ≤ v ≤ ma + n − s, and then take
z = 0. Obviously, this gives the quantities

v!E(1ST =s1VT =v) = v!P(ST = s, VT = v).
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Applying the same operation to (3.10), we then obtain the joint probability mass
function P(ST = s, VT = v), 0 ≤ s ≤ n,ma ≤ v ≤ ma + n − s. ��

The distribution of the single variable ST follows by choosing z = 1 in (3.9). This
gives the n + 1 relations (3.11) below with (3.12). Note that a system of this form
has been obtained previously for a variety of SIR epidemic models (see Lefèvre and
Picard 2015; Ball 2019 and the references therein).

Proposition 3.3

n∑
s=k

(
s

k

)
(νk)

s
P(ST = s) =

(
n

k

)
(νk)

nqkmq2kma
a , 0 ≤ k ≤ n, (3.11)

where νk is defined by

νk = πqk + (1 − π)q2ka . (3.12)

This is a triangular system of n+1 linear equations in the n+1 unknown probabilities
P(ST = s), 0 ≤ s ≤ n.

It is well known that triangular linear systems like (3.11) can lead to numerical
problems inherent in the solution. Specific algorithms and methods, however, can
help solve the system appropriately (see e.g. Demiris and O’Neill 2006).

The distributions of ST and VT are, of course, closely related. This is particularly
clear by taking k = 0 in (3.9), which gives the identity (3.13). By differentiation with
respect to z with z = 1, we then obtain the simple relation (3.14) for the means.

Corollary 3.4 For z ∈ R,

E[zVT −ma/(π + (1 − π)z)n−ST ] = 1, (3.13)

which implies for the means

E(VT ) = ma + (1 − π)[n − E(ST )]. (3.14)

Remark 1 Let us underline that as long as T is concerned, the model (2.2) is equivalent
to supposing that each asymptomatic becomes immune after 1 week (instead of 2
weeks) and during this period, it does not contaminate any susceptible present with
probability ρ = q2a . For this modified model, J (2)

t = 0 and Jt = J (1)
t , t ∈ N0, and

given (St , It , Jt , Vt ), the population state at time t + 1 is defined by

(St+1, It+1, J
(1)
t+1) =d Mult[St ; q Itρ Jt , π(1 − q Itρ Jt ), (1 − π)(1 − q Itρ Jt )],
Vt+1 = Vt + Jt . (3.15)

starting with (S0, I0, J0, V0) = (n,m,ma, 0). Indeed, by applying to (3.15) an anal-
ogous martingale reasoning, we can obtain exactly the same n + 1 relations (3.11).
This is also in accordance with intuition.
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Remark 2 The final state distribution of the model (3.15) could also be derived recur-
sively using more direct relations. Let Ut = It + Jt and consider the expectations

f (s, u) = E[a(ST )zVT | S0 = s,U0 = u], 0 ≤ s ≤ n, 0 ≤ u ≤ n + m + ma,

where a(s) is some real function such as a monomial xs , x ∈ [0, 1], or an indicator
1s=k , 0 ≤ k ≤ n. From (3.15), we get

f (s, u) =
u∑

i=0

P(I0 = i, J0 = u − i |U0 = u)E[a(ST )zVT | S0 = s, , I0 = i, J0 = u − i]

=
u∑

i=0

(
u

i

)
π i (1 − π)u−i

E[a(ST )zVT | S0 = s, , I0 = i, J0 = u − i]

=
u∑

i=0

(
u

i

)
π i (1 − π)u−i

s∑
l=0

P(S1 = s − l | S0 = s, I0 = i, J0 = u − i)zu−i f (s − l, l)

=
s∑

l=0

(
s

l

)
f (s − l, l)

u∑
i=0

(
u

i

)
π i (1 − π)u−i zu−i (qiρu−i )s−l (1 − qiρu−i )l , (3.16)

with the initial conditions

f (s, 0) = a(s), and f (0, u) = a(0)[π + (1 − π)z]u . (3.17)

So, the recursive scheme (3.16), (3.17) allows us to calculate all the expectations
f (s, u). Returning to (3.15), we then obtain

E[a(ST )zVT ] = zma

n∑
s=0

(
n

s

)
(qmρma )s(1 − qmρma )n−s f (s, n − s).

This method is simple in principle. Its main drawback, however, is that the
recursions involved here take a lot of computation time. We will discuss possible
improvements and compare the two approaches above in an upcoming research.

4 Reproduction number R0

When the initial number n of susceptibles is very high, it will remain almost constant
during the early stages of the epidemic. The spread of infection is then expected to
be reasonably estimated through a branching process. Such an approximation has
been studied for a variety of SIR epidemic models (see e.g. Ball and Donnelly 1995;
Lefèvre andUtev 1999; Ball andNeal 2010). This leads to thewell-established concept
of reproduction number R0 which, in general terms, measures the expected number of
secondary cases by each primary case. In fact, the constraint R0 ≤ 1 is known to be
the condition for the almost sure extinction of the epidemic. Note however that R0 is
observed to be very variable in practice, especially for COVID-19 (see the discussions
of Elliott and Gouriéroux 2020; Donnat and Holmes 2021).
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For the model (2.2), we assume that

S0 = n → ∞, q = e−λ/n, qa = e−β/n . (4.1)

Notice that for large n,

n(1 − q It q Jt
a ) = λIt + β Jt + O(1/n). (4.2)

This means that the number of susceptibles contaminated per week by any given
infective is roughly constant on average.

In what follows, we choose to argue by examining the course of time week after
week. This has the advantage of mimicking the actual spread of infection in the epi-
demic model (2.2). An alternative approach would be to consider all the infections
caused by an individual when it becomes infected (in accordance with Remark 1).
Both methods are reasonable and, as shown below, they lead to the same extinction
condition.

At the early stages t of the epidemic, St = S0−O(1) because n is very large. Thus,
by applying a coupling argument (as in Lefèvre and Utev 2010), we can derive the
following approximation: given (St , Jt ),

It+1 ≈ Po[π(λIt + β Jt )],
J (1)
t+1 ≈ P̃o[(1 − π)(λIt + β Jt )],
J (2)
t+1 = J (1)

t ,

where {Po(at )} and {P̃o(bt )} are two independent Poisson processes of means at and
bt . So, under (4.1), (4.2), we may write that for any finite horizon H ,

{(It , J (1)
t , J (2)

t ), 0 ≤ t ≤ H} ≈ {Xt ≡ (It , Qt ,Wt ), 0 ≤ t ≤ H}, (4.3)

where {Xt } is a branching process of dynamics

It+1 = Po[π(λIt + β(Qt + Wt ))],
Qt+1 = P̃o[(1 − π)(λIt + β(Qt + Wt ))],
Wt+1 = Qt . (4.4)

Thanks to this approximation, we will be able to highlight a threshold behavior for
the epidemic. The result could be derived from the theory of multi-type branching
processes (as used later in Sect. 7). For clarity, we prefer to give a different proof
below which is self-contained and less standard.

