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Abstract
Coronavirus Disease 2019 (COVID-19) is characterized with a wide range of clinical presentations  from asymp- 
tomatic to severe disease. In patients with severe disease, the main causes of mortality have been acute respiratory distress 
syndrome, cytokine storm and thrombotic events. Although all factors that may be associated with disease severity are not 
yet clear, older age remains a leading risk factor. While age-related immune changes may be at the bottom of severe course 
of COVID-19, age-related hormonal changes have considerable importance due to their interactions with these immune 
alterations, and also with endothelial dysfunction and comorbid cardiometabolic disorders. This review aims to provide the  
current scientific evidence on the pathogenetic mechanisms underlying the pathway to severe COVID-19, from a collabora-
tive perspective of age-related immune and hormonal changes together, in accordance with the clinical knowledge acquired 
thus far.
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1 Introduction

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2), the cause of Coronavirus Disease 2019 (COVID-19), 
is an enveloped RNA Beta Coronavirus that emerged in Wuhan, 
China, in December of 2019 [1]. To date, more than 130 million 
people were infected and over 2.8 million COVID-19-related 
deaths were recorded by The World Health Organization [2].

SARS-CoV-2 infects humans with its viral S protein bind-
ing to cellular Angiotensin-converting enzyme 2 (ACE2) [3]. 
ACE2 expression has been identified in a variety of human 
tissues [4], which may explain the diversity of clinical pres-
entation. COVID-19 is characterized with a wide range of 
clinical symptoms, from asymptomatic disease to acute res-
piratory distress syndrome (ARDS) and cytokine storm, and 
may result in mortality due to respiratory insufficiency, multi-
organ failure (MOF) or thrombotic events [5]. Overactivation 
of classical pathway by the downregulation of ACE2 along 

with dysregulated and excess activation of the immune sys-
tem resulting in cytokine storm have been identified as the 
main pathways leading to severe COVID-19 [6, 7]. Older 
adults, male gender, and patients with certain comorbidities 
have been under the risk of severe disease [8, 9].

Severe course of COVID-19 in older adults was formerly 
addressed by epidemiological and observational studies [5, 8, 
10–12]. Consequences of biological aging including age-related 
alterations in the immune and endocrine systems, and increas-
ing incidence of chronic diseases leave older adults vulnerable 
to infections such as COVID-19. This review aims to approach 
to the vulnerability of the adult population to severe COVID-19 
with a unifying perspective by addressing age-related hormonal 
and immune alterations together (Fig. 1).

2  Altered immunity in older adults 
and COVID‑19

Biological aging is an inevitable process which causes 
functional decline in affected cell-tissue-organ-system 
chain of the living organism. Together with the cellular 
aging, unfavorable aging-related immune system changes, 
termed as “immunosenescence” seems to be at the bottom 
of various age-related chronic diseases and the vulnerabil-
ity to acute clinical conditions, particularly infections. On 
the other side, this remodeling occurs due to the struggle 
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of the organism to maintain the homeostasis and adapta-
tion to environmental stressors [13]. It is shaped under 
interactions of multiple intrinsic factors including genet-
ics, sex hormones, insulin resistance, and adiposity [14] 
and various acute and chronic extrinsic or intrinsic factors 
might accelerate or decelerate its progression [15]. There-
fore, phenotype and pace of both immunosenescence and 
cellular senescence progression is not uniform and might 
differ between individuals regardless of chronologic age. 
Hence, it would be a rather superficial approach to only 
focus on the statistics from the clinical data observed in 
certain age groups by ignoring the heterogeneity of clini-
cal characteristics of the older patients. We believe that 
this subject should be examined in terms of the aging-
related decrease in function at the level of organ, tissue 
or even cell, which is individualized by the genetic back-
ground, neuroendocrine factors which too are subject to 
alter with aging, and other risk factors for each patient.

2.1  Cellular senescence

Cellular senescence describes a state that cell enters due to 
a current stressful condition and the first identified of these 
stress situations is telomere shortening [16]. It is charac-
terized with permanent cell cycle arrest, and hypersecre-
tion of various proinflammatory mediators to trigger the 
immune system to eradicate this stressor [17]. However, 
the word ’senescence’ here may sound misleading as if 
it refers to diminishing functions of an aging cell near to 
death. Contrarily, senescent cells are actively secreting and 
highly viable. In fact, it is not the cellular senescence itself, 
but the accumulation of chronic senescent cells induced by 
persistent and cumulative damage, leads to the decrease in 
tissue function and their secretome contribute to the mild 
chronic inflammation of aging, referred as ‘inflammaging’ 
[15]. While the molecules produced by senescent cells, 
altogether termed as senescence-associated secretory phe-
notype (SASP), might vary from cell to cell, their common 
feature is that they are pro-inflammatory in nature [14], 

and work as an ‘inflammatory-call’ to immune system in 
case of any stress exposure, including infection. In the 
aging process, SASP creates its self-feeding cycle by trig-
gering senescence in both normal and progenitor cells of 
functioning tissues via paracrine activity [15].

