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Abstract: The analysis of data from sensors in structures subjected to extreme conditions such as
the ones used in smelting processes is a great decision tool that allows knowing the behavior of the
structure under different operational conditions. In this industry, the furnaces and the different ele-
ments are fully instrumented, including sensors to measure variables such as temperature, pressure,
level, flow, power, electrode positions, among others. From the point of view of engineering and data
analytics, this quantity of data presents an opportunity to understand the operation of the system
under normal conditions or to explore new ways of operation by using information from models
provided by using deep learning approaches. Although some approaches have been developed with
application to this industry, it is still an open research area. As a contribution, this paper presents
an applied deep learning temperature prediction model for a 75 MW electric arc furnace, which is
used for ferronickel production. In general, the methodology proposed considers two steps: first, a
data cleaning process to increase the quality of the data, eliminating both redundant information
as well as atypical and unusual data, and second, a multivariate time series deep learning model to
predict the temperatures in the furnace lining. The developed deep learning model is a sequential
one based on GRU (gated recurrent unit) layer plus a dense layer. The GRU + Dense model achieved
an average root mean square error (RMSE) of 1.19 ◦C in the test set of 16 different thermocouples
radially distributed on the furnace.

Keywords: temperature prediction; electric arc furnace; deep learning; structural health monitoring;
gated recurrent unit; GRU; multivariate time series

1. Introduction

Structural health monitoring (SHM) remains a priority in large-scale industrial ap-
plications because of the multiple advantages in its implementation such as the use of
sensors permanently attached to the structure for continuous monitoring and its readily
available form for the application of data-driven approaches to determine the health of the
structure under evaluation [1,2]. Structures in industrial processes require special attention
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since the inability to do so may put at risk its operation. Structural health uncertainty,
in conjunction with variations in the operational or environmental conditions, increases
the risk of accidents, which in turn may result in catastrophic events [3]. One example of
structures subjected to extreme operational conditions is the furnaces used in the smelting
industry where temperatures, pressures, flows, among other variables, can vary consider-
ably due to changes in the inputs (e.g., chemical composition of the raw material) or the
operational conditions. This implies that operators are obliged to continuously monitor the
structural health of the furnace before applying any changes in the operation set points,
in order to maintain conditions that allow the secure operation of the system and the
health of the structure. SHM is of particular interest for electric arc furnaces (EAF), which
are characterized by the action of heating the materials using a covered electric arc for
the smelting process. Routine operation causes wear in the wall lining of the furnace,
hence monitoring wall thickness is of special interest to avoid run-outs of the smelting
material. One strategy to evaluate the state of the structure is to directly monitor the wall
thickness via routine inspection using specialized techniques. However, it is an expensive
and difficult task because of the scale of the system. For this reason, it is of interest to use
other measurements that can indirectly account for the thickness of the wall lining. As it
turns out, the measured temperature in the wall is a good indicator of its health and can be
used for monitoring tasks in a continuous (on-line) way.

Some recent works that use machine learning techniques to predict temperature
variables within the smelting process have addressed the problem from different points of
view. Mishra et al. [4] compared five deep learning models for multivariate prediction of
time series temperatures. The study yielded as a result that a deep convolutional network
(DCN) performs best with wavelet and fast Fourier transform (FFT). An online estimation
of electric arc furnace tap temperature by using fuzzy neural networks was developed by
Fernandez et al. [5] and its application of this helped reduce the consumption of energy
in an electric arc furnace. In the work of Fontes et al. [6], the hot metal temperature
in a blast furnace was predicted using an approach based on fuzzy c-means (FCM) and
exogenous nonlinear autoregressive model (NARX); the estimate was later implemented
as a soft sensor for predicting temperature. In Shockaert and Hoyez [7] a multivariate time
series approach was built with a deep generative CycleGAN model combined with a long
short-term memory (LSTM)-based autoencoder (AE). Particularly, that approach handles
a transfer learning methodology in which data obtained from a source furnace is used
to train a model that can be used to evaluate data from a target furnace. The forecasting
of the hot metal temperature in a blast furnace is shown in the work of Iffat et al. [8].
Specifically, an optimal time lag at which the input variables have an impact on the hot
metal temperature is determined. Additionally, an incremental learning methodology
that considers changes in raw material composition, process control methods, and aging
equipment was developed.

In order to improve the efficiency in a blast furnace, a self-organizing Kohonen neural
network approach was developed in [9]. This approach managed to complement the control
of process operating parameters for the blast furnace process. An artificial neural network
(ANN) model was applied to predict the slag and metal composition in a ferromanganese
production unit with a submerged arc furnace [10]. The advantages of this ANN included
the reduction of power and coke consumption. Similarly, in the work of Ducic et al. [11], an
ANN was derived as an intelligent soft sensor in the process of white cast iron production.
An increase in productivity, as well as material and energy efficiency, can be translated
into a reduction of the environmental impact and cost of the steel-making process in a
basic oxygen furnace (BOF); in [12], the aforementioned objectives were reached through
the use of standard machine learning models to predict the end-point targets of variables
like the final melt temperature and upper limits of the carbon and phosphorus content
with minimum material loss. A random forest algorithm was used in [13] to improve the
quality of steel casting for tire reinforcement; 140 process variables were used as features
and the output can take values 0 or 1 depending on whether the casting was rejected or
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not. The best area under the receiver operating characteristics (AUROC) in the test set
was 0.85 obtained by the random forest classification method. The prediction issue of
the amount of alloying additives in order to obtain the desired chemical composition of
white cast iron was solved applying a neural network model in [14]. A three-month-long
monitoring of the metal melting process data set was used. Besides the data was split into
training and test sets founding that the neural network model reached a mean squared
error of 3.31% in the test set.

