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BACKGROUND Sarcoidosis with cardiac involvement, although
rare, has a worse prognosis than sarcoidosis involving other organ
systems.

OBJECTIVE We used a large dataset to train machine learning
models to predict in-hospital mortality among sarcoidosis patients
admitted with heart failure (HF).

METHOD Utilizing the National Inpatient Sample, we identified
4659 patients hospitalized with a primary diagnosis of HF. In this
cohort, we identified patients with a secondary diagnosis of
sarcoidosis using International Statistical Classification of Disease,
Tenth Revision (ICD-10) codes. Patients were separated into a
training group and a testing group in a 7:3 ratio. Least absolute
shrinkage and selection operator regression was used to select vari-
ables to prevent model overfitting or underfitting. For machine
learning models, logistic regression, random forest, and XGBoosting
were applied in the training group. Parameters in each of the models
were tuned using the GridSearchCV function. After training, all
models were further validated in the testing group. Models were
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then evaluated using the area under curve (AUC) score, sensitivity,
and specificity.

RESULTS A total of 2.3% of sarcoidosis patients died in HF admis-
sion. Our machine learning model analysis found the RF model to
have the highest AUC score and sensitivity. Feature analysis found
that comorbid arrhythmias and fluid electrolyte disorders were the
strongest factors in predicting in-hospital mortality.

CONCLUSION Machine learning methods can be useful in identi-
fying predictors of in-hospital mortality in a given dataset.
KEYWORDS Heart failure; In-hospital mortality; Machine learning;
National Inpatient Sample; Sarcoidosis
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Introduction
Sarcoidosis is an autoimmune granulomatous disease that
frequently involves multiple organ systems. In the past, car-
diac involvement in sarcoidosis patients was thought to be
rare. However, with improvements in image technology,
the detection rate of cardiac involvement was reported to
be as high as 26%.1 About 20%–30% of patients with
sarcoidosis have cardiac involvement.2 Clinical presentations
of cardiac sarcoidosis (CS) vary and can present with atrio-
ventricular block, ventricular arrhythmia, cardiomyopathy,
heart failure (HF), pericardial disease, or sudden cardiac
death.3

The presence of sarcoidosis increases the risk of devel-
oping HF. In a study following 12,042 sarcoidosis patients
for 8.2 years, it was estimated that, among patients with
sarcoidosis, the absolute 10-year risk of developing HF was
3.18%, which is 3 times higher than that of the general pop-
ulation.4 HF is also one of the most important predictors of
mortality in patients with sarcoidosis.5 Progressive HF subse-
quent to sarcoidosis has been shown to be accountable for
25% of deaths in patients with CS. This makes it the second
most common cause of death after sudden death in these pa-
tients.6 In a study of 95 Japanese patients with CS, it was
shown that 73% of the patients died of congestive HF. In
addition, the study also demonstrated increased mortality,
with a hazard ratio of 7.72 per New York Heart Association
functional class increase.7 A multivariate regression analysis
from another study involving 351 CS patients with follow-up
times ranging from 6 months to 29.7 years found HF to be an
independent predictor of mortality, especially among those
with ejection fraction ,35%.8 HF caused by CS is thought
to occur due to infiltration of noncaseating granulomas,
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KEY FINDINGS

� Machine learning algorithms are useful tools in identi-
fying predictors of in-hospital mortality in sarcoidosis
patients admitted for heart failure.

� In using clinical characteristics as variables to build
various machine learning models, we found the random
forest model to have the best performance.

� Future studies involving more detailed clinical informa-
tion including laboratory parameters, imaging, and
medication data are required to improve the model per-
formance.
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regional metabolic abnormalities, or microvascular vasocon-
striction. These pathophysiological changes are detected by
imaging studies, including cardiac magnetic resonance, di-
pyridamole thallium-201 myocardial scan, and technetium-
99m sestamibi tomoscintigraphy.9–11