Older age, male sex and multimorbidity are the most 
important risk factors for severe COVID-19 [5]. Even at 
first glance it seems obvious that these are the very same 
factors that increase cellular senescence and immunosenes-
cence. Furthermore, there are some more important clues 
that support this suspicion. Telomere length (TL), particu-
larly that of lymphocytes is known to be a critical marker of 
biological aging. Such that, lymphocytes with shorter TL 
are among the drawbacks of aging immune system which 
significantly contributes vulnerability to certain infections 
due to their decreased reconstitutive capacity. In line with 
that, regardless of age, shorter TL has been found to be 
associated with both severe COVID-19 [18, 19], and its risk 
factors: increasing age, aging-related diseases, and male 
sex [20]. The senescence of epithelial and stromal cellular 
components of the lungs probably facilitates replication of 
SARS-CoV-2 already, as locally increased interleukin (IL)-6 
recruits myeloid-derived suppressor cells and establishes an 
immunosuppressed microenvironment [21, 22]. The dimin-
ished regeneration-competence of senescent type-II alveolar 
cells and T&B lymphocytes with shorter TLs seem to be 
explanatory to severe-COVID-19-related lung tissue damage 
and lymphopenia, respectively [18–20]. Additionally, cer-
tain SASP components like nuclear factor-kappa B (NF-κB) 
downstream cytokines and type-I interferons (IFNs) contrib-
ute cellular senescence by inducing telomere attrition [23] 
which in turn sustains this vicious senescence cycle. On the 
other hand, severe COVID-19 is driven by suppressed IFN-I 
response whose inducibility is already found to be decreased 
in aging to balance its cellular senescence triggering effect 
[24]. In other words, the blunted IFN-I response seems to 
be an adaptive mechanism to keep the pace of the cellular 
senescence under control in expense of an increased vulner-
ability to SARS-CoV-2 infection.

Aside from the important influence of well-known factors 
such as genetics, hormonal changes, and cumulative stress of 
aging, cellular senescence -regardless of the age- could be 
accelerated or even initiated by certain aging-related chronic 
diseases and major stressors including acute diseases like 
viral infections [15]. According to the current evidence, trig-
gering a senescence chain by either directly infecting cells 
or indirectly via paracrine effect of the released proinflam-
matory cytokines seems like an important sword of SARS-
CoV-2 [25].

Cytokine storm is the characteristic feature of the clinical 
deterioration in COVID-19 and it is the uncontrolled produc-
tion of proinflammatory cytokines whose baseline secretion 
is already increased in the context of inflammaging [14]. 

Fig. 1  The interrelation of age-related hormonal and immune altera-
tions in severe COVID-19. Biological aging and interconnected age-
related alterations in the immune and endocrine systems leave older 
adults vulnerable to infections such as COVID-19. COVID-19: Coro-
navirus disease 2019
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Mitochondrial dysfunction which could briefly be described 
as disrupted homeostasis of mitochondria in favor of fusion 
and elongation, and iron dysregulation which further aggra-
vates oxidative stress produced by aging-mitochondria are 
also among the overlapping mechanisms for cellular senes-
cence and severe COVID-19 [26, 27].

2.2  Immunosenescence

Immunosenescence is the term that describes age-related 
malfunctioning of both innate and adaptive immunity and 
dysregulation of their interactions. It is well-known that 
immunosenescence is mainly responsible from increased 
vulnerability to severely progressive acute infections like 
pneumonia or sepsis [28]. Also, we have plenty of knowl-
edge about how each immune cell type is affected in terms of 
function and proportion, however there are still lots of gaps 
to fill for thoroughly understanding immunosenescence and 
the mechanisms that lead to it.

Immunosenescence is characterized by impaired recogni-
tion and antigen presentation of pathogens by innate immu-
nity, reduced ability to generate specific immune responses 
due to polarization of lymphocytes from naïve to memory 
cells despite increased basal pro-inflammatory tone: inflam-
maging [29]. Broadly, it is not simply the loss of function 
of the immune system rather its dysregulated or improper 
response to infectious agents and autoinflammatory/hyper-
inflammatory reactions that is prone to failure in terms of 
clinical outcomes and effectivity of vaccines [28, 30]. Being 
unable to develop an effective specific response, the main 
handicap of immunosenescence seems to be impairment in 
coping with novel pathogens like SARS-CoV-2 [31].

2.2.1  PRRs, IFN‑I, antigen presenting cells

Recognition of pathogen and damage associated molecu-
lar patterns is the initiating step for the immune response 
against SARS-CoV-2. As an RNA virus, SARS-CoV-2 is 
mainly sensed by transmembrane toll-like receptors (TLRs) 
3,7,8 and cytosolic RIG-1-like receptor (RLR). Almost all 
types of pattern recognition receptors (PRRs) were found to 
be lower in antigen presenting cells (APCs) of older adults 
[24, 31] and demonstrated lower cytokine production upon 
stimulation [24, 31, 32] (Fig. 2). This impaired effectivity of 
PRRs blunts the downstream steps to produce type-I IFNs 
and NF-κB centered cytokine response. Type-I IFNs (IFN-α 
and -β) are the molecules of utmost importance for antiviral 
response in SARS-CoV-2 [33]. Type-I IFNs generate expres-
sion of various IFN-inducible genes which provides the phe-
notype change of the target cell in a way that prevents viral 
replication and metabolism, besides trigger T-cell activation 
for the virus-specific immune response [34]. Based on the 
knowledge that earlier SARS-CoV infection, the causative 