As previous works have shown, different variables can be predicted by using historical
operation data to evaluate the health of furnaces, or to predict the behavior of the process
when inputs are changed. Therefore, the development of prediction models becomes one
of the main necessities in the areas of operation analysis, control, and maintenance of EAFs
and remains an open research area. As a contribution, this work presents the development
of a deep learning model to predict the temperature in the lining of the EAF. Details about
the experimental setup, the data acquisition from sensors, its preprocessing step, model
development, and its validation are also presented in this work. This work was carried out
in a joint effort between academia and industry, Universidad Nacional de Colombia and
Cerro Matoso S.A. (CMSA). The interested reader can acquire some more background of
the research process by reviewing some of the previous works developed by the authors,
where the problems associated with sensor networks and continuous monitoring in this
kind of furnace, including temperature monitoring [15,16], gap monitoring [17], and
thickness monitoring [18] using ultrasonic and ground penetrating radar (GPR) methods
are also tackled.

This paper is organized as follows: Section 2 includes a theoretical background where
some concepts about the company, the process, and the methods used in the methodology
are briefly introduced. Section 3 provides information about the developed methodology
including a description of the dataset used for the validation. Section 4 presents the results
and discussion; finally, conclusions are included in the last section.

2. Theoretical Background and Related Works
2.1. Cerro Matoso S.A.

As context to the work presented herein, Cerro Matoso S.A. (CMSA) is one of the
world’s major producers of ferronickel and it is operated by South32. This is an open-
cut mine operation in northern Colombia, with more than 35 years of operation in the
region. More details about the process developed by CMSA can be found directly on its
web page [19]. A brief description of nickel and the ferronickel metallurgical process are
included next in order to contextualize the development of the methodology.

2.2. Nickel and Ferronickel Metallurgical Process Description

Nickel is metal and is commonly used in stainless steel production. Stainless steel
that includes nickel is used in the food processing, transportation, and manufacturing
industries because of its advantages such as being heat-resistant, resistant to damage, and
easy to keep clean. It is commonly used in everyday household items as well [19].

In the case of CMSA, the main product is ferronickel (FeNi), which is a material used
in different industries such as electronics, manufacturing, and automotive, among others.
This material is obtaining in a metallurgical procedure after mining laterites and high-Ni
sulfide ores [20]. Figure 1 shows a diagram depicting the ferronickel extraction process.
This process starts with the ore extraction in an open-cut mine, which is tested and classified.
The stored ore is dried in a calcine furnace (kiln furnace) and afterward processed in an
electric arc furnace where the smelting process is performed. Figure 2 shows a panoramic of
a section of the furnace. Although all parts of the process are important, the monitoring of
the furnace is a vital task because of the risks associated with its operation. It is necessary to
remark that this element works 24/7, and the aim of the monitoring system is to reduce the
number of maintenance activities by an enhanced operation of the furnace. The experience
of the furnace operators, who are making decisions based on the data from the process
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every day, is one of the main sources of knowledge that can make this happen, but for they
this they require good online information and predictions.

Figure 1. Steps in the Ferronickel extraction process.

Figure 2. Panoramic of the furnace.

2.3. Deep Learning Predictive Methods

As is shown in Figure 1, the ferronickel extraction process requires several steps
and involves multiple inputs and outputs. This complexity requires the use of advanced
strategies for data analysis and it is here where neural networks present solutions to tackle
problems that involve sequential processing of data [21]. The goal of this paper is to develop
a predictor of the temperature behavior in the furnace using mainly data obtained from
thermocouple sensors located at the lining furnace. One of the requirements of the proposed
method is to effectively model long-term dependencies between variables, therefore it is
necessary to use information from earlier time windows (past information) in order to be
able to accurately predict the temperature (future predictions). This highlights the fact that
it is necessary to develop models that can handle variable-length input sequences, that are
able to track long-term dependencies in the data, that can maintain information about the
order of the sequences, and share parameters across the entirety of the sequence.

Feedforward neural networks are not able to maintain information about a previous
event in a sequence of events [22]. In contrast, recurrent neural networks (RNN) have loops
in their architecture, which allows for information to persist over time. These networks are
called recurrent because the information is being passed from one time-step to the next
internally within the network [23].