Given the relationship between HF and sarcoidosis and its
implication on patient mortality, we believed it is essential to
evaluate early estimators of in-hospital mortality in this group
of patients. Machine learning (ML) methods enable us to
rapidly generate prediction models based on thousands of
clinical patterns.12 This is achieved by using different algo-
rithms to learn from a dataset by identifying patterns in the
given data. In recent years, ML techniques have been increas-
ingly utilized in cardiology clinical research.13–16 We used 3
different ML algorithms to explore the feasibility and
accuracy of predicting in-hospital mortality in sarcoidosis pa-
tients admitted for HF.
Methods
Data source
The data used for analysis in our study were obtained from
the National Inpatient Sample (NIS) database. The NIS is
part of an extensive database developed for the Healthcare
Cost and Utilization Project. It involves more than 7 million
hospital stays each year and has been the largest publicly
available in-patient health care dataset. Individual patient in-
formation in the NIS databases is de-identified, so institu-
tional review board approval is not required in studies
utilizing this dataset.17 Starting in 2016, all diagnoses
included in the NIS database were reported using the Interna-
tional Classification of Diseases, Tenth Revision, Clinical
Modification (ICD-10-CM) coding system. All the variables
collected in this study were identified using ICD-10 codes.

We selected all patients with a primary diagnosis of HF
from January 1, 2016, to December 31, 2019. Patients with
comorbid sarcoidosis as a secondary diagnosis were then
identified using ICD-10-CM codes for sarcoidosis. The
endpoint was defined as in-hospital mortality. Individuals
with missing data on age, gender, race, or in-hospital mortal-
ity information were excluded. The variables used in this
study were based on the Elixhauser comorbidity scores.18

ICD-10-CM codes of these comorbidities are given in
Supplemental Table 1. Categorical variables were expressed
using dummy variables for purposes of algorithm training.19
Study design
The data processing and ML algorithms were developed in
Python Version 3.8.8. First, patients were divided into a
training group (3261 patients; 81 [2.5%] died; 3180
[97.5%] did not) and a testing group (1398 patients; 25
[1.9% ] died; 1373 [98.1%] did not) in a 7:3 ratio.16 Because
2.3% patients died during hospitalization, which is consid-
ered an imbalanced database, we used the oversampling
method to achieve an equal amount of patients with in-
hospital mortality.20 This translates to a 1:1 ratio of patients
who died in-hospital vs patients who did not from the
81:3180 ratio. The total number of patients involved after
oversampling was 6360. The process of dividing the groups
and oversampling is shown in Figure 1.

Before developing the algorithms, the nullity correlation
of every variable was determined (Figure 2). Nullity correla-
tion refers to the relationship between 2 quantities. It ranges
from –1 to 1. A value of “0” indicates no association between
2 variables; “1” indicates that both variables appear at the
same time, and “–1” denotes that 1 variable appears while
the other definitely does not. To prevent model overfitting,
least absolute shrinkage and selection operator (LASSO)
regression was used to select variables that best contribute
to HF admissions.21,22
Statistical analysis
Categorical variables and binary variables were compared us-
ing c2 tests. Continuous variables were compared using the
Student t test. Statistical analysis was performed using Py-
thon Version 3.8.8.
ML algorithm
We used 3 classification-based ML models: logistic regres-
sion (LR), random forest (RF), and XGBoosting to predict
in-hospital mortality. LR, also referred to as sigmoid func-
tion, combines variables linearly using weights or coeffi-
cient values to predict an outcome.23 In this model, the
parameter we tuned is “C”, which equals 1/lambda. Param-
eter “C” regulates the complexity of the model to prevent
overfitting/underfitting. We used GridSearchCV, a hyper-
parameter tuning tool from the sklearn python package, to
exhaustively search from 10–4 to 104 to find “C” representa-
tive of the best predictive value. RF is a nonlinear algorithm
that ensembles bunches of classification models (decision
tree models) to boost the accuracy of prediction; that is, it
uses multiple models to make the exact prediction. A system
called majority voting is used to decide the final outcome af-
ter receiving the greatest number of votes from each classi-
fication model.24 In this model, we tuned the parameters
n_estimators, max_deth, max_features, min_samples_split,



Figure 1 Flowchart of machine learning. LASSO5 least absolute shrinkage and selection operator; ML5machine learning; NIS5 National Inpatient Sam-
ple.
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and min_samples_leaf by running RandomizedSearchCV,
another hyperparameter tuning tool available in the sklearn
python package. We used RandomizedSearchCV to run
through a large scale of numbers to find an approximate
best match. We then used GridSearchCV to exhaustively
search through all the numbers around the approximate
best match from RandomSearchCV. XGBoosting, in
contrast, implements gradient boosted decision trees to pre-
dict results. Compared to RF, XGBoosting makes predic-
tions sequentially rather than dependently. That is, instead
of voting based on results from multiple decision trees,
XGBoosting leverages the patterns in residuals
and strengthens the model with weak predictions.25