agent of SARS, induces downregulation of Type-I IFNs 
that resulted in an impaired innate immune response [35, 
36], a similar strategy was also described for SARS-CoV-2 
[33, 37] (Fig. 2). Additionally, Hadjadj reported that unlike 
mild and moderate groups, in severe and critical COVID-
19 patients, global IFN-I response was significantly down-
regulated, which seemed to be climacteric as it preceded 
clinical deterioration to respiratory failure [38]. Antiviral 
IFN-α response was already shown to be delayed [32] and 
the dynamism of the induced IFN responses is impaired 
with aging independent from PRR signaling [24, 39]. Cor-
respondingly, the course of IFN-α response was low or even 
absent in critical COVID-19 patients, high but short-lived 
in severe patients, whereas sustainably powerful in mild and 
moderate cases [38]. An insufficient initial IFN-I response 
is critical for later course of infection, as it results in uncon-
trolled viral replication. The higher viral loads in the plasma 
samples of severe and critically ill COVID-19 patients [38] 
and in oropharyngeal saliva samples of older patients [40] 
are likely to reflect such a lack of control on viral replica-
tion. Likewise, higher titers of viral shedding which were 
significantly more common in males and older patients were 
related to more rapid course of SARS and higher mortality 
rates [41]. These results also might be explained with the 
failure of early innate immune response by IFN-I which is 
brought by immunosenescence.

Dendritic cells (DCs) are the cellular source of PRRs 
and type-I IFNs. Plasmacytoid DCs (pDC) are particularly 
essential in development of primary nonspecific antiviral 
responses via viral recognition, and restriction of viral rep-
lication by inducing cytotoxic and T-helper (Th) cells with 
both antigen presentation and IFN-gamma secretion [42]. 
Number of pDCs were found to be selectively decreased in 
senescence process [43] (Fig. 2).

2.2.2  Macrophages and monocytes

Macrophages with their balancing and orchestrating proper-
ties are the central cells of the immune system. Their sub-
stantial functional alteration with aging which is termed as 
“macrophaging” has a hand in inflammaging and is largely 
responsible for impaired immune responses [44]. Mac-
rophaging is characterized with weakened antigen presen-
tation and impaired migration, phagocytosis, and production 
of certain chemotactic factors [45]. Macrophages bear dif-
ferent phenotypic features and functional properties that are 
shaped under the effect of multiple signals received from the 
microenvironment in which they are located [46]. The oxida-
tive burden of aging and the management of its cumulative 
stress mainly via stress hormones and other neuroendocrine 
factors, appear to be the pivotal determinants of the changes 
in tissue architecture and signaling pathways [14, 47].
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Another proposed theory is that macrophages, particularly  
alveolar macrophages being an expressor of ACE2 and trans-
membrane protease/serine subfamily 2 (TMPRSS2), may act 
as a reservoir facilitating the invasion of SARS-CoV-2 in the 
lungs, and its migration to other tissues, although it is not 
clear whether they allow viral replication. The increase in 
the number of alveolar macrophages and their dysfunctional 

alterations in aging-related diseases which have a chronic 
inflammatory pathogenesis such as diabetes and heart failure,  
and the more severe course of COVID-19 in these patient 
groups might be clues supporting this theory [48].

Monocytes are the circulating pool of tissue-resident 
APCs and are among the main contributors to the systemic 
inflammatory milieu determined by serum cytokine levels. 

Fig. 2  Immunosenescence mechanisms paving the way for severe 
COVID-19. Immunosenescence is the gradual unfavorable alterations 
in innate and adaptive immune mechanisms with aging. Diminished 
pathogen recognition, attenuated virus-induced IFN-I respose and 
dysfunctional macrophages/monocytes are the drawbacks of innate 
immunity that fail to provide the first line of defense to control viral 
replication. Impaired antigen presentation and costimulation fur-
ther complicate generation of effective cellular and humoral immune 

responses by aging T&B cell populations. Dashed lines indicate the 
probable contributions of SARS-CoV-2 infection to these age-related 
immunological alterations. CD: cluster of differentiation; DC: den-
dritic cell; DN: double negative; GM-CSF: granulocyte–macrophage 
colony-stimulating factor; HLA-DR: human leukocyte antigen – DR 
isotype; IFN-I: type-I interferon; PD-1: Programmed Death 1; Th: 
helper T; TIM-3: T cell immunoglobulin mucin domain-3; TLR: toll-
like receptor; Treg: regulatory T
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Older individuals had lower expression of co-stimulatory 
CD40 molecule on their monocytes which impairs their 
trigger mission to proceed T- and B-cell responses [32]. 
Monocytes, grouped as classical  (CD14++CD16−), inter-
mediate or transitional  (CD14++CD16+), and non-classical 
 (CD14+CD16++) subtypes, have different certain properties 
in terms of their maturity and immune response behaviors 
[49]. The percentage of non-classical (inflammatory) mono-
cytes increase with aging [50] and they are known to be the 
group of monocytes that demonstrate cellular senescence-
like properties [51]. The proportion of intermediate and non-
classical monocytes was found to be significantly higher in 
COVID-19 patients and their higher percentages were cor-
related with disease severity [38, 52]. Whereas the study by 
Schulte-Schrepping et al. underlined a particular depletion of 
non-classical monocytes with an upregulated expression of 
tissue infiltration and retention markers (CD69 and CD226) 
in severe COVID-19 [53]. A significant decrease in transi-
tional and non-classical monocytes in peripheral blood [54] 
together with the significant abundance of these monocyte 
subsets in bronchoalveolar samples [54, 55] of COVID-19 
cases with increasing severity was also reported. Taken 
together, these studies seem to tell different parts of the same 
story, most likely due to the differences in the timing of sam-
ple collection of the studies. Although it would be possible 
to understand the exact situation only with further studies.