Proposition 4.1 Under the branching hypotheses (4.1), (4.2), the reproduction number
R0 is given by

R0 = πλ + (1 − π)β

2
+

√(πλ + (1 − π)β

2

)2 + (1 − π)β. (4.5)
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The infection process almost surely dies out iff R0 ≤ 1, which is equivalent to

πλ + 2(1 − π)β ≤ 1. (4.6)

Proof Set Xt = y ≡ (i, j, w), i.e. (It = i, , Qt = j,Wt = w). Moreover, let a · b
denote the dot product in the 3-dimensional space R3. From the Markovian property,
we get conditionally to Xt = y that for all a ∈ R

3,

Ey(a · Xt+1) = a1Ey{Po[π(λIt + β(Qt + Wt ))]}
+ a2Ey{P̃o[(1 − π)(λIt + β(Qt + Wt ))]} + a3Ey(Qt )

= a1[π(λi + β( j + w))] + a2[(1 − π)(λi + β( j + w))] + a3 j .

By the tower lemma, substituting (It , Qt ,Wt ) for (i, j, w) yields

E(a · Xt+1) = E{a1[π(λIt + β(Qt + Wt ))] + a2[(1 − π)(λIt + β(Qt + Wt ))]
+a3Qt }. (4.7)

Define the matrix

M =
⎛
⎝πλ (1 − π)λ 0

πβ (1 − π)β 1
πβ (1 − π)β 0

⎞
⎠ . (4.8)

We then see that (4.7) can be rewritten as

E(a · Xt+1) = a · E(Xt+1) = E[(Ma) · Xt ] = (Ma) · E(Xt ). (4.9)

Now, suppose that the finite limit x = E(X∞) exists. From (4.9), it must satisfy the
harmonic type identity

a · x = (Ma) · x = a · (Mτx), for all a ∈ R
3,

whereMτ denotes the transposedmatrix toM . Hence, the limit x satisfies thematricial
equation

x = Mτx. (4.10)

Consider 0 < π < 1, the two limit cases π = 0 or 1 being easily discussed. Then,
the matrix Mτ is non-negative irreducible, and by the Perron-Frobenius theorem, Mτ

then has a positive eigenvalue R0 that is simple and greater in absolute value than any
other eigenvalue. As a consequence, x = 0 is the only solution to (4.10) when R0 < 1.
Moreover, a suitable coupling argument can show that extinction will also occur when
R0 = 1.
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Obviously, the eigenvalues z of Mτ (or M) are identified by solving the character-
istic equation det(M − z I ) = 0, i.e. from (4.8),

(πλ − z){−z[(1 − π)β − z] − (1 − π)β} − (1 − π)λ(−zπβ − πβ) = 0.

This equation of degree 3 is fortunately simplified in

z[z2 − z((1 − π)β + πλ) − (1 − π)β] = 0. (4.11)

Apart from z = 0, the other non-negative solution to (4.11) is the dominant eigenvalue
R0 whose expression is provided by (4.5) as stated. In addition, a direct calcula-
tion shows that R0 ≤ 1 is indeed equivalent to (4.6). Under this condition, we have
E(X∞) = 0, which implies that the infection gets extincted almost surely. ��

Note that for the classic Reed-Frost model (π = 1), (4.5) reduces to R0 = λ and
(4.6) becomes λ ≤ 1, in accordance with standard results.

Remark 3 The reproduction number R0 in (4.5) is the (geometric) growth rate for
the initial phase of the epidemic in a large population. It corresponds to the Perron-
Frobenius eigenvalue of the next-generation matrix M defined in (4.8). As stated
previously, it is obtained by following the time week after week. Indeed, the compo-
nents Mi, j of M give the expected numbers of infections of type j generated by an
infective of type i during one week. Thus, within the matrix M , an asymptomatic in
the first and second week of its infection are treated as two separate infectives.

Another possibility is to adopt the model (3.15) and to define a generationmatrix M̃
by considering asymptomatic cases over their entire period of infection (two weeks),
which leads to

M̃ =
(

πλ (1 − π)λ

2πβ 2(1 − π)β

)
. (4.12)

The Perron-Frobenius eigenvalue of (4.12) provides an alternative reproduction
number R̃0, called basic in usual approximation branching processes. This gives
R̃0 = πλ + 2(1 − π)β, which is precisely the left-hand side of (4.6). Thus, R0
and R̃0 provide, of course, the same extinction condition (4.6).

Note that R0 ≥ R̃0 in a subcritical epidemic, whichmeans that R0 then gives amore
pessimistic indicator of the force of contagion. Conversely, R0 ≤ R̃0 in a supercritical
epidemic.

Remark 4 A careful coupling argument as in Lefèvre and Utev (2010) allows to extend
the branching approximation to the random time when the number of infectives will
be o(

√
n). The powerful approximation developed by Barbour and Utev (2004) is

probably valid here too, but it seems much more technically difficult.
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5 Testing of infectives

Onemethodof preventive protection against infectious diseases is to perform screening
tests. Various studies have already proposed epidemic models with tests in which an
infected person is isolated by quarantine if it is detected positive (see e.g. Castillo-
Chavez et al. 2003; Berger et al. 2020).

For the current model, we assume that once infected, an individual can be tested
and possibly detected. These tests are carried out on the basis of signs of infection,
therefore for symptomatic cases but also for asymptomatic cases suspected of being
infected. If the test is positive, the infective is isolated and removed from the process
of contagion in the population. It should be noted that systematic screening of the
population, even susceptibles, could also be considered.

More precisely, any symptomatic at time t is tested independently with the proba-
bility b. The test confirms the presence of infection with the probability c. Thus, this
infective escapes isolation through testingwith the probability α0 ≡ (1−b)+b(1−c).
We denote by It the number of symptomatics who escape isolation (and thus remain
present) at time t . Let DI

t be the number of symptomatics isolated at time t , and W I
t

the number of symptomatics isolated up to time t .
On the other hand, any asymptomatic at time t who shows mild symptoms is also

tested independently. For the first (second) infection point, the test is performed with
the probability b1 (b2) and the result is positive with the probability c1 (c2). Thus, for
the first week, an asymptomatic escapes isolation with the probability α1 ≡ (1−b1)+
b1(1−c1), and for the secondweek,with the probabilityα2 ≡ (1−b2)+b2(1−c2).We
denote by J (1)

t (J (2)
t ) the number of asymptomatics at time t who escape isolationwhen

t is the first (second) infection point. Let D(1)
t (D(2)

t ) be the number of asymptomatics
isolated at time t , and W (1)

t (W (2)
t ) the number of asymptomatics isolated up to time t

for the first (second) week of infection, with respective sums DJ
t = D(1)

t + D(2)
t and

W J
t = W (1)

t + W (2)
t .

We now modify the epidemic model (2.2) accordingly. The state of the pop-
ulation is given by the vector (St , It , J

(1)
t , J (2)

t , Vt ,W I
t ,W J

t ) with initial values
(n,m,ma, 0, 0, 0, 0). Conditionally to the state at time t , the population state at time
t + 1 is defined by

(St+1, It+1, D
I
t+1, J

(1)
t+1, D

(1)
t+1)

=d Mult[St ; q It q Jt
a , α0π(1 − q It q Jt

a ), (1 − α0)π(1 − q It q Jt
a ),

α1(1 − π)(1 − q It q Jt
a ), (1 − α1)(1 − π)(1 − q It q Jt

a )],
J (2)
t+1 =d Bin(J (1)

t ;α2),

Vt+1 = Vt + J (2)
t ,

W I
t+1 = W I

t + DI
t+1,

W J
t+1 = W J

t + DJ
t+1, (5.1)

with of course,
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D(2)
t+1 = J (1)

t − J (2)
t+1 =d Bin(J (1)

t ; 1 − α2),

Rt+1 = Rt + It = n + m + ma − St − J (1)
t − J (2)

t − Vt − W I
t − W J

t .