The RNNs use a training algorithm called backpropagation through time [24]. Errors
are backpropagated at each time step, and then, finally across all time steps all the way
from where we are currently to the beginning of the sequence [25]. This is the reason why
it is called backpropagation through time. The computation of the gradient, that is the
derivative of the loss with respect to the parameters tracing all the way back to the initial
state, requires many repeated multiplications of the weight matrix as well as repeated
use of the derivative of the activation function. In some cases, this is a problem because
gradients are too small. This problem is well-known as the vanishing gradient problem [26].
There are three different ways to overtake the vanishing gradient problem: (i) choosing the
activation function, (ii) initializing the weights cleverly (close to the optimal solution), and
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(iii) designing the network architecture to actually be able to handle this efficiently. This
work focuses on the use of the latter solution, which uses a slightly more complex recurrent
unit that can track long-term dependencies in the data more effectively by controlling what
information is passed through and what information is used to update its internal state,
i.e., the gated cell. Two types of gated cells are described next, namely the long short-term
memory (LSTM) and the gated recurrent unit (GRU).

2.3.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) are feedforward artificial neural networks
that use the convolution operation instead of matrix multiplication. The main aspects of
the convolution layer in CNNs are its sparse local connectivity and filters, which signif-
icantly reduce the number of network parameters, while simultaneously increasing its
performance [27]. Features in CNN are not hand engineered, but learned; this property
reduces the preprocessing stage.

2.3.2. Long Short-Term Memory Network

In an LSTM network, the repeating unit contains different interacting layers. These
layers interact to selectively control the flow of information within the cell. This enables
LSTM to track and store information throughout many time steps. The key building block
behind the LSTM is the gate, which functions to enable the LSTM to selectively add or
remove information to its cell state. LSTM processes information through four simple
steps: forget, store, update, and output. These networks must first forget irrelevant history,
then perform the computation to store relevant parts of new information, use these two
steps together to selectively update their internal state, and finally, generate an output. The
internal description of an LSTM unit is illustrated in Figure 3. LSTM considers an input
sequence {x1, x2, . . . , xt} at time t. The output gate determines the new state ht, where t is
the time step. The following equations describe the internal operations carried out in an
LSTM internal unit [28].

ft = σ
(

W f × [ht−1, xt] + b f

)
(1)

it = σ(Wi × [ht−1, xt] + bi) (2)

ot = σ(Wo × [ht−1, xt] + bo) (3)

C̃t = tanh(Wc × [ht−1, xt] + bc) (4)

Ct = ft × Ct−1 + it × C̃t (5)

ht = ot × tanh(Ct) (6)

where, Ct−1, C̃t, and Ct are unit memory, Wc, Wo, W f , and Wi are weight matrices; bc, bo, b f
and bi are bias vectors.

2.3.3. Gated Recurrent Unit

The GRU [29] is a modified version of the LSTM cell. It combines long and short-term
memory into its hidden state. The GRU has two gates, on one hand, the update gate and
on the other hand the reset gate. These gates allow maintaining a balance between the
information to retain and forget. The outputs of the GRU unit are zt (see Equation (7)) and
rt (see Equation (8)).

The internal description of a GRU unit is depicted in Figure 4. The following equations
describe the internal operations in the GRU unit [28].

zt = σ(Wz × [ht−1, xt] + bz) (7)

rt = σ(Wr × [ht−1, xt] + br) (8)

mt = tanh(Ws × [rt−1, xt] + bs) (9)
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ht = (1− zt)× ht−1 + zt + mt (10)

where, Wr, Wz and Ws are weight matrices; and br, bz, and bs are bias vectors.

Ottanh

tanh

σ σ σ

WoWcWi
Wf

ft it Ct

xt

ht-1

Ct-1 Ct

ht

yt

Figure 3. LSTM internal unit configuration.

tanh

σ
σ

WsWt
Wr

rt

zt
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ht-1

ht

yt

mt

1-

Figure 4. GRU internal unit configuration.

3. Temperature Prediction Methodology for the Furnace Lining

This section is devoted to introducing the proposed methodology for temperature
prediction in the wall of the ferronickel furnace studied. Two general steps are considered
after the data acquisition step: the data cleaning process and the development of the
deep learning model as depicted in Figure 5. Although the methodology considers some
particular elements and variables of this specific smelting process, it can be generalized
to other complex processes where a big number of sensors are used and it is necessary to
predict the behavior of a variable.

Before presenting each step of the methodology, some context with regards to the data
set obtained from the data acquisition system is given next.

3.1. Dataset for Methodology Validation

The data set corresponds to the measured variables of an electric arc furnace for
ferronickel production located at Cerro Matoso SA (South32 company). The data set used
was sampled every 15 min for a period of 416 days between the 11 August 2018 and
30 September 2019. The data set is composed of a total of 40,000 instances. Regarding the
attributes, also called variables or features, an in-depth analysis with a group of expert
furnace operators defined a group of 49 variables selected due to their importance in the
furnace operation. These 49 variables are detailed in Table 1 and serve as input variables to
train and test the developed multivariate time series temperature prediction system.
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Data 
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Data 
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model
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Figure 5. General steps in the temperature prediction methodology.