The peculiar immune-dysregulation pattern in most of 
the severe COVID-19 patients was distinctive with hyper-
secretion of IL-6 by monocytes despite diminished antigen 
presentation [56]. The prevailing conclusion from many 
other studies for the cytokine storm of COVID-19 is that 
the higher the IL-6 secretion by mainly monocytes, the more 
severe the clinical picture [52, 54, 57, 58]. High IL-6 levels 
associated with lowered expression of HLA-DR molecule by 
monocytes which was shown to be reversed by IL-6 block-
age [56]. This situation constitutes an important weak spot 
of the immune system in coping with SARS-CoV-2 due to 
its disrupting of the development of an effective adaptive 
immune response and its negative correlation with lympho-
penia (Fig. 2).

The fact that the alterations in monocytes with aging 
demonstrate sex-dependent diversity to the detriment of 
males [49, 59] not only explains the higher predisposition of 
aged men to diseases with chronic inflammatory pathogen-
esis such as cardiovascular disease but also overlaps with the 
higher COVID-19-related mortality risk of male sex [60].

Overall, being pivotal elements of innate immunity, 
monocytes and macrophages are of special importance for 
intricate interrelations of cellular senescence-inflammaging-  
and immunosenescence [49, 51, 57] and therefore the emer-
gence of cytokine storm which is the characteristic patho-
physiology in severe COVID-19 [57, 61]. Since they con-
stitute both the very first line of defense in innate immunity 

and the regulatory cells for the adaptive immunity to gener-
ate specific immune response, monocytes and macrophages 
appear to be decisive for the severity of the clinical picture 
[62]. They play the leading role in both mechanisms that 
lead COVID-19 patients to respiratory failure: either mac-
rophage activation syndrome [56, 63] or the unique immune 
dysregulation pattern characterized by monocyte hyperac-
tivation and increased IL-6 secretion despite defective anti-
gen presentation [56]. In addition, monocytes, through their 
interactions with platelets, play a critical role in the hyper-
coagulability and associated complications seen in severe 
disease [64].

2.2.3  Adaptive immunity (T‑ and B‑cells)

Adaptive immune system which has the aptitude to develop 
superbly specific immune responses through its cell-mediated 
and humoral arms in cooperation with innate immunity weak-
ens with aging. As expected, age-related deterioration in antigen  
presentation and preceding steps also blunts T-cell activation 
and expansion [31]. Increase in memory cells and decrease in 
naïve cells are the fundamental alterations of T lymphocytes in  
the course of immunosenescence [65]. Age-related thymic invo- 
lution and functional impairment of its remaining reserve do 
not merely result in decreased naïve T-cell production, but also 
lower inducible regulatory T  (Treg) cells and anti-inflammatory 
cytokine secretion [66] (Fig. 2). As thymus size and function 
are controlled by multiple factors like sex hormones, stress fac-
tors, metabolic hormones and adiposity, these changes might 
appear at varying rates between individuals [66] and contrib-
ute to inflammaging, impair effective immune responses to 
novel antigens and vaccines in older adults whereas memory 
responses are preserved [30]. Besides, costimulatory mol-
ecule CD28 expression decreases and telomere shortening is 
observed in senescent T-cells [67]. CD28 loss is characterized 
by inability of senescent T-cells to proliferate due to decreased 
telomerase activity, and nonspecific cytotoxicity in a man-
ner like Natural Killer (NK) cells via recognition of NK-Cell 
receptors [68]. Therefore, senescent T lymphocyte repertoire 
is already disadvantageous in dealing with SARS-CoV-2 [25]. 
On top of that, in case of severe COVID-19 characterized by 
uncontrolled inflammatory cytokine release and lymphocy-
topenia [38], granulocyte–macrophage colony-stimulating 
factor-overexpressing pathogenic  CD4+ Th1 cells, activated 
cytotoxic  CD8+ T-cells and  CD28− NK-like T-cells were shown 
to have significantly increased proportion and so contributed to 
inflammatory damage by migration to lungs and other tissues 
and triggering further cytokine secretion [52, 54, 69]. T-cell 
exhaustion which means reduced functionality is another indi-
cator of immunosenescence [25] and T-cell exhaustion markers 
PD-1 and TIM3 are expressed in higher levels with increasing 
COVID-19 severity [52, 70] (Fig. 2).
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Vitamin D insufficiency is known to be associated with 
increased susceptibility to upper respiratory infections and 
several COVID-19 risk factors [71–73]. Age-related hypovita-
minosis D due to both its decreased production in the aging-skin 
and diminished bioavailability has negative effects on immu-
nomodulation like dysregulation of T cell-driven inflammation 
via  Treg cells [71].