Parameters tuned in this model include n_estimators,
min__child_weight, max_depth, gamma, subsample, and
colsample_bytree. Similar to the RF model, we used Ran-
domizedSearchCV to find the approximate best match for
each parameter. We then used GridSearchCV to test each
number around the approximate best match to find the
best predictive value. All parameters were tuned with a
goal of obtaining the maximum value for area under the
receiver operating characteristics curve (AUC).26 After
that, AUC of each algorithm was presented with 95% con-
fidence interval (CI). Lastly, feature importance of each var-
iable in the algorithms was calculated respectively, along
with the sensitivity and specificity of each algorithm.
Results:
Study population and baseline characteristics
A total of 4659 patients were included in this study. Among
these patients, 106 (2.3%) died during HF hospitalization.
Demographic features and comorbidities are given in
Table 1. In terms of demographic features, patients who
died during HF hospitalization seem to be older than those
who did not (68.60 6 12.85 years vs 63.36 6 13.04; P
,.001). No significant differences in gender (53.8% vs
57.9%; P 5 .45) or race were noted. Regarding comorbid-
ities, patients who died during HF hospitalization were found
to have higher rates of cardiac arrhythmia (71.7% vs 49.9%;
P,.001), renal failure (64.2% vs 53.6%; P5 .041), liver dis-
ease (18.9% vs 6.7%; P ,.001), coagulopathy (17.0% vs
6.9%; P ,.001), and weight loss (13.2% vs 5.4%;
P5 .001) than those who did not. No significant differences
were noted in the distributions of CS (7.5% vs 6.2%;
P 5 .706), congestive HF (83.0% vs 86.0%; P 5 .471),
valvular disease (17.0% vs 19.5%; P5 .592), pulmonary cir-
culation disorders (44.3% vs 37.6%; P 5 .191), peripheral
vascular disease (3.8% vs 4.4%; P 5 .946), uncomplicated
hypertension (5.7% vs 7.4%; P 5 .629), complicated hyper-
tension (15.1% vs 10.2%; P 5 .137), presence of paralysis
(1.9% vs 0.4%; P 5 .134), neurological disorders (5.7% vs
3.1%; P 5 .213), chronic pulmonary disease (46.2% vs
49.5%; P 5 .569), uncomplicated and complicated diabetes
(P 5 .565 and P 5 1, respectively), hypothyroidism (16.0%
vs 15.8%; P5 1), peptic ulcer disease (0.9% vs 0.5%; P5 1),
acquired immunodeficiency syndrome (0.9% vs 0.2%;
P5 .45), lymphoma (0.9% vs 0.7%; P5 1), metastatic can-
cer (0.0% vs 0.6%; P 5 .882), solid tumors (0.9% vs 1.9%;
P5 .728), and rheumatoid disease (7.5% vs 5.6%; P5 .512)
between patients who died and those who did not.
ML models: Performance
AUC curves of the 3 trained ML models are shown in
Figure 3. RF was found to have the highest AUC value



Figure 2 Nullity correlation of every variable.
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(0.71; 95% CI 0.59–0.82). XGBoosting also showed a good
AUC for predicting in-hospital mortality (0.70; 95%CI 0.58–
0.81). The LR model algorithm showed a relatively poorer
predicting capability (0.65; 95% CI 0.53–0.76) compared
to the other 2 models. An evaluation of the 3 models is given
in Table 2. RF was found to have the highest sensitivity
(60.0%), whereas XGBoosting had the highest specificity
(97.2%).