Table 1. Description of input variables.

Variable Identification Number of Input Variables

calcine feed totalizer 1
automatic furnace regulation system 1

electrode current 3
electrode voltage 3

relative electrode position 3
electrode arc 3

electric furnace power 1
electrode power 3

chemical composition of calcine 15
16 thermocouples to predict 16

Total input variables 49

The electric arc furnace is built with the integration of 72 panels radially distributed
on its perimeter. Each panel is composed of four plate coolers; these four plate coolers are
located at four different heights labeled Level 1, Level 2, Level 3, and Level 4 as depicted
in Figure 6. Thus, there are 72 × 4 = 288 plate coolers radially distributed along the
furnace. Each plate cooler has a thermocouple for temperature lining monitoring. Figure 6
shows a section of the wall of the furnace where it is possible to observe the refrigeration
system composed of 4 levels of plate coolers per panel, where the thermocouples, whose
temperature measurement must be predicted, are located.

Due to the high number of plate cooler thermocouples in the lining furnace, a discrete
group of 16 thermocouples were selected in this work as output variables to be predicted.
Four panels of the furnace belonging to the North-West (NW), South-West (SW), South-East
(SE), and North-East (NE) quadrants were selected. Each panel has four thermocouples,
thus a 4 × 4 = 16 thermocouples in total were selected. The distribution of these 16
thermocouples is illustrated in Figure 7. The location of the three furnace electrodes (E1,
E2, and E3) is detailed in Figure 7 (left).
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Cooler

Figure 6. External view of panel #17 of the 72 panels wallside that radially compose the furnace.

Figure 7. (Left) radial location of the 4 panels to evaluate and (Right) detail side view of each panel
with its 4 levels of plate coolers. Sixteen thermocouples in total were used as output variables.

3.2. Data Pre-Processing Step

The ferronickel production process carried out at the CMSA facilities is made up
of a large number of variables. Variables are acquired from different sources, including
multiple on-line sensors, and collected by a data acquisition system (DAQ). The collected
data can contain errors because of failures in sensors, noise, or missed data that the system
fails to capture or store. These errors require revision and errors must be eliminated
in the pre-processing step in order to reduce the errors in the model to be developed.
Originally 1180 variables were provided by CMSA. Together with experts from the process
operations area, some considerations about the range of the variables were identified,
and the elements shown in Figure 8 were defined as the set of rules to be considered.
These elements constitute a workflow with seven steps, which contains different types of
problems that might be present in the initial data set, for example, strings of characters in
numeric variables, negative temperatures, variables that remain in a single value, variables
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with null data. With this workflow, it was possible to find variables that consistently
presented problems in the data, and for this reason, they were eliminated. It is also noted
that given the large number of variables available, it was not necessary to carry out the
data restoration processes, avoiding in this way the appearance of gaps in the data set. The
results obtained after applying the proposed workflow allowed to debug 340 variables
with errors, which indicates that 28% of the data has problems.

Figure 8. Data cleansing process workflow.

The following steps in the data cleaning process were considered [15]:

• High variance: Data with values outside of the operational range should not be consid-
ered. Thus, a univariate measure for the measurement of quality based on percentage
changes is calculated. A variable representation with variance is shown in Figure 9a.

• Strings: the variables that had non-numeric values were encoded with numerical
values (see Figure 9b).

• Remove duplicates: The identification of duplicate variables results in drop the duplicate
and stay with a single variable (see Figure 10a).

• Empty and null values: A 2% was selected as threshold, thus, variables with more than
98% with empty or null values are dropped. (see Figure 10b)

• Zero variance: If more than 50 % of the data of a variable does not vary and remains in
a constant value the variable is dropped (Figure 11a).

• Unique values: Because it is desirable to find relationships between variables those that
remain constant over time are dropped (see Figure 11b).

• Negative temperatures: The normal operating range of variables that measure temper-
ature always takes positive values. Due to the above, some variables with negative
temperatures are identified and these are dropped (Figure 11c).

Figure 9. Data cleansing process rules: (a) variables with high variance and (b) strings.
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Figure 10. Data cleansing process rules: (a) remove duplicates and (b) empty and null values.

Figure 11. Data cleansing process rules: (a) variables which remain in same value for long time
periods, (b) unique values, and (c) negative temperature cases.

The amount of variables eliminated in each of the categories in the data cleaning
process is described in Table 2. As a result, after performing the cleaning process, 840 vari-
ables were obtained in a cleaned data set. Subsequently, through suggestions made by the
furnace operators and the judgment of expert engineers belonging to CMSA, the 49 vari-
ables of the temperature prediction model developed in this work were selected. These
49 variables are listed in Table 1.

Table 2. Amount of variables eliminated in each of the categories after performing the data clean-
ing process.