In addition to disturbance of interactions with T-cells and 
innate immunity, B-cells are also altered during immunose-
nescence in terms of their subtype proportions and functions:  
Naïve B-cells decrease in number, their class-switching 
and somatic hypermutation functions are impaired, and 
age-associated B-cells (ABCs) which constitute an atypical 
subset of memory B-cells accumulate [25, 74]. Therefore, 
specific antibody production in response to first encounter 
with a new pathogen or vaccine fails and clonally expanded 
B-cells enhance the chronic inflammation of aging [74, 75]. 
Moreover, obesity-associated chronic inflammation, which 
imitates inflammaging, is an important risk factor for accel-
erated B-cell aging [76]. In the course of severe COVID-
19, number of B-cells and plasmablasts was found to be 
increased, however it was not coupled with an increased 
immunoglobulin production [38]. Older COVID-19 patients 
demonstrated augmentation of age-related changes in B-cell 
subtypes: decreased naïve B-cells and increased ABCs [25] 
(Fig. 2). Novel data about sex-specific changes in immune 
aging revealed that B-cell specific genes were inactivated in 
older males whereas activated in females [59]. This finding 
is noteworthy as it overlaps with the knowledge of the more 
severe disease course and increased mortality rate of males 
in COVID-19 [60].

3  Hormonal changes in the elderly 
and COVID‑19 and their relevance 
with immunological alterations

3.1  Renin–angiotensin–aldosterone system

ACE2 is a membrane-bound and secreted carboxypeptidase 
capable of cleaving Angiotensin (Ang)-I into Ang-(1–9) [77], 
Ang-II to Ang-(1–7) [78], and degrading des-Arg-bradykinin 
[77]. ACE2 is expressed in a wide variety of tissues, including 
nasopharynx, lungs, gastrointestinal system, adipose tissue, 
heart and vessels, eyes, thyroid gland, pancreas, male and 
female reproductive system, kidneys, and skin [4]. Vasodi-
latory, anti-inflammatory and anti-fibrotic effects of ACE2 
through Ang-(1–7)/Mas receptor axis of renin–angiotensin– 
aldosterone system (RAAS) have led investigators to consider 
ACE2 a potential therapeutic target for cardiovascular dis-
eases [79]. ACE2 has become a hot topic for research once 
again in 2003 and 2019, when it was realized that SARS-CoV 
and SARS-CoV-2 used ACE2 to infect human cells [3].

After binding of the viral spike (S) protein to cellular 
ACE2 receptor, SARS-CoV-2 needs to use TMPRSS2, the 
serine protease of the host, for a process called ‘S priming’. 
Together, ACE2 and TMPRSS2 are the main proteins for the 
entry of SARS-CoV-2 into the target cells [3]. The interac-
tion between viral S protein and ACE2 translate into a cross-
talk between viral infection and RAAS via the downregula-
tion of ACE2. As a result, SARS CoV-2 infection causes 
a shift in the RAAS from ACE2/Ang-(1–7)/Mas receptor 
axis to ACE/Ang-II/Angiotensin Receptor (AT)-1 axis with 
vasoconstrictor, pro-inflammatory and pro-fibrotic effects. 
These changes are highly important in the pathogenesis of 
endothelial injury and ARDS in COVID-19 [7].

SARS-CoV-2 may also directly infect endothelial cells 
through endothelial ACE2, as demonstrated by postmor-
tem histopathological examinations in a group of critically 
ill patients [80]. Endotheliitis-related endothelial damage, 
upregulation of bradykinin system due to reduced degrada-
tion by ACE2, and Ang-II-induced neutrophil accumulation 
characterized with increased secretion of pro-inflammatory 
cytokines would lead to vascular leakage, alveolar edema 
and severe inflammation in the lungs, and may progress to 
ARDS and cytokine storm [7, 81]. Disruption of endothelial 
integrity may activate the coagulation cascade and result 
in thrombotic events. [81]. Older age [82] and conditions 
like metabolic syndrome (MetS), hypertension, obesity and 
diabetes are characterized with pre-existent endothelial dys-
function, and may be the reason for rapid progression to 
severe COVID-19 [81, 83].

Molecular mechanisms of aging such as cumulative 
oxidative stress and inflammaging also are involved in the 
mechanisms underlying age-related endothelial dysfunc-
tion [84]. Ang-II contributes to endothelial dysfunction by 
increasing the production of reactive oxygen species that 
leads to decreased synthesis of endothelial nitric oxide, 
which typically has vasoprotective, anti-inflammatory and 
anti-thrombotic effects [85]. COVID-19 may accelerate and/
or deteriorate pre-existing endothelial dysfunction in older 
patients via Ang-II-associated mechanisms. Together with 
microvascular endothelial dysfunction, age-related impair-
ment in angiogenesis is associated with disrupted adaptation 
to tissue hypoxia and decreased ability to recover after tis-
sue damage [82], both of which may facilitate MOF process 
in severe COVID-19 (Fig. 3).

It was speculated that either high or low ACE2 expres-
sion might be related to COVID-19 disease susceptibility 
and/or severity. Despite the lack of evidence, animal models 
revealed that lower ACE2 expression might be involved in 
lung damage [86, 87]. The higher rates of severe COVID-19 
in older population and patients with certain comorbidities 
underpin this hypothesis. In support of this assumption, age-
related reduction was observed in ACE2 expression in lungs 
of mice, more significantly in males compared to females 
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[88]. A similar trend was discovered in human tissues as 
well [89]. Another speculation was that single nucleotide 
polymorphisms of ACE2 or TMPRSS2 may be linked to 
COVID-19 severity, possibly in a manner to the detriment 
of men [90]. However, to date, none were identified [91].