At the end T of infection, the final state is the vector (ST , VT ,W I
T ,W J

T ). To get its
distribution, we proceed as before by using a martingale reasoning. First, Lemma 3.1
is generalized as follows.

Lemma 5.1 Let z, z1, z2 ∈ R. For each integer k ∈ {0, . . . , n}, the process

Mk,t (z, z1, z2) =
(
St
k

)
[νk(z, z1, z2)]St qk It

[α2q
2k
a z + (1 − α2)q

k
a z2]J

(1)
t (zqka )

J (2)
t zVt z

W I
t

1 z
W J

t
2 , (5.2)

constitutes a martingale provided that νk(z, z1, z2) is defined by

νk(z, z1, z2) = α0πq
k + α1α2(1 − π)q2ka z + (1 − α0)π z1

+ (1 − π)[1 − α1 + α1(1 − α2)q
k
a ]z2. (5.3)

Proof Let us take z, z1, z2 arbitrary in R, and let x, y, h1, h2 be real numbers which
will be chosen later. By conditioning on the history of the epidemic Ft and then on
St+1, we obtain from (5.1) that

E(x St+1 y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 z
W I

t+1
1 z

W J
t+1

2 |Ft )

= zVt+J (2)
t z

W I
t

1 z
W J

t
2 E(x St+1 y It+1h

J (1)
t+1

1 h
J (2)
t+1

2 z
DI
t+1

1 z
DJ
t+1

2 |Ft )

= zVt+J (2)
t z

W I
t

1 z
W J

t
2

St∑
s=0

(
St
s

)
(q It q Jt

a )St−s(1 − q It q Jt
a )s x St−s

E(y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 z
DI
t+1

1 z
DJ
t+1

2 |Ft , St+1 = St − s). (5.4)

Using the definition of J (2)
t+1 and D(2)

t+1, we rewrite the expectation in (5.3) as

E(y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 z
DI
t+1

1 z
DJ
t+1

2 |Ft , St+1 = St − s)

=
J (1)
t∑
l=0

(
J (1)
t
l

)
αl2(1 − α2)

J (1)
t −l

E(y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 z
DI
t+1

1 z
DJ
t+1

2 |Ft , St+1 = St − s, J (2)
t+1 = l)

=
J (1)
t∑
l=0

(
J (1)
t
l

)
αl2(1 − α2)

J (1)
t −l hl2z

J (1)
t −l

2 E(y It+1h
J (1)
t+1

1 z
DI
t+1

1 z
D(1)
t+1

2 |Ft , St+1 = St − s). (5.5)

Given (Ft , St+1−St = s), we have from (5.1) that the vector (It+1, J
(1)
t+1, D

I
t+1, D

(1)
t+1)

has a multinomial distribution Mult(s; p1, p2, p3, p4) where

(p1, p2, p3, p4) = [α0π, α1(1 − π), (1 − α0)π, (1 − α1)(1 − π)]. (5.6)

123



A chain binomial epidemic with asymptomatics motivated by… Page 15 of 32    54 

Thus, the expectation in (5.5) is simply

E(y It+1h
J (1)
t+1

1 z
DI
t+1

1 z
D(1)
t+1

2 |Ft , St+1 = St − s) = (p1y + p2h1 + p3z1 + p4z2)
s .

(5.7)

Inserting (5.5) and (5.7) in (5.4) then yields, after some calculations,

E(x St+1 y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 z
W I

t+1
1 z

W J
t+1

2 |Ft ) = zVt+J (2)
t z

W I
t

1 z
W J

t
2

[α2h2 + (1 − α2)z2]J
(1)
t [(1 − q It q Jt

a )(p1y + p2h1 + p3z1 + p4z2) + xq It q Jt
a ]St .
(5.8)

We now differentiate (5.8) k times, 0 ≤ k ≤ n, with respect to x , which gives

E(St+1,[k]x St+1−k y It+1h
J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 z
DI
t+1

1 z
DJ
t+1

2 |Ft )

= St,[k][(1 − q It q Jt
a )(p1y + p2h1 + p3z1 + p4z2) + xq It q Jt

a +]St−k

qk It [qka (α2h2 + (1 − α2)z2)]J
(1)
t (zqka )

J (2)
t zVt z

DI
t

1 z
DJ
t

2 . (5.9)

To get a martingale from (5.9), just choose y = qk , h1 = qka (α2h2 + (1 − α2)z2),
h2 = zqka and x such that

x = (1 − q It q Jt
a )(p1y + p2h1 + p3z1 + p4z2) + xq It q Jt

a ,

hence x = p1y + p2h1 + p3z1 + p4z2. Remembering (5.6) and y, h1, h2 above,
this yields x = νk(z, z1, z2) defined by (5.3), and therefore the announced martingale
(5.2). ��

Now, we may apply the stopping time theorem to the martingale (5.2). As for
Proposition 3.2, we then obtain a system of n + 1 simple relations which allow us to
determine the desired distribution of (ST , VT ,W I

T ,W J
T ). Details are omitted here.

In particular, by taking z = z1 = z2 = 1, we deduce the n + 1 relations (5.10),
(5.11) below for the distribution of ST (in place of (3.11), (3.12)).

Proposition 5.2

n∑
s=k

(
s

k

)
(ν̃k)

s
P(ST = s) =

(
n

k

)
(ν̃k)

nqkm[α2q
2k
a + (1 − α2)q

k
a ]ma , 0 ≤ k ≤ n,

(5.10)

where ν̃k is defined by

ν̃k = π(1 − α0 + α0q
k) + (1 − π)[1 − α1 + α1α2q

2k
a + α1(1 − α2)q

k
a ]. (5.11)

These n + 1 linear equations provide the n + 1 probabilities P(ST = s), 0 ≤ s ≤ n.
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Moreover, arguing as for (3.14), we obtain simple expressions for the means of VT ,
W I

T and W J
T in terms of E(ST ):

E(VT ) = ma + α1α2(1 − π)[n − E(ST )],
E(W I

T ) = (1 − α0)π [n − E(ST )],
E(W J

T ) = (1 − α1α2)(1 − π)[n − E(ST )].

R0 after testing For practice, it is important to know how such a test procedure
affects the initial reproduction number. As before, suppose that the initial suceptible
size n tends to ∞, and the parameters q and qa are of the form (4.1) and satisfy (4.2).
In addition, we choose again to follow the spread of the epidemic week after week.

Within this framework, the infection model in (5.1) can be approximated by the
branching process

It+1 ≈ Po[α0π(λIt + β Jt )],
J (1)
t+1 ≈ P̃o[α1(1 − π)(λIt + β Jt )],
J (2)
t+1 = Bin(J (1)

t ;α2), (5.12)

the Poisson and binomial distributions involved being independent. Let α =
(α0, α1, α2) be the vector of testing parameters, and denote by R0(α) the reproduc-
tion number for the model (5.12). The following result is an easy generalization of
Proposition 4.1.

Proposition 5.3 Under the branching hypotheses (4.1), (4.2), the reproduction number
R0(α) is given by

R0(α) = α0πλ + α1(1 − π)β

2
+

√(α0πλ + α1(1 − π)β

2

)2 + α1α2(1 − π)β.

(5.13)

The condition R0(α) ≤ 1 for almost sure extinction of the infection process becomes

α0πλ + α1(1 + α2)(1 − π)β ≤ 1. (5.14)

Proof It suffices to adapt the reasoning followed to obtain (4.5) and (4.6). The matrix
M defined by (4.8) is now replaced by

M =
⎛
⎝α0πλ α1(1 − π)λ 0

α0πβ α1(1 − π)β α2
α0πβ α1(1 − π)β 0

⎞
⎠ .