Category Deleted Variables

High variance 97
Strings 5

Remove duplicates 80
Empty and null values 2

Zero variance 22
Unique values 60

Negative temperatures 74

Total deleted variables 340

3.3. Development of the Multivariate Time Series Deep Learning Model

The following section will the steps carried out in order to achieve our goal of training
a temperature prediction model. To this end, we will first discuss the steps taken in
order to define a suitable data set. This is followed by a discussion on the definition and
development of the RNN proposed to be used in this paper.

The programming language selected to implement the temperature prediction models
is Python. Together with this programming language the following libraries are used for
data management, neural network training and visualization, among other functions:

• Data manipulation: Pandas and NumPy
• Data visualization: Matplotlib and Seaborn
• Neural networks training: scikit-learn [30], TensorFlow [31], and Keras [32].
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3.3.1. Definition of the Dataset

The data set has input variables of different magnitudes and values. So the different
values are scaled so that they are in the interval between −1 and 1. The target data comes
from the same data set as the input signals, because they are the output thermocouple data
that simply shifts in time.

The number of time steps that it will shift the target data is predefined. The dataset
was sampled to have one observation every 15 min, thus there are 96 observations over
24 h. In particular, the shift is used to predict temperatures two hours in the future.

Due to the large number of instances that were taken in the dataset (40,000) it is
impractical to perform a conventional division of 70% of the data for training and the
remaining 30% for testing. In contrast, and due to the desire to have the greatest amount of
data for training, the decision was made to divide the data into 90% for training and the
remaining 10% for testing. In addition, the input and output variables for the training and
test sets were defined. The dataset must be prepared as two-dimensional NumPy arrays.
In this case, there are 49 input signals and 16 output signals.

Instead of training the recurrent neural network on the entire sequence of 40,000 obser-
vations, a function is used to create a batch of shorter 250 subsequences randomly selected
from the training data. Thus, every sequence had a size of =1152 steps corresponding to
12 days. This period of time is defined because it is in which the pile of calcined material in
the furnace is changed. The 40,000 data used in the training and testing of the temperature
prediction model were cleaned before the development of the neural network. Thus, there
are 250 random sequences (batch) with a size of 1152 steps and all the data belonging to
this batch is clean following the steps described in Section 3.2, where it was determined
as a data cleaning policy that if a variable had any of the problems indicated, it would be
eliminated, this was possible given a large amount of information available and variables
in the initial data set. For that reason, the variables with data problems were not available
for the training data set, because their information did not represent the real behavior of
the furnace, therefore it is clarified that there was no partial elimination of values that
generated discontinuity in the time series.

As described, the training is performed by taking 250 random sequences. However, to
carry out the testing, the complete sequence of data is taken in the test set corresponding
to 4000 records. These 4000 records in the test set are sufficient and still providing a
good enough estimate of the model performance. In addition, the model performance is
monitored after each epoch on the test set and only if the performance is improved on the
test set the weights of the recurrent neural network are saved for the next epoch.

3.3.2. Creation of the Recurrent Neural Network

The neural network and its different layers are created using TensorFlow in a sequen-
tial model. The first layer consists of the use of a cell type gated recurrent unit (GRU) to
create a recurrent neural network. This GRU layer had 250 outputs for each time step
in the sequence. The information that enters this first GRU layer of the model is a batch
of sequences of arbitrary length where each observation has several input signals. The
GRU network generates a batch of sequences of 250 values. You want to predict 16 output
signals; thus, a dense layer is added in the deep learning model that assigns 250 val-
ues to only 16 output values corresponding to the 16 thermocouples that it is desired to
predict. A sigmoid activation function is used to ensure that the values are within the
normalized values.

After each epoch of the neural network, the performance of the model in the test set
is monitored and the model weights are only saved if the performance improves in the
test set. In the training process, a batch of short sequences is randomly selected from the
total training data. In this case the training data has 36,000 instances. In contrast, for the
validation data, the entire sequence is run from the 4000 instances in the test set and the
prediction accuracy is measured on that entire sequence.
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It is important to discuss the loss function, learning rate, and warmup period. The loss
function that is minimized is the mean square error (MSE). A warmup period of 50 time
steps is assigned to the model so that the precision of these first 50 steps is not used in the
stall function. The inclusion of this warmup period allows the model to present a better
behavior for each of the 16 outputs in terms of root mean square error RMSE. Adam [33]
was selected as an optimizer and an initial learning rate of 1× 10−3 is used. If the loss of
validation has not improved since the last epoch, the learning rate changes to 1× 10−4.
A two-layer model was defined, one GRU and the other dense. The output form of (None,
None, 16) shown in Figure 12 means that the model will generate a batch with an arbitrary
number of sequences, each of which has an arbitrary number of observations, and each
observation has 16 output signals.

Figure 12. Output shape in the GRU + Dense model.

3.3.3. Training of the Recurrent Neural Network

A single “epoch” does not correspond to a single training set processing, due to
how the batch generator randomly selects subsequences from the training set. Instead,
“steps-per-epoch” is selected to have an epoch processed in a few minutes. In this case, the
number of steps-per-epoch used is equal to 100. The parameters of the joint GRU + Dense
model are described in Table 3.