In conclusion, the interaction between viral S protein and 
the RAAS, and subsequent cascade of events represent the 
main pathological mechanism in COVID-19. Older patients 
appear to be more vulnerable to severe disease due to already 
existing endothelial dysfunction, impaired angiogenesis and 
possibly low expression of ACE2. At the time of prepar-
ing this review, there were ongoing clinical trials aiming to 
investigate the effect of kinin blockage (NCT04549922) and 
recombinant ACE2 receptors in COVID-19 (NCT04375046, 
NCT04382950, NCT04672395, NCT04287686).

3.2  Sex hormones, aging and COVID‑19

Men and women have documented clinical disparities in 
many viral respiratory infections, including Influenza A 
Virus [92], SARS-CoV [93] Middle East Respiratory Syn-
drome Coronavirus [94] and SARS-CoV-2 [8, 95]. Higher 

case-fatality rates were reported for male patients world-
wide during COVID-19 pandemic, despite comparable 
test positivity among male and female subjects [96, 97], or 
even higher positivity in younger women in some reports 
[98, 99]. Male predisposition persists but tends to decline 
in older ages, yet senescence is associated with mortality 
in both sexes [100]. While higher rates of smoking [97], 
greater number of co-morbid diseases [73, 101], and vari-
ous social factors including the compliance to protective 
measures [102] may have some influence on susceptibility 
to severe disease in men; the impact of sex hormones on 
immune response against COVID-19 infection has become 
a focus area.

Sex steroids regulate immune responses via interacting 
with their receptors expressed by immune cells. Overall, 
androgens and progesterone have anti-inflammatory effects 
whereas estrogen has both anti- and pro-inflammatory effects 
in high and low concentrations, respectively [103, 104].

Innate immunity is stronger in women than men in gen-
eral. By stimulating numerous pro-inflammatory cytokines 
including IFN-I, IL-6 and Tumor Necrosis Factor (TNF)-α, 
and by activating monocytes, macrophages and NK cells, 

Fig. 3  Age-related endocrine and immunologic factors leading to 
severe COVID-19. Unfavorable aging-related changes in the immune 
system, age-related hormonal alterations, increased number of comor-
bidities along with visceral adiposity and related disorders conspire 
to vulnerability of older adults to severe COVID-19. In addition, 
older age (cumulative oxidative stress and inflammaging) and certain 
comorbidities (e.g. diabetes and cardiovascular diseases) already char-

acterized with endothelial dysfunction accompanied by age-related 
impairment in angiogenesis are the other links of this chain of events 
leading to severe COVID-19. COVID-19: Coronavirus disease 2019; 
ACE2: Angiotensin converting enzyme 2; Ang-II: Angiotensin-II; 
AT-1: Angiotensin receptor-1; RAAS: Renin–angiotensin–aldosterone 
system; GH: Growth hormone; DHEA: Dehydroepiandrosterone
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estrogen in low concentrations enhances innate immune 
responses and also increases the differentiation of DCs for 
better antigen presentation to naïve T-cells [103]. Andro-
gens, on the other hand, have almost the opposite effects 
on innate immunity [104]. While a more active innate 
immune system might indicate a female advantage over ini-
tial immune responses against pathogens, if dysregulated, 
consecutive hyperactivation of T-cells and excessive release 
of cytokines can ultimately invoke cytokine storm. Conform-
ably, in deteriorating female COVID-19 patients, levels of 
innate immune cytokines were significantly increased [105]. 
Yet, in older COVID-19 patients, IL-6 concentrations were 
higher in males compared to females [106, 107], suggest-
ing damaged pulmonary and/or endothelial cells may be the 
main sources of certain cytokines during severe COVID-19 
[38].

Lymphopenia, a typical sign in viral infections, tends 
to be more severe and long-lasting in COVID-19 [108]. 
Although the mechanism has not been fully determined, 
lymphopenia is an indicator of poor prognosis over the 
course of COVID-19 [11, 107]. Male and older patients 
have more severe COVID-19-associated lymphopenia [107], 
which may be, at least in part, due to above-mentioned cel-
lular senescence mechanisms, including TL disadvantage of  
male sex and older age [20]. While postmenopausal women 
have lower counts of B and  CD4+ T lymphocytes compared 
to pre-menopausal women in general [109], Takahashi T,  
et al. reported still greater T-cell response in older females 
than male COVID-19 subjects, characterized with a  
higher number of activated and terminally differentiated 
 CD8+ T-cells in females. The investigators reported that 
compared to women, the relation of aging with impaired 
immune responses was more pronounced in men infected 
with SARS-CoV-2 [105].

Estrogen increases the number, activation, maturation, 
and survival of antibody-producing peripheral B-cells, char-
acterized by higher immunoglobulin and antibody responses 
to pathogens and vaccines [103, 110, 111]. Although aging 
is associated with diminished regeneration and repertoire 
diversity of B-cells resulting in decreased antibody produc-
tion in both sexes [75, 112], higher antibody titers were still 
observed in older women after seasonal Influenza vaccina-
tion compared to older men [113]. In accordance, an earlier 
increase and higher levels of IgG antibodies were detected 
in female subjects compared to men having severe COVID-
19 [114]. Hopefully, whether the COVID-19 vaccine will 
induce different antibody titers in men and women in accord-
ance with age will be reported in the future.