Feature importance from each trained model after tuning
parameters is shown in Figure 4. In the LR model, paralysis
was the strongest predictor of in-hospital mortality. In the RF
model, fluid-electrolyte disorders seemed to be the strongest
predictor of mortality, followed by age, cardiac arrhythmias,
and liver disease. In the XGBoosting model, coagulopathy
was the strongest predictor, followed by fluid-electrolyte dis-
orders and cardiac arrhythmias.
Discussion
We developed 3 ML models to predict in-hospital mortality
among sarcoidosis patients hospitalized for HF based on their
clinical features. RF performed better than the other 2
models. The AUC score of the RF model in our study is
0.71, which is considered to be good.27 Furthermore, feature
importance from the RF model found fluid-electrolyte disor-
ders, age, and cardiac arrhythmias to be the 3 most important
factors contributing to in-hospital mortality. To our knowl-
edge, we are the first group to analyze an ML-based algo-
rithmic approach to predict in-hospital mortality among
sarcoidosis patients hospitalized with HF.

Sarcoidosis is a granulomatous, infiltrative disease that
can involve the myocardium, resulting in HF among other
cardiac sequelae. With the advent of rhythm management
with pacemakers and implantable defibrillators, the most



Table 1 Baseline features

Not died Died P value

N 4553 106
Age (y) 63.36 6 13.04 68.60 6 12.85 ,.001
Gender (female) 2637 (57.9) 57 (53.8) .45
Race
White 1652 (36.3) 35 (33.0) .556
Black 2489 (54.7) 60 (56.6) .766
Hispanic 161 (3.5) 7 (6.6) .158
Native American 16 (0.4) 0 (0.0) 1
Other 75 (1.6) 1 (0.9) .859

Cardiac sarcoidosis 281 (6.2) 8 (7.5) .706
Congestive heart failure 3914 (86.0) 88 (83.0) .471
Cardiac arrhythmia 2271 (49.9) 76 (71.7) ,.001
Valvular disease 890 (19.5) 18 (17.0) .592
Pulmonary circulation
disorder

1713 (37.6) 47 (44.3) .191

Peripheral vascular disease 200 (4.4) 4 (3.8) .946
Hypertension,
uncomplicated

336 (7.4) 6 (5.7) .629

Hypertension, complicated 463 (10.2) 16 (15.1) .137
Paralysis 19 (0.4) 2 (1.9) .134
Neurological disorders 139 (3.1) 6 (5.7) .213
Chronic pulmonary disease 2254 (49.5) 49 (46.2) .569
Diabetes, uncomplicated 717 (15.7) 14 (13.2) .565
Diabetes, complicated 13 (0.3) 0 (0.0) 1
Hypothyroidism 721 (15.8) 17 (16.0) 1
Renal failure 2442 (53.6) 68 (64.2) .041
Liver disease 303 (6.7) 20 (18.9) ,.001
Peptic ulcer disease 23 (0.5) 1 (0.9) 1
AIDS 7 (0.2) 1 (0.9) .45
Lymphoma 30 (0.7) 1 (0.9) 1
Metastatic cancer 27 (0.6) 0 (0.0) .882
Solid tumor 86 (1.9) 1 (0.9) .728
Rheumatoid disease 254 (5.6) 8 (7.5) .512
Coagulopathy 316 (6.9) 18 (17.0) ,.001
Obesity 1617 (35.5) 22 (20.8) .002
Weight loss 245 (5.4) 14 (13.2) .001
Fluid and electrolyte
disorders

1695 (37.2) 65 (61.3) ,.001

Blood loss anemia 25 (0.5) 2 (1.9) .252
Deficiency anemia 51 (1.1) 2 (1.9) .785
Alcohol abuse 12 (0.3) 0 (0.0) 1
Drug abuse 219 (4.8) 2 (1.9) .243
Depression 596 (13.1) 13 (12.3) .917
Psychosis 49 (1.1) 0 (0.0) .554

Values are given as mean 6 SD or n (%) unless otherwise indicated.
AIDS 5 acquired immunodeficiency syndrome.
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common cause of death in these patients has shifted from
sudden cardiac death to HF.28 However, diagnosis of CS re-
mains a challenge because about 50% of sarcoidosis patients
are asymptomatic at the time of sarcoidosis diagnosis.9 Addi-
tionally, CS causes patchy infiltration of the myocardium,
which lowers the sensitivity of current diagnostic methods.29

This leads to a significant number of undiagnosed CS cases.
As a result, data regarding prevalence of CS among sarcoid-
osis patients with HF are lacking.