Table 3. Parameters setup in the GRU + Dense model

Parameter Value

Neural network layer type GRU + Dense
Number of GRU grid cells 250

Optimization method adam
Learning rate 1× 10−3

Number of training epochs 50
Steps per epoch 100

Total number of data 40000
Data division percentage for training 90%
Data division percentage for testing 10%

Number of random sequences belonging to
the batch for training 250

Number of steps in each random sequence 1152
Number of shift steps 8 every 15 min,

predicts 2 h into the future
Number of input variables 49

Number of output variables 16

3.3.4. Performance of the On-Line Prediction Model

The final step is to compare the predicted and true output signals. The time series
prediction model performance is calculated using the root mean squared error (RMSE):

RMSE =

√√√√ 1
M

M

∑
i=1

(ỹi − yi)
2 (11)
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where M is the number of data points in the time series to be estimated, yi is the actual
value of time series, and ỹi is the estimated value at time i by the prediction model [34].

The steps to develop the different deep learning models to predict the temperature
are described in this section. These steps are illustrated in Figure 13.

01. Definition of 
initial data set

02. Definition of 
input and output 

variables

03. Data 
Normalization

04. Creation of the 
recurrent neural 

network

05. Data sequences 
in validation set

06. Data batch
generator

07. Establish loss 
function, learning 
rate and warmup-

period

08. Train the 
recurrent neural 

network

09. Generate
predictions

Figure 13. Steps for the development of the temperature prediction deep learning models.

4. Results and Discussion

As a result of the multivariate time series deep learning model evaluation, a compari-
son of the predicted and true behaviors for one thermocouple in the train and test sets is
shown in Figure 14. It can be deduced the similarity between the true and predicted values
in both cases.

Figure 14. True versus predictive behavior of the gated recurrent unit (GRU) model. Training and
test sets in one of the output thermocouples.

4.1. RMSE Study in the Train and Test Sets for Six Different Deep Learning Models

A comparative study showing the 16 thermocouple results in the test set is shown in
Figure 15. In each subfigure, the true value is depicted in blue and the predicted value is
depicted in orange. From Figure 15 is evident that Level 1 reaches the lowest temperatures
in general independently of the quadrant. In contrast, the highest temperatures in the fur-
nace were reached in Level 4 due to its bottom location in the furnace. When a comparison
between quadrants is performed, it is evident that the NW and SW sectors exhibit higher
values than SE and NE sectors in the furnace. This is probably due to an erosion in the
refractory lining in the NW and SW quadrants of the furnace.
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NW NESESW

Level 1

Level 2

Level 3

Level 4

Figure 15. True and predicted behavior in each one of the 16 thermocouples studied in the test set.

Table 4 shows the RMSE values for each one of the 16 thermocouples for the train and
test sets. A comparison study of the RMSE behavior was carried out with six different deep
learning models. These deep learning models were:

• GRU (250 Cells) + Dense
• GRU (128 cells) + GRU (64 cells) +Dense
• LSTM (250 cells) + Dense
• GRU (128 cells) + LSTM (128 cells) + Dense
• CONV1D (128 cells) + Dense
• CONV1D (128 cells) + LSTM (128 cells) + Dense

As shown in Table 3 the best deep learning model was the GRU (250 Cells) + Dense. It
may be observed that the best average RMSE value of 1.19 in the test set was obtained by
the GRU (250 Cells) + Dense model. The CONV1D layer automatically extracts features
from the input time series during training. As can be observed in Table 3 the second-best
model was the CONV1D (128 cells) + Dense reaching an average RMSE value of 1.48 in
the test set. This behavior was obtained by using one-dimensional filters to capture the
temporal properties in the CONV1D layer to describe the temporal pattern of the input
series [35]. The thermocouples in Level 1 NE and Level 2 NE reached the lowest RMSE
values. In this case, the two aforementioned thermocouples belong to the NE plate cooler
and correspond to the upper and middle Levels 1 and 2 showing their high correlation.
In general, the NE quadrant exhibits the best RMSE values and it is evident that the NE
quadrant presents the lower temperatures of the entire furnace.

Particularly, the thermocouple in Level 4 NE reached a maximum temperature of
70 ◦C. In contrast, the thermocouples in Level 4 NW and SW reached temperatures above
120 ◦C. The worst RMSE values were obtained for the thermocouples of Level 4 NW and
Level 4 SW, with values of 2.94 and 2.61 respectively in the test set. This behavior is mainly
due to the influence of the electrodes at this position in the furnace area.
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Table 4. RMSE comparison of six different deep learning models for each one of the 16 output thermocouples in the training
and test sets. (The percentage of data split in train set was 90% and the remaining 10% was used for test set.)