In both sexes, sex hormone levels decrease with age, quite 
rapidly in females and steadily in males. In vivo studies have 
shown increased levels of IL-6 and TNF-α in the postmen-
opausal period [115, 116], and a number of studies have 
reported decreasing IL-6 levels with short-term hormone 

replacement therapy (HRT) [117, 118]. Regarding COVID-
19, a large retrospective study has reported increasing fatal-
ity rates among women above the age 60 despite decreasing 
prevalence relative to younger women [99]. Of note, another 
retrospective study has disclosed a substantial reduction in 
the fatality risk (6.6% to 2.3%) in peri- and postmenopau-
sal women on HRT compared to non-users [119]. However, 
neither of these studies have evaluated other confounding 
factors, comorbidities or cytokine levels. A cross-sectional 
analysis comparing pre- and post-menopausal patients under 
60 years of age indicated that higher levels of estradiol were 
associated with lower levels of pro-inflammatory cytokines 
and better outcomes [120]. While the effects of estrogen 
treatment on COVID-19 are being studied in ongoing clini-
cal trials, here appears a controversy regarding the above-
mentioned favorable effects of low estradiol concentrations 
on immune responses. Moreover, given the increased risk of 
coagulopathy in COVID-19 [121], starting HRT in patients 
infected with SARS-CoV-2 may be risky. Even so, Ital-
ian Menopause Society recommended to continue HRT in 
women with mild COVID-19, but to consider switching to 
transdermal route [122].

Serum total and free testosterone levels decline continu-
ously in men with aging. Up to 50% of men over the age 
of 80 would have low concentrations of serum testosterone 
[123]. Although male gender appears to be an independent 
risk factor for COVID-19 mortality irrespective of comor-
bidities in any decade of life [12], it remains controversial 
whether the suppressive effects of androgens on immune 
responses can play a role on disease severity. Some reports 
have indicated a worse course of disease in male patients 
with higher levels of testosterone and better outcomes in 
male patients using androgen deprivation therapies [124, 
125]. However, these data do not explain why older males 
having supposedly lower androgen levels have poorer prog-
nosis than younger men [126]. A more credible perspective 
may be that age-related hypogonadism in men is associated 
with MetS and related disorders [127], which are common 
comorbidities in patients with severe COVID-19 (Fig. 3). In 
line with this assumption, there are reports on the association 
between low testosterone concentrations and poor COVID-
19 outcomes in men [128, 129]. These studies, however, 
included a limited number of patients and did not adjust 
their results according to either the age or body mass index 
(BMI). In fact, hypogonadism may not be the reason but the 
consequence of the severe inflammatory condition [130]. In 
general population of hypogonadal men with MetS, stud-
ies were contradictory regarding the effect of testosterone 
replacement on pro-inflammatory cytokine levels [131–133]. 
To date, no studies are investigating the effect of androgen 
replacement therapies in male COVID-19 patients.

In conclusion, given the controversies over potential 
beneficial immunogenic effects of both low and high sex 
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steroid concentrations and the lack of prospective rand-
omized controlled trials, it is difficult to relate the unfa-
vorable COVID-19 outcomes in male patients only to 
the effects of sex steroids. However, sex hormones may 
still be involved in some of the certain immunologi-
cal disparities among men and women. Nevertheless, as 
this review is being written, estrogen (NCT04539626, 
NCT04359329), progesterone (NCT04365127) and anti-
androgen (NCT04446429, NCT04509999, NCT04397718, 
NCT04475601, NCT04374279, NCT04652765) agents 
are being investigated in COVID-19 clinical trials. As we 
continue to wait for the results of these ongoing trials, one 
pre-print study revealed no in vitro anti-viral activity with 
interventions causing an increase or decrease in sex steroid 
hormones [134].

3.3  Anabolic hormones, sarcopenic obesity, aging 
and COVID‑19

Age-related constant decline in anabolic hormones plays 
a role in the development of sarcopenia in older adults. 
Aging is associated with ‘a progressive increase in the ratio 
between fat and lean body mass’, and occurrence of visceral 
and ectopic fat accumulation, which may lead to sarcopenic 
obesity [135]. Since BMI fails to determine sarcopenic obe-
sity in the elderly, it could be overlooked without anthro-
pometric measurements [136]. Age-related decline in sex 
steroids, growth hormone (GH) and vitamin D contribute to 
the changes in body composition, along with reduced sensi-
tivity to thyroid hormones and leptin [72, 135]. Changes in 
body composition with advancing age are similar to those 
in GH deficiency [137], menopause [138], and late-onset 
hypogonadism in males [139]. Although no studies have yet 
evaluated the effects of either sarcopenia or sarcopenic obe-
sity on COVID-19 outcomes, it was suggested to consider 
both [140, 141] as risk factors for severe disease (Fig. 4).

Sarcopenia is defined as a ‘progressive and generalized 
skeletal muscle disorder that is associated with increased 
likelihood of adverse outcomes including falls, fractures, 
physical disability and mortality’, according to European 
Working Group on Sarcopenia in Older People [142]. Esti-
mated prevalence of sarcopenia and sarcopenic obesity 
increases with age and ranges from 2.75% to 20%, depending 
on the criteria used. Studies have reported either increased, 
decreased or similar frequency between men and women 
[136, 143]. Sarcopenia may be associated with a decrease 
in respiratory muscle strength in the elderly [144], and may 
cause an increase in the risk of respiratory infections [145], 
prolonged stay in the intensive care unit (ICU), difficulty 
in weaning from invasive mechanical ventilation (IMV) 
[146], and both in-hospital [147] and long-term mortality 
[148]. Even if not present on admission, elderly patients may 
become sarcopenic during hospital stay [149, 150]. Acute 

sarcopenia, lasting less than 6 months usually because of 
an acute illness [142], may develop in days spent in bed 
rest [149, 151]. It was suggested that COVID-19 might also 
result in sarcopenia in short- [152] and long-term [153], and 
might contribute to poor disease outcomes [154].