Its eigenvalues are the roots of the equation det(M − z I ) = 0, which is simplified as

z[z2 − z(α1(1 − π)β + α0πλ) − α1α2(1 − π)β] = 0. (5.15)
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The threshold parameter R0(α) is the positive root of (5.15). We see that it is given by
(5.13) and that the condition R0(α) ≤ 1 reduces to (5.14). ��
Remark 5 As before, an approach in terms of the total number of infections generated
by each infective is possible here as well. The next-generation matrix M̃ becomes

M̃ =
(

α0πλ α1(1 − π)λ

(1 + α2)α0πβ (1 + α2)α1(1 − π)β

)
. (5.16)

The basic reproduction number R̃0 for (5.16) is again given by the left-hand side of
(5.14).

6 Vaccination of susceptibles

The most effective measure of protection against diseases is certainly vaccination.
In practice, however, a vaccine does not always exist and its efficacy depends on
characteristics pertaining to susceptibles. Epidemicmodels with vaccination strategies
have already been studied in different works (see e.g. Smith et al. 1984; Becker and
Utev 2002; Ball and Sirl 2018 and the references therein).

In this section, we assume that all susceptible people are vaccinated at the very
beginning t = 0. The vaccine affects only susceptibility levels and its efficacy depend-
ing on characteristics proper to the susceptibles such as age, sex, genetics. In addition,
it is of the leaky type, meaning that it does not affect an individual’s ability to transmit
the disease if they become infected. More general vaccination schemes are possible
but in our context the current one is acceptable as a simplification.

More precisely, we start with the general infection scheme (2.2) but with all sucep-
tibles vaccinated as specified above. Suppose the vaccine has L possible efficacy
levels on individual susceptibilities. These levels are taken fixed (non-random) and
have values el ∈ [0, 1], l = 1, . . . , L . The whole susceptible population is therefore
subdivided into L groups according to these values. All possible infections are kept
independent. This time, a symptomatic (asymptomatic) infective does not infect any
susceptible present in a group l with the probability ql (ql,a), for 1 ≤ l ≤ L . Thus,
the novelty is that the probabilities of non-infection for a susceptible depend on the
efficacy of the vaccine in the group to which it belongs. Typically,

ql = q + (1 − q)el , and ql,a = qa + (1 − qa)el , (6.1)

where q (qa) is the probability for a susceptible of no-encounter with any given symp-
tomatic (asymptomatic) case. Furthermore, a susceptible of group l who is infected
becomes a symptomatic (asymptomatic) case with the probability πl (1 − πl ).

Let us adopt the same notation as in (2.2) for the sizes of the different types of
individuals, except that we add an index l to indicate their group of belonging. So, in
group l, there are, at time t , Sl,t susceptibles, Il,t infectives with symptoms and J (1)

l,t

(J (2)
l,t ) asymptomatics who begin their first (second) week of infection. Let It = I1,t +

. . . IL,t , and Jt = J (1)
t +J (2)

t where J (1)
t = J (1)

1,t +. . .+J (1)
L,t and J

(2)
t = J (2)

1,t +. . .+J (2)
L,t .
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As before, Rt and Vt are the numbers of removed symptomatics and asymptomatics
up to time t .

The state of the population is given by the vector {(Sl,t , Il,t , J (1)
l,t , J (2)

l,t , Vt , Rt ), 1 ≤
l ≤ L}. Initially, (S1,0, . . . , SL,0) = (n1, . . . , nL) (of sumn), and (I0, J

(1)
0 , J (2)

0 , V0) =
(m,ma, 0, 0). Given the state at time t , the population state at time t + 1 is defined by

(Sl,t+1, Il,t+1, J
(1)
l,t+1) =d Multl [Sl,t ; q It

l q
Jt
l,a, πl(1 − q It

l q
Jt
l,a),

(1 − πl)(1 − q It
l q

Jt
l,a)], for 1 ≤ l ≤ L,

J (2)
t+1 = J (1)

t ,

Vt+1 = Vt + J (2)
t , (6.2)

where the L conditional multinomial distributions are independent. By definition,
St + It + Jt + Vt + Rt = n + m + ma for all t . Similarly to (2.3), we see that given
the vector (S1,t − S1,t+1, . . . , SL,t − SL,t+1),

(It+1, J
(1)
t+1) = Mult1(S1,t − S1,t+1;π1, 1 − π1) + . . .

+MultL(SL,t − SL,t+1;πL , 1 − πL). (6.3)

We are interested in the final state of the population. For this, we will first derive a
family of martingales for the process {(S1,t , . . . , SL,t ), It , J

(1)
t , J (2)

t , Vt ), t ∈ N0}.
Lemma 6.1 Let z ∈ R. For all integers 0 ≤ k1 ≤ n1, . . . , 0 ≤ kL ≤ nL , the process
{Mk1,...,kL ,t (z), t ∈ N0} where

Mk1,...,kL ,t (z) = z J
(1)
t +J (2)

t +Vt
L∏

l=1

(
Sl,t
k

)
[νl,k1,...,kL (z)]Sl,t−kl qkl It q

2kl J
(1)
t

l,a q
kl J

(2)
t

l,a , (6.4)

constitutes a martingale provided that νl,k1,...,kL (z) is defined by

νl,k1,...,kL (z) = πlq
k1
1 . . . qkLL + (1 − πl)q

2k1
1,a . . . q2kLL,a z. (6.5)

Proof We generalize the method followed to establish Lemma 3.1. Take z arbitrary in
R and let x1, . . . , xL , y, h1, h2 be real numbers not yet fixed. Given the history of the
epidemic Ft , we obtain from (6.2) that

E(x
S1,t+1
1 . . . x

SL,t+1
L y It+1h

J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 |Ft )

= zVt+J (2)
t h

J (1)
t

2 E(x
S1,t+1
1 . . . x

SL,t+1
L y It+1h

J (1)
t+1

1 |Ft ). (6.6)

Considering all the possible values for (S1,t+1, . . . , SL,t+1), the expectation of the
right-hand side of (6.6) is written as

E(x
S1,t+1
1 . . . x

SL,t+1
L y It+1h

J (1)
t+1

1 |Ft )
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=
S1,t∑
s1

. . .

SL,t∑
sL

{
L∏

l=1

(
Sl,t
sl

)
(q It

l q
Jt
l,a)

sl (1 − q It
l q

Jt
l,a)

Sl,t−sl xsll }

E(y It+1h
J (1)
t+1

1 |Ft , S1,t+1 = s1, . . . , SL,t+1 = sL). (6.7)

From (6.3), the expectation in the right-hand side of (6.7) becomes

E(y It+1h
J (1)
t+1

1 |Ft , S1,t+1 = s1, . . . , SL,t+1 = sL) =
L∏

l=1

(πl y + (1 − πl)h1)
Sl,t−sl .