Whether presence of HF indicates progression to a late
stage of sarcoidosis is unclear, as the presentation depends
on the location and amount of myocardial involvement.30

HF at the time of presentation is an independent predictor
of survival.31 Early detection of myocardial involvement
and prompt treatment are associated with reduced mortal-
ity.7,31–33 Little is known about the risk of mortality
associated with clinical features among sarcoidosis patients
with HF. Previous studies focused on sarcoidosis
cardiomyopathy showed an overall in-hospital mortality of
about 2.5%. In the study, age, peripheral vascular disease,
chronic lung disease, liver disease, renal disease, and arrhyth-
mias such as atrial fibrillation and ventricular fibrillation all
were shown to contribute to mortality independently.34 In
our study, we established ML models to predict in-hospital
mortality among sarcoidosis patients hospitalized with HF,
based on their clinical characteristics.

We also identified comorbidities that significantly
impacted outcome prediction by the ML algorithm. In RF,
the feature importance plot showed fluid-electrolyte disorder
to be the most important factor, followed by age, arrhyth-
mias, and liver disease. This is consistent with the conclu-
sions drawn by previous studies. Electrolyte and fluid
imbalance is a common problem encountered in the manage-
ment of HF in general, and failure to adequately address this
is associated with poor clinical outcomes. Electrolyte distur-
bances such as hyponatremia,35 hyperkalemia,36 and fluid
imbalance37 are known to be closely associated with short-
term mortality in patients with HF. A study of 73 patients
with CS showed that age is a significant predictor of mortal-
ity.38 A study based on the NIS database of 369,285
sarcoidosis-related hospitalizations showed atrial fibrillation
to be the most common cardiac arrhythmia, followed by ven-
tricular tachycardia. Individuals with arrhythmias were found
to have higher in-hospital mortality.39 Another study on 113
patients found arrhythmias to be the terminal incidence of
67% of CS-related deaths.40 Sarcoidosis also causes liver dis-
ease. In a retrospective study of 286 sarcoidosis patients,
9.4% were found to have liver sarcoidosis, and 37% among
them had significant clinical features including cirrhosis
and portal hypertension.41 Although it is unclear whether
sarcoidosis can exacerbate pre-existing liver disease caused
by other etiologies, no clear evidence suggesting associations
of mortality was found in CS patients with concomitant liver
disease.

One of the strengths of our study is the large sample size,
which was achieved using the NIS database and resulted in
substantial statistical power.42–44 Larger samples of patients
enable us to construct stronger ML algorithms. We found
RF to be a good model, with high AUC scores for HF
hospitalization prediction. RF had the highest sensitivity,
whereas XGBoosting had the highest specificity. This
finding highlights the applicability of ML technology in
cardiovascular medicine.
Study limitations
Limitations associated with the use of the NIS database
include lack of clinical details such as medication use,



Figure 3 Presentation of AUC of 3 trained machine learning models.A: Logistic regression model. B: Random forest model.C: XGBoosting model. AUC5
area under the receiver operating characteristic curve.
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imaging studies, and laboratory test results. These data may
be confounding factors affecting ML results. In addition,
because of the complexity and difficulty associated with
interpretation of ML algorithms, reproducibility might be
hindered. With the development of automatic unsupervised
MLmodels and increased data sharing via electronic medical
records, we believe ML and other artificial intelligence tech-
nologies will increasingly and rapidly become more feasible
and relevant in medicine.
Conclusion
We developed 3ML algorithms to predict in-hospital mortal-
ity among sarcoidosis patients hospitalized for HF. Among
the models, RF had the best performance. This study proves
the feasibility and applicability of ML techniques in predict-
ing clinical outcomes. However, further studies involving
Table 2 Evaluation of 3 trained models

Model Sensitivity Specificity AUC (95% CI)

Logistic regression 52.0% 70.0% 0.65 (0.53–0.76)
Random forest 60.0% 66.4% 0.71 (0.59–0.82)
XGBoosting 12.0% 97.2% 0.70 (0.58–0.81)

AUC5 area under the receiver operating characteristic curve; CI5 con-
fidence interval.
larger datasets with more clinical information would be
necessary to improve the algorithm.
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Figure 4 Feature importance of the 3 trained machine learning models. A: Logistic regression model. B: Random forest model. C: XGBoosting model.
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Supplementary data
Supplementary data associated with this article can be found
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