GRU 250 GRU128 + GRU64 LSTM 250 GRU 128 + LSTM 128 CONV1D 128 CONV1D 128 + LSTM 128

Thermocouple Train Test Train Test Train Test Train Test Train Test Train Test
Level 1 NW 0.66 1.34 1.03 1.86 0.80 1.81 0.95 1.82 0.88 1.64 0.87 1.74
Level 1 SW 0.87 1.10 1.46 1.83 1.09 1.77 1.27 1.89 1.11 1.24 1.15 1.56
Level 1 SE 0.65 0.71 0.89 0.85 0.76 1.15 0.87 1.02 0.78 0.73 0.72 0.82
Level 1 NE 0.45 0.43 0.75 0.60 0.58 0.61 0.64 0.59 0.60 0.53 0.60 0.52
Level 2 NW 1.08 1.46 1.58 1.80 1.31 2.05 1.47 2.46 1.54 1.99 1.38 2.03
Level 2 SW 1.09 1.54 1.88 2.41 1.41 2.19 1.62 2.70 1.58 1.68 1.45 2.26
Level 2 SE 0.73 0.89 1.10 1.32 0.84 1.41 0.98 1.43 0.94 1.18 0.83 1.12
Level 2 NE 0.50 0.43 0.74 0.59 0.65 0.73 0.71 0.69 0.64 0.54 0.61 0.74
Level 3 NW 0.81 0.85 1.13 1.05 0.95 1.21 1.03 1.24 1.00 1.07 0.98 1.42
Level 3 SW 0.80 0.77 1.28 1.16 1.01 1.20 1.17 1.33 1.02 1.04 1.06 1.10
Level 3 SE 0.76 0.96 1.09 1.21 0.88 1.47 0.98 1.48 0.91 1.01 0.80 1.05
Level 3 NE 0.54 0.47 0.76 0.62 0.62 0.74 0.69 0.66 0.66 0.70 0.62 0.55
Level 4 NW 2.40 2.94 3.28 3.83 2.86 3.94 3.03 4.46 2.99 3.53 2.65 3.08
Level 4 SW 2.28 2.61 3.35 3.49 2.77 3.88 3.10 3.63 3.02 3.11 2.62 3.38
Level 4 SE 1.67 1.59 2.13 2.09 1.94 2.33 2.01 2.26 1.74 1.85 1.80 1.93
Level 4 NE 0.94 1.02 1.41 1.71 1.14 1.84 1.36 1.89 1.29 1.86 1.16 1.59
Average 1.01 1.19 1.49 1.65 1.23 1.77 1.37 1.85 1.29 1.48 1.21 1.56

The loss behavior of the training and test sets is shown in Figure 16. A change in
behavior is evident when the model reaches epoch 8 since, from then on, the decrease in the
loss presents less intensity. Due to the small values of the loss in magnitude a logarithmic
y-axis is used. It is evident that the values of the training set are lower than those of the
test set as the epochs increase. Additionally, the observed behavior allows us to obtain a
model while preventing over-fitting.

0 5 10 15 20 25 30 35 40 45 50
Epoch

10-3

10-2

Lo
ss

train
test

210−

310−

Figure 16. Changing of the loss value through the epocs in train and test sets of the GRU (250 Cells) +
Dense model.

4.2. Robustness Study against the Random Sampling in the Sequences in the Training Set

Table 5 shows the average RMSE behavior for train and test sets after performing
five iterations for the GRU (250 Cells) + Dense model. All the parameters remained
constant in every iteration. The slight changes are due to the random sampling in selecting
100 sequences to train. From Table 5 it is evident that the RMSE remains in the same order
of values through the iterations. Therefore, the robustness of the model can be evidenced.
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Table 5. Average RMSE behavior in training and test sets in five different iterations for the GRU
(250 Cells) + Dense model. The number of sequences in batch train was set to 100 in all cases.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Train 1.07 1.07 1.1 1.04 1.1
Test 1.24 1.26 1.26 1.23 1.26

4.3. Study of the Variation of the Number of Sequences in the GRU Model

A next study changing the size of sequences that are part of the batch in the training
is performed to evaluate the RMSE behavior of the GRU (250 Cells) + Dense model. The
variation results of the size of sequences using 10, 50, 100, 150, 200, and 250 random
sequences in the training is depicted in Table 6. The best average RMSE value in the test
set was achieved when using 250 random sequences.

Table 6. Average RMSE behavior in train and test sets changing the number of random sequences for
training the GRU (250 Cells) + Dense model.

Number of Random Sequences for Training

10 50 100 150 200 250

Train 1.08 1.06 1.1 1.05 1.06 1.01
Test 1.26 1.22 1.26 1.3 1.29 1.19

4.4. Moving Origin Four-Fold Cross Validation Strategy in a Time Series Approach

A four-fold moving origin [36] cross-validation strategy in a time series approach was
performed. The moving origin four-fold cross-validation strategy is depicted in Figure 17.
This cross-validation strategy is carried out by changing the percentage of data in the train
and test sets in different iterations. Due to the total number of instances is 40,000 a four-fold
split was selected. As a result, four different folds were evaluated. The size of the test
set in each fold is equal to 8000 data. The results of the average RMSE values obtained
in the train and test sets in each fold are shown in Table 7. It is evident the low RMSE
value of 0.52 in the train set for fold #1. As the iterations are performed and the amount of
data in the train set increases, the average RMSE also increases in the train set. In contrast,
a decreasing average RMSE behavior across the folds is evident in the test set. This is a
consequence of the increased data in the train set, which allows for better modeling of the
furnace behavior.