(6.8)

Thus, inserting (6.7) with (6.8) in (6.6), we obtain the following formula, in place of
(3.6),

E(x
S1,t+1
1 . . . x

SL,t+1
L y It+1h

J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 |Ft )

= zVt+J (2)
t h

J (1)
t

2

L∏
l=1

[(πl y + (1 − πl)h1)(1 − q It
l q

Jt
l,a) + xlq

It
l q

Jt
l,a]Sl,t . (6.9)

Now, differentiate (6.9) kl times with respect to xl , 0 ≤ kl ≤ nl , for l = 1, . . . , L .
This leads to

E(S1,t+1,[k1]x
S1,t+1−k1
1 . . . SL,t+1,[kL ]x

SL,t+1−kL
L y It+1h

J (1)
t+1

1 h
J (2)
t+1

2 zVt+1 |Ft )

= zVt+J (2)
t h

J (1)
t

2

L∏
l=1

Sl,t,[kl ][(πl y + (1 − πl)h1) (1 − q It
l q

Jt
l,a) + xlq

It
l q

Jt
l,a]Sl,t−kl qkl Itl q

kl J
(1)
t

l,a q
kl J

(2)
t

l,a .

(6.10)

Choose in (6.10) y = qk11 . . . qkLL , h2 = zqk11,a . . . qkLL,a and h1 = h2q
k1
1,a . . . qkLL,a =

zq2k11,a . . . q2kLL,a . We then deduce the announced martingale (6.4) provided

xl = [πlq
k1
1 . . . qkLL + (1 − πl)q

2k1
1,a . . . q2kLL,a z] (1 − q It

l q
Jt
a ) + xlq

It
l q

Jt
l,a,

which yields xl = νl,k1,...,kL (z) defined by (6.5). ��
At the end time T , the population state reduces to the vector (S1,T , . . . , SL,T , VT ),

with RT resulting. To get its distribution, we apply the stopping time theorem to the
martingale (6.4). Arguing as for Proposition 3.2, we obtain this time a system of
(n1 + 1) . . . (nL + 1) linear relations which allow us to determine recursively the final
distribution.

In particular, taking z = 1 gives the following relations (6.11), (6.12) for the
distribution of (S1,T , . . . , SL,T ).
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Proposition 6.2

n1∑
s1=k1

. . .

nL∑
sL=kL

[
L∏

l=1

(
sl
kl

)
(νl,k1,...,kL )

sl ]P(S1,T = s1, . . . , SL,T = sL)

=
L∏

l=1

(
nl
kl

)
(νl,k1,...,kL )

nl qklml q2klma
l,a , 0 ≤ kl ≤ nl , 1 ≤ l ≤ L, (6.11)

where νl,k1,...,kL is defined by

νl,k1,...,kL = πlq
k1
1 . . . qkLL + (1 − πl)q

2k1
1,a . . . q2kLL,a . (6.12)

These linear equations provide the (n1 + 1) . . . (nL + 1) probabilities P(S1,T =
s1, . . . , SL,T = sL), 0 ≤ sl ≤ nl , 1 ≤ l ≤ L.

Moreover, the formula (3.14) for the mean of VT can be generalized as expected:

E(VT ) = ma +
L∑

l=1

(1 − πl)[nl − E(Sl,T )].

Remark 6 The models with screening or vaccination generalize the initial model (2.2)
by introducing several types of infectious or susceptible. They constitute particular
multi-type versions of the Reed-Frost model (2.1). This class of models and their final
outcome have already been studied by several authors, including recently Lefèvre and
Picard (2016) and Ball (2019). The current specific context allows a simpler reasoning
to be used which provides complete results for the models concerned.

R0 after vaccination. Let us show how such a vaccination scheme affects the repro-
duction number. For this, we assume that all susceptible groups are initially very
large, and that on average an infective contaminates roughly a constant number of
susceptibles in each group. So, we write that for 1 ≤ l ≤ L ,

nl = 
ln, ql = e−λl/n, ql,a = e−βl/n, (6.13)

with n → ∞. The new parameter 
l above can be interpreted the initial proportion
of susceptibles in the group l. As pointed out, for large n,

nl(1 − q It
l q

Jt
l,a) = 
l(λl It + βl Jt ) + O(1/n). (6.14)

As before, we choose to follow the infections week after week. Then, the branching
process which approximates (6.2) is given by

It+1 ≈ Po[π1
1(λ1 It + β1 Jt ) + . . . + πL
L(λL It + βL Jt )],
J (1)
t+1 ≈ P̃o[(1 − π1)
1(λ1 It + β1 Jt ) + . . . + (1 − πL)
L(λL It + βL Jt )],
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J (2)
t+1 = J (1)

t , (6.15)

Arguing as in the case without vaccination, we easily extend Proposition 4.1 to the
model (6.15) with vaccination. Let � = (
1, . . . , 
L), and denote by R0(�) be the
corresponding reproduction number.

Proposition 6.3 Under the branching hypotheses (6.13), (6.14), the reproduction num-
ber R0(�) is given by

R0(�) =
∑L

l=1 
l [πlλl + (1 − πl)βl ]
2

+
√√√√ L∑

l=1


l(1 − πl)βl +
(∑L

l=1 
l [πlλl + (1 − πl)βl ]
2

)2
. (6.16)

The condition R0(�) ≤ 1 for almost sure extinction of the infection process becomes

L∑
l=1


l [πlλl + 2(1 − πl)βl ] ≤ 1. (6.17)

Here too, it is allowed to work with the total number of infections generated by
each infective. This leads to a different generation matrix M̃ for which the basic
reproduction number R̃0 is given by the left side of (6.17), as in Remarks 3 and 5.

Particular case Suppose that initially, each susceptible is either vaccinated or not,
and the vaccine provides full protection. In other words, there are L = 2 groups of
susceptibles: those who receive a vaccine (group l = 1) in proportion 
1, and those
who do not (group l = 2) in proportion
2 = 1−
1. Since the efficacy of the vaccine
is perfect, we have e1 = 1 in (6.1), so q1 = q1,a = 1 and thus λ1 = β1 = 0. Moreover,
e2 = 0 in (6.1), so q2 = q and q2,a = qa . From (6.16), the reproduction number is
equal to

R0(
1,
2) = 
2[π2λ2 + (1 − π2)β2]
2

+
√


2(1 − π2)β2 +
(
2[π2λ2 + (1 − π2)β2]

2

)2
,

and from (6.17), the infection almost surely goes away when


2 ≤ 1

π2λ2 + 2(1 − π2)β2
. (6.18)

Following e.g. Becker andUtev (2002),we can then consider theminimumvaccination
coverage V .C which is necessary to prevent a major epidemic. From (6.18) and as
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1 = 1 − 
2, we get

V .C = max

{
0, 1 − 1

π2λ2 + 2(1 − π2)β2

}
.

7 An extended branching for epidemics

Let us return to a common situation where the infectious disease spreads moderately
in a large susceptible population which remains practically constant. Motivated by
the approximation of Sect. 4, we will substitute for the branching model (4.3), (4.4) a
more general two-type branching process denoted by {(It , J (1)

t , J (2)
t ), t ∈ N0}.

In this extended model, each symptomatic i present at time t generates at time
t + 1 a number Ct,i of infectives, symptomatic or not in proportions π0 and 1 − π0.
All the variables Ct,i are independent identically distributed (i.i.d.) with probability
generating function (p.g.f.) φ0(z) = E(zCt,i ), z ∈ [0, 1]. In the same way, each
new asymptomatic j1 at time t generates at time t + 1 a number D(1)

t, j1
of infectives,

symptomatic or not in proportions π1 and 1−π1. All the variables D
(1)
t, j1

are i.i.d. with

p.g.f. φ1(z) = E(z
D(1)
t, j1 ), z ∈ [0, 1]. Moreover, each asymptomatic j2 beginning at t its

secondweek generates a number D(2)
t, j2

of infectives, symptomatic or not in proportions

π2 and 1−π2. All the variables D
(2)
t, j2

are i.i.d. with p.g.f. φ2(z) = E(z
D(2)
t, j2 ), z ∈ [0, 1].