Restrictions and ‘stay home’ measures starting with the 
declaration of COVID-19 pandemic have led to increased 
physical inactivity (Figs. 3, 4). Online surveys revealed 
that all kinds of physical activity declined whereas seden-
tary time increased along with overeating and unhealthy 
eating behavior [155, 156]. In addition, lower vitamin D 
synthesis in the elderly, together with decreased expo-
sure to sunlight due to home confinement, would result in 
hypovitaminosis D, which is linked to lower muscle mass 
and sarcopenia [72]. Sleep duration and quality were also 
depleted, in a negatively correlated manner with weight 
gain and age [156]. Physical inactivity effects the elderly 
in a more rapid and irrecoverable manner than the young 
in regards of worsening metabolic parameters, increas-
ing inflammatory cytokines, and a reduction in muscle 
protein synthesis [157, 158]. With stress creating a pro-
inflammatory environment [159] and the need to over-
come the stress by translating it into an unhealthy eating 
behavior [160], and given the fact that already overweight 
adults gaining much more weight in the time of COVID-
19 restrictions [156], there appears the risk of sarcopenic 
obesity and interconnected metabolic disorders. Contra-
rily, older adults may also be at the risk of undernutrition-
associated sarcopenia due to lower income/unemployment 
and/or limited access to food markets. In either way, if 
infected with SARS-CoV-2, increased levels of inflam-
matory cytokines, especially TNF-α, would contribute to 
catabolism in skeletal muscle [161], possibly including 
diaphragm muscle fibers and thus may compound respira-
tory muscle weakness in the elderly [162].

Longer length of hospitalization, and higher rates of 
ICU admission and IMV are expected in older adults with 
COVID-19 [10]. Notably, it was suggested that acute sar-
copenia may aggravate more rapidly if chronic sarcopenia 
is already existent in older adults [163]. Older men may be 
at a disadvantage compared to women, since hospitaliza-
tion was related to greater loss of lean mass rather than 
fat mass in only male subjects [164], and critically ill men 
were more frequently miscategorized as non-sarcopenic 
according to subjective indexes [165]. There is no data 
upon neither the prevalence of sarcopenia or sarcopenic 
obesity in older patients with COVID-19, or the effect of 
those on disease outcomes; however, it seems justifiable 
to assume a comparable prevalence and consequential 
increased mortality as reported in earlier studies [146, 
165].

Age-related decline in testosterone and sarcopenic obesity 
are interrelated. Low testosterone levels are associated with 
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decreased fat-free mass, reduced muscle strength, increased 
visceral adiposity, insulin resistance, MetS [166, 167], car-
diovascular- and all-cause mortality [168]. Furthermore, the 
curve of age-related decline in serum testosterone becomes 
steeper in men with abdominal obesity and comorbid dis-
eases [169]. Unlike women, aging men may avoid age-
related hypogonadism with lifestyle modifications, since it 
is possible to restore testosterone levels by losing weight 
[169, 170]. To date, contradictory reports have been pub-
lished upon the relation between serum testosterone levels 
and prognosis of COVID-19 [128, 171].

Visceral and truncal fat significantly increase in women 
after menopause, while leg fat percentage decreases [138]. The 
changes in the body composition along with inflammation are 
related to MetS [172]. Unlike men, higher testosterone levels in 
postmenopausal period have been related to an increase in waist 
circumference, but not in visceral fat area [173]. Controversy 
remains upon the relationship between postmenopausal hyper-
androgenism and MetS [174, 175]. The main adrenal sex ster-
oid dehydroepiandrosterone (DHEA) reduces significantly with 
aging in both sex and negatively correlates with muscle strength 
[176, 177]. However, DHEA replacement has not improved 
body composition, insulin sensitivity or physical performance 
in a general population of elderly men and women [178].

Age-related decline in GH and accompanying frailty is 
referred to ‘somatopause’. While age-related decline in GH 
levels has been attributed to decreased release of GH releas-
ing hormone and increased somatostatin [179], multiple other 
factors regulate GH secretion including abdominal obesity, 
gender, sex steroids, nutritional status, sleep, stress and exer-
cise [180]. Somatopause is associated with decreased lean 
body mass, increased body fat mass, and reduced exercise 
capacity, leading to frailty, sarcopenia and abdominal obesity 
[180]. Home confinement measures during COVID-19 may 
have intensified the effects of GH deficiency in the elderly.

Somatopause is involved in immunosenescence, since GH 
axis regulates immune responses [181]. The main immune 
role of GH is to induce thymic output. Thus, somatopause is 
associated with thymic involution and decreased production 
of naïve T-cells. GH also enhances the maturation of anti-
gen presenting DCs and differentiation of B-cells, as well as 
TNF-α production by monocyte/macrophages [181]. Ghre-
lin, which is a stimulator of both GH release and thymogen-
esis, also reduces with advancing age. Decreased appetite 
and energy expenditure in older adults, in part, are attributed 
to decreased ghrelin levels [182]. Thus, anorexic effects of 
COVID-19 might be exaggerated in