80000 16,000 24,000 32,000 40,000

1)

2)

3)

4)

TRAIN

TEST

Figure 17. Four-fold moving origin cross validation strategy in the time series approach.
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Table 7. Average RMSE moving origin four-fold cross validation results in the training and test sets
for the GRU (250 Cells) + Dense model.

Fold 1 Fold 2 Fold 3 Fold 4

Train 0.52 0.7 0.95 1.02
Test 4.93 2.31 1.64 1.60

4.5. Sensitiveness against Training/Test Ratio

A study of the sensitiveness against training/test ratios of 90/10, 85/15 and 80/20
was performed on the entire 40,000 data. The results of average RMSE are shown in Table 8.
An average RMSE value remained constant for the train set in all the cases. In contrast, the
behavior of the average RMSE increased in the test set as the size of the test set increased
from 10% to 20%. The best average RMSE of 1.19 for the test set was obtained for the 10%
configuration, this indicates that the more data that belongs to the training set, the better
the model will be able to generalize the behavior of the 16 output thermocouples.

Table 8. Average RMSE sensitiveness analysis of three different training/test ratios 90/10, 85/15 and
80/20.

90/10 85/15 80/20

Train 1.01 1.00 1.02
Test 1.19 1.54 1.60

4.6. Influence of the Variables Used in the Model

To determine the behavior of the model in relation to the input variables, the GRU
model was trained by eliminating one variable at a time. Figure 18 shows the results of
RMSE for this analysis in the training set. A low influence of some of the modifications
is observed, for example, the omission of inputs related to the furnace power. On the
other hand, the variables related to the electrodes arc have a considerable influence on the
decrease of errors in training.

0 1 2 3 4 5
RMSE

Original (49)
No Calcine supply (34)

No SAAE mode state (48)
No electrode power (46)

No electrode arc (46)
No electrode position (46)
No electrode voltage (46)
No electrode current (46)

No total supply (48)
No IR850A current (48)
No IR850B current (48)
No IR850C current (48)

RMSE with input variables, Train Values

Figure 18. Average RMSE of the train set varying the learning variables at the input of the model.

Figure 19 shows the results of the model’s test set. Remarkable changes are observed
in relation to the test results. The elimination of the variables related to the position of
the electrodes (being the variable that decreases the RMSE the most) is the omission that
has the greatest influence on the increase in this error. The complexity of the developed
prediction model can be simplified by reducing the number of inputs, specifically those
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related to the position of the electrodes, without affecting the results in the training and
testing processes. For example, it can be observed that the variables electrode position and
calcine supply are not improving the model performance. However, it can be observed that
current variables are affecting the RMSE when they are removed, hence they are important
to the model.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
RMSE

Original (49)
No Calcine supply (34)

No SAAE mode state (48)
No electrode power (46)

No electrode arc (46)
No electrode position (46)
No electrode voltage (46)
No electrode current (46)

No total supply (48)
No IR850A current (48)
No IR850B current (48)
No IR850C current (48)

RMSE with input variables, Test Values

Figure 19. Average RMSE of the test set varying the learning variables at the input of the model.

5. Conclusions

In this paper, a multivariate time series deep learning model was developed to predict
the temperature behavior in an electric arc furnace. The developed temperature prediction
methodology was tested on a dataset of 416 days of an electric arc furnace operation,
corresponding to 40,000 instances. Sixteen thermocouples radially distributed in the
furnace at four different height levels were selected as output variables. The results yielded
by the GRU (250 Cells) + Dense deep learning model showed an average RMSE of 1.19◦C for
the test set using a training/test ratio of 90/10. This shows the goodness of the prediction
in the SHM system for furnace lining temperature monitoring.

It was found that approximately 28% of the original dataset presented abnormalities,
thus, it was very important to carry out a data preprocessing step including data cleansing,
outlier removal, and removing redundant, null, and unwanted values.

The developed deep learning model allowed us to perform temperature predictions
in the lining of the furnace at 2 h in the future. Consequently, the predicted behavior of the
furnace facilitates decision-making associated with the possible high temperatures of the
furnace hearth due to changes in the operational variables. These predictions contribute
to carrying out correct structural health monitoring and preventive control of the furnace
lining erosion, caused by excess temperature.

This research allowed us to determine which variables are relevant in the prediction
of temperature, confirming the hypothesis about the relationship between each variable
and the furnace lining temperature. This was necessary to determine the input variables of
the multivariate time series deep learning model.

In future work, an attention-based model inspired by an encoder-decoder approach
will be applied to predict the furnace temperature considering relations between variables
in long and short term periods of time. Moreover, a more sophisticated architecture for the
CNN1D, involving several layers of convolution and maxpooling will be proved in order
to identify their capacity to catch more abstract features. Besides, the developed model will
be tested in another electric arc furnace, and their ability to predict its lining temperature
will be compared.
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