Thus, there are two novelties compared to the branching process of Sect. 4. On the
onehand, the numbers of infectionsmadeper unit of time are here distributed arbitrarily
(instead of Poisson law).On the other hand, the probabilities of becoming symptomatic
or not now depend on the origin of the infection. For clarity, these probabilities satisfy
below 0 < π0, π1, π2 < 1, but the limit cases 0 or 1 can be treated similarly.

As before, we denote by Rt (Vt ) the total number of symptomatic (asymptomatic)
removals up to time t . The state of the epidemic at time t is then given by the vector
(It , J

(1)
t , J (2)

t , Rt , Vt ). Initially, I0 = m, J (1)
0 = ma and J (2)

0 = mb (which can be
non-zero). Conditionally to this vector, the state at time t + 1 is defined by

(It+1, J
(1)
t+1) =d Mult0(Ct,1 + . . . + Ct,It ;π0, 1 − π0)

+ Mult1(D
(1)
t,1 + . . . + D(1)

t,J (1)
t

;π1, 1 − π1)

+ Mult2(D
(2)
t,1 + . . . + D(2)

t,J (2)
t

;π2, 1 − π2),

J (2)
t+1 = J (1)

t ,

Rt+1 = Rt + It ,

Vt+1 = Vt + J (2)
t , (7.1)

where the three conditional multinomial distributions are independent.
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We start by deriving a martingale for the epidemic branching process. To avoid a
possible explosion of infection, it should at least be assumed that each infective may
not generate any infection, i.e. φl(0) > 0, l = 0, 1, 2.

Lemma 7.1 Let z, w ∈ (0, 1]. The process

Mt (z, w) = [y(z, w)]It [g(z, w)]J (1)
t [h(z, w)]J (2)

t zVtwRt (7.2)

constitutes a martingale provided that [y(z, w), g(z, w), h(z, w)] ≡ (y, g, h) is solu-
tion in (0, 1]3 of the equations

y = w φ0[π0y + (1 − π0)g],
g = h φ1[π1y + (1 − π1)g],
h = z φ2[π2y + (1 − π2)g]. (7.3)

Proof Let us fix z, w ∈ (0, 1] and introduce y, g, h to be determined later in (0, 1].
From (7.1), we can write that given the history Ft ,

E(y It+1gJ (1)
t+1hJ (2)

t+1 zVt+1wRt+1 |Ft ) = zVt+J (2)
t h J (1)

t wRt+ItE(y It+1 gJ (1)
t+1 |Ft ). (7.4)

We now need to evaluate the conditional expectation in the right side of (7.4). Recall
that any symptomatic i at time t generates, independently of the others, Ct,i infectives
at time t + 1, each of them being symptomatic (asymptomatic) with the probability
π0 (1 − π0). Thus, the It infectives present at t contribute to this expectation for

E{[π0y + (1 − π0)g]Ct,1+...+Ct,It } = {E[π0y + (1 − π0)g]Ct,1}It
= {φ0[π0y + (1 − π0)g]}It .

In the same way, the contribution of the J (k)
t asymptomatics present at t is equal to

{φk[πk y + (1 − πk)g]}J
(k)
t , k = 1, 2.

Therefore, the desired expectation is given by

E(y It+1 gJ (1)
t+1 |Ft ) = {φ0[π0y + (1 − π0)g]}It

2∏
k=1

{φk[πk y + (1 − πk)g]}J
(k)
t .

(7.5)

From (7.4) and (7.5), we then deduce that

E(y It+1gJ (1)
t+1hJ (2)

t+1 zVt+1wRt+1 |Ft ) = zVtwRt {wφ0[π0y + (1 − π0)g]}It
{hφ1[π1y + (1 − π1)g]}J

(1)
t {zφ2[π2y + (1 − π2)g]}J

(2)
t . (7.6)
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The relation (7.6) leads to the announced martingale (7.2) provided that (y, g, h) ∈
(0, 1]3 and is solution to the Eq. (7.3). ��

The question imposed by (7.3) is whether these equations admit (at least) such a
solution (y, g, h). We show below that there is a unique solution if w is taken small.

Lemma 7.2 For w small enough, the system (7.3) has only one solution in (0, 1]3.
Proof A natural approach is to use the Banach fixed point theorem, which states that in
a completemetric space (E, d), a contractionmapping F : E → E has a unique fixed-
point e∗ ∈ E , and from any e0 ∈ E , the sequence en = F(en−1) converges to e∗ as
n → ∞. Here, denote u = (y, g, h) so that the system (7.3) is of the form u = F(u),
or ul = Fl(u), l = 0, 1, 2. Under the usual topology, E = [0, 1]3 is a complete space,
and define the metric d(u, v) = max{|ul − vl |, l = 0, 1, 2}, u, v ∈ E . Since F maps
E to E , the theorem is applicable provided that the mapping F is contractive, i.e. there
exists k ∈ [0, 1) such that d[F(u), F(v)] ≤ kd(u, v). This can be established under
the condition that z andw are small in (0, 1], using the finite-increments formulas with
one variable for F0 = wφ0 and F2 = zφ2, and with two variables for F1 = zφ1φ2.
Details are omitted here.

Instead, we will follow a simple reasoning to get the result with the only condition
that w is small in (0, 1]. First, we insert the equation for h into the equation for g and
write

ψ(y, g) = φ2[π2y + (1 − π2)g]φ1[π1y + (1 − π1)g]. (7.7)

Thus, the system (7.3) for (y, g) becomes

w φ0[π0y + (1 − π0)g] − y = 0, (7.8)

z ψ(y, g) − g = 0. (7.9)

Note that φ0(0) > 0, φ0 ≤ 1, ψ(0, 0) > 0, ψ ≤ 1 and φ0, ψ are infinitely differen-
tiable with non-negative derivatives.

Let us now examine (7.8) for any given w ∈ (0, 1]. Since the function φ0 is
continuous convex with 0 < φ0 ≤ 1, the functionw(y) ≡ w φ0[π0y+ (1−π0)g]− y
is continuous convex with w(0) > 0, w(1) ≤ 0. Thus, (7.8) has a unique solution
y ≡ y(g) ∈ (0, 1]. We also notice that the first two derivatives of y(g) are

y′ = w(1 − π0)φ
′
0

1 − wπ0φ
′
0

, and y′′ = w(1 − π0)(1 − π0 + π0y′)φ′′
0

(1 − wπ0φ
′
0)

2 ,

where φ0 ≡ φ0[π0y + (1 − π0)g]. Since φ′
0, φ

′′
0 ≥ 0, we see that

y′, y′′ ≥ 0 when w is close enough to 0. (7.10)

Let us then turn to (7.9). Substituting y = y(g), we obtain the equation

ψ0(g) ≡ z ψ(y(g), g) − g = 0,
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for any z, w ∈ (0, 1]. The derivative of order 2 of ψ0(g) yields

ψ ′′
0 = z(ψ ′

y y
′ + ψ ′

g)
′ = z[ψ ′′

yy(y
′)2 + ψ ′′

yg y
′ + ψ ′y′′ + ψ ′y′′ + ψ ′′

gg + ψ ′′
gy y

′], (7.11)

in obvious notation. All the partial derivatives of ψ are non-negative. Using (7.10),
we get from (7.11) that ψ ′′

0 ≥ 0, i.e. ψ0 is convex, if w is small. Since ψ0(0) > 0
and ψ0(1) ≤ 0, we deduce that the equation ψ0(g) = 0 has a unique root in (0, 1].
Finally, having (y, g) gives h by the third equation of (7.3). ��

We focus again on the end time T of the infection process. The final state of
the model (7.1) then reduces to (VT , RT ), the total numbers of asymptomatic and
symptomatic cases. Let us show that for all z, w ∈ (0, 1], the system (7.3) admits a
solution which is expressed simply in terms of (VT , RT ).

Lemma 7.3 For z, w ∈ (0, 1], a solution to (7.3) is given by

y(z, w) = E[zVT wRT | (m,ma,mb) = (1, 0, 0)],
g(z, w) = E[zVT wRT | (m,ma,mb) = (0, 1, 0)],
h(z, w) = E[zVT wRT | (m,ma,mb) = (0, 0, 1)]. (7.12)

Proof Denote by q j (z, w), j = 0, 1, 2, the three expectations in the right-hand side
of (7.12). We want to show that these q j (z, w) satisfy the system (7.3). Consider the
case where j = 0, for example. We define by Ek,l the event that the initial present
individual of type 1 generates k infectives of which l are symptomatic. From (7.1), we
have

P(Ek,l) = P(C1,1 = k)

(
k

l

)
πk
0 (1 − π0)

k−l , k ≥ 0, 0 ≤ l ≤ k. (7.13)

Then, we can write that

q0(z, w) =
∞∑
k=0

k∑
l=0

P(Ek,l)E(zVT wRT | Ek,l)

=
∞∑
k=0

k∑
l=0

P(Ek,l) w [q0(z, w)]l [q1(z, w)]k−l , (7.14)

where we used the definition of q0(z, w), q1(z, w) and the factor w is for the initial
symptomatic removed. By combining (7.13) and (7.14), we deduce that

q0(z, w) = w

∞∑
k=0

P(C1,1 = k)[π0q0(z, w) + (1 − π0)q1(z, w)]k .

This provides the first equation of (7.3) since the variable C1,1 is of p.g.f. φ0. ��
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If T is almost surely finite, we can apply the stopping time theorem to themartingale
(7.2). This directly gives the p.g.f. (7.15) below for the vector (VT , RT ). Note that the
condition T < ∞ a.s. is required for the martingale proof, but that the result remains
valid without this restriction. Therefore, we have not indicated the condition in the
statement.

Proposition 7.4 For z, w ∈ (0, 1],

E(zVT wRT ) = [y(z, w)]m[g(z, w)]ma [h(z, w)]mb , (7.15)

where [y(z, w), g(z, w), h(z, w)] is a solution to the system (7.3).

Now, we want to determine the condition of extinction of the infectious process.
Let us again choose to follow the spread of infection week after week. The types of
infectives are labeled 0 for a symptomatic, 1 for a new asymptomatic and 2 for an
asymptomatic in second week. Let M be the next-generation matrix whose elements
Mk,l represent the expected numbers of direct infectives of type l generated by an
infective of type k. Writing μl = φ′

l(1) for l = 0, 1, 2, we have

M =
⎛
⎝π0μ0 (1 − π0)μ0 0

π1μ1 (1 − π1)μ1 1
π2μ2 (1 − π2)μ2 0

⎞
⎠ , (7.16)

which is to be compared with the matrix (4.8).

Proposition 7.5 T is almost surely finite iff R0 ≤ 1 where R0 is the Perron-Frobenius
eigenvalue of M.

Proof Since a new asymptomatic remains present for 2 units of time, there is a gen-
erational overlap in the branching process. Given the assumptions made, the matrix
M in (7.16) is non-negative irreducible, and extinction will almost surely occur when
its Perron-Frobenius eigenvalue R0, which is simple and strictly positive, does not
exceed 1 (see e.g. Harris 1963, Theorem 7.1, and Haccou et al. 2005, Section 2.4). ��

This parameter R0 is the reproduction number. It is obtained by solving the charac-
teristic equation D(z) = 0 with D(z) = det(M − z I ). This leads to a cubic equation
in z whose roots, real or complex, can be calculated by the Cardano method.

Remark 7 The condition R0 ≤ 1 implies that the product of the eigenvalues is of
modulus ≤ 1, i.e. | det(M)| ≤ 1, and thus |π2 − π0|μ0μ2 ≤ 1. Moreover, from the
graph of D(z), we can see that if π0μ0 ≥ 1, the largest root of D(z) = 0 is > 1,
therefore R0 ≤ 1 also requires π0μ0 < 1.

Particular case When the probabilities πl are all equal (≡ π ), the spectral radius
R0 is known explicitly. Indeed, the equation D(z) = 0 reduces to

z[z2 − z((1 − π)μ1 + πμ0) − (1 − π)μ2] = 0,
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which is analogous to (4.11) when μ1 = μ2. Thus, the formula (4.5) is replaced by

R0 = πμ0 + (1 − π)μ1

2
+

√(πμ0 + (1 − π)μ1

2

)2 + (1 − π)μ2.

and the condition (4.6) by πμ0 + (1 − π)(μ1 + μ2) ≤ 1. Note that for this case,
we can show that the system (7.3) has a unique solution (y, g, h) ∈ (0, 1]3 whatever
z, w ∈ (0, 1].
Remark 8 As in Remark 3, the alternative reasoning in terms of the total numbers of
infections per individual leads to the 2 by 2 generation matrix

M̃ =
(

π0μ0 (1 − π0)μ0
π1μ1 + π2μ2 (1 − π1)μ1 + (1 − π2)μ2

)
.

The associated characteristic equation is quadratic, so that the corresponding basic
reproduction number R̃0 can be obtained here explicitly.

Finally, we derive an expression for the means of (RT , VT ) when extinction is
guaranteed. Let m = (m,ma,mb), and define the vectors e1 = (1, 0, 0)τ , e3 =
(0, 0, 1)τ .

Corollary 7.6 When R0 < 1,

E(RT ) = m(I − M)−1e1,

E(VT ) = m(I − M)−1e3. (7.17)

Explicitly, this gives

E(RT ) = (1/κ){m[1 − (1 − π1)μ1 − (1 − π2)μ2] + ma(π1μ1 + π2μ2)

+ mbμ2
(
(π1 − π2)μ1 + π2

)},
E(VT ) = (1/κ){m(1 − π0)μ0 + ma(1 − π0μ0)

+ mb[1 − μ0(π0 − π0μ1 + π1μ1) − μ1(1 − π1)]},

where κ = 1−μ0(π0 −π0μ1 +π1μ1)+ (π0 −π2)μ0μ2 − (1−π1)μ1 − (1−π2)μ2.

Proof Let us derive (7.17) for E(RT ), say. Differentiating the two sides of (7.15) with
respect to w and taking z = w = 1, we get

E(RT ) = [m(∂ y/∂w) + ma(∂g/∂w) + mb(∂h/∂w)](1, 1), (7.18)

since y(1, 1) = g(1, 1) = h(1, 1) = 1. For the partial derivatives involved, we now
differentiate the two sides of (7.3) with respect to w and fix z = w = 1. So, we see
that the vector x = [(∂ y/∂w), (∂g/∂w), (∂h/∂w)](1, 1) satisfies the equation

x = Mx + e1.
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Fig. 1 Distribution of ST in the startingmodel of Sect. 2whenn = 100,m = ma = 2 andq = exp(−1.2/n),
qa = exp(−0.5/n), with π = 0.6 (left graph) or π = 0.8 (right graph)

Since R0 < 1, the matrix I − M is invertible, so that x = (I − M)−1e1. Inserting this
identity in (7.18), we then obtain the desired result. The explicit formulae given after
(7.17) easily follow from the expression of (I − M)−1. ��

8 Numerical illustrations

We start by considering the chain binomial model with asymptomatics introduced in
Sect. 2. Figure 1 gives the distribution of the final number ST of susceptibles when
initially there are n = 100 susceptibles, m = 2 symptomatics and ma = 2 asymp-
tomatics, the probability of non-contamination by an infective is q = exp(−λ/n)with
λ = 1.2 for a symptomatic and qa = exp(−β/n) with β = 0.5 for an asymptomatic,
and the probability π of becoming symptomatic after infection is equal to either 0.6
or 0.8.

The probabilities P(ST = s) are calculated using the formulas (3.11), (3.12). We
observe that the distribution of ST is bimodal, which is a common feature in SIR epi-
demics. Moreover, the epidemic is more severe when the proportion π of symptomatic
cases is greater (in fact, the mean of ST is lower and its variance is higher). This was
expected as λ, the average number of infections per symptomatic, is greater than 2β,
the average number of infections per asymptomatic.

From the distribution of ST , we deduce the mean E(ST ) and we then calculate the
means E(VT ) and E(RT ) using the formulas (3.14) and (2.4). Figure 2 plots these
three means as a function of the probability π of becoming symptomatic. It is clear
that as π increases, the proportion of new symptoms tends to increase. As these cases
are more contagious, it implies that E(ST ) will decrease (left graph), so E(VT ) also
while E(RT ) will increase (right graph).

Figure 3 compares the reproduction number R0 for the initial model (Sect. 4) with
those obtained for the two extensionswith testing of infectives (Sect. 5) and vaccination
of susceptibles (Sect. 6). The parameters in (4.1) are q = exp(−λ/n) with λ = 1.2
and qa = exp(−β/n) with β equal to either 0.3 or 0.5. In the model with testing,
the probabilities for an infective not to be detected by testing are (α0, α1, α2) =
(0.6, 0.9, 0.9). Note that the probability is naturally taken higher for an asymptomatic

123



A chain binomial epidemic with asymptomatics motivated by… Page 29 of 32    54 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
66

68

70

72

74

76

78

80

0

5

10

15

20

25

30

35

40

Fig. 2 Expected final state [E(ST ),E(VT ),E(RT )] in the model of Sect. 2 as a function of the probability π

of becoming symptomatic, again when n = 100, m = ma = 2 and q = exp(−1.2/n), qa = exp(−0.5/n)
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Fig. 3 Reproduction number R0 in the model of Sect. 2 as a function of the probability 1− π of becoming
asymptomatic when q = exp(−λ/n) with λ = 1.2 and qa = exp(−β/n) with β = 0.3 (left graph) or
β = 0.5 (right graph); in the model with testing of Sect. 5 when (α0, α1, α2) = (0.6, 0.9, 0.9); in the model
with vaccination of Sect. 6 when L = 2, (
1,
2) = (0.3, 0.7), (λ1, λ2) = (0.2, λ), (β1, β2) = (0, β),
π1 = π2 = π
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Fig. 4 Reproduction number R0 in the extended branching process of Sect. 7 as a function of the mean
number of infections per asymptomatic μ (= μ1 = μ2), when the mean number of infections per symp-
tomatic is μ0 = 1 and the probabilities of becoming symptomatic are π0 = 0.7 and π1 = π2 = 0.7, 0.4 or
0.2
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Fig. 5 Expected final state [E(VT ),E(RT )] in the extended branching model of Sect. 7: in the left graph,
as a function of the mean number of infections per asymptomatic μ (= μ1 = μ2) when μ0 = 0.9,
(π0, π1, π2) = (0.7, 0.2, 0.2); in the right graph, as a function of π (= π1 = π2) when π0 = 0.7,
(μ0, μ1, μ2) = (0.9, 0.4, 0.4) and (m,ma ,mb) = (10, 5, 0)

than for a symptomatic. In the model with vaccination, there are L = 2 groups of
susceptibles, those who receive the vaccine (group 1 in proportion 
1 = 0.3), and
those who do not (group 2 in proportion 
2 = 0.7). The additional parameters are
ql = exp(−λl/n), l = 1, 2, with (λ1, λ2) = (0.2, λ), ql,a = exp(−βl/n), l = 1, 2,
with (β1, β2) = (0, β), and π1 = π2 = π . Observe that λ1 < λ2 and β1 = 0,
which means that the vaccine decreases the contamination power of a symptomatic
and eliminates that of an asymptomatic case.

The three values of R0 are calculated from (4.5), (5.13), (6.16), respectively, as a
function of the probability 1 − π of becoming asymptomatic. Of course, testing or
vaccination strategies have the effect of slowing down the spread of the epidemic and
therefore of reducing the reproductionnumber,whateverπ .Whenβ = 0.3 (left graph),
the three curves obtained for R0 are decreasing with 1−π , i.e. a higher probability of
becoming asymptomatic weakens the epidemic. Note that 2β, the average number of
infections per asymptomatic, is here small.Whenβ = 0.5 (right graph), we see that for
the model with testing, R0 on the contrary increases with 1−π . The reason is that the
average number 2β of infections per asymptomatic is now higher, and asymptomatics
are less likely to be tested and detected, making them contribute more to the diffusion
of infection. For the model with vaccination, a large value of 1 − π results in a very
low R0 since a vaccinated asymptomatic is no longer contagious.

We now move on to the extended branching process for epidemics of Sect. 7.
Suppose that μ1 = μ2 ≡ μ, i.e. the mean numbers of infections per asymptomatic
are equal for both types. Figure 4 shows the curve of R0 as a function of μ when
the mean number of infections per symptomatic is μ0 = 1. These probabilities of
becoming symptomatic are π0 = 0.7 and π1 = π2 for three different values, which
gives three curves. The corresponding values of R0 are obtained as Perron-Frobenius
eigenvalue of the matrix (7.16). In all cases, R0 obviously increases with μ. Observe
that the curves change order at their intersection point μ = 0.5. This is because when
2μ becomes greater than μ0, an asymptomatic has, on average, more infections than
a symptomatic, so smaller values of π1 = π2 lead to more serious epidemics.
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Figure 5 gives the curves of the means E(VT ) and E(RT ) calculated from (7.17).
In the left graph, these curves are represented as a function of μ ≡ μ1 = μ2 when
μ0 = 0.9, (π0, π1, π2) = (0.7, 0.2, 0.2) and (m,ma,mb) = (10, 5, 0). They of
course increase with μ and go to ∞ when μ → 0.528 (i.e. R0 → 1). Note that the
speed of increase is higher for E(VT ). This is not surprising since the higher the value
of μ, the higher the number of asymptomatics in the population.

In the right graph, the curves are represented as a function of π ≡ π1 = π2 when
π0 = 0.7, (μ0, μ1, μ2) = (0.9, 0.4, 0.4) and (m,ma,mb) = (10, 5, 0). As we have
already seen in Fig. 2, increasingπ implies thatE(VT ) decreases andE(RT ) increases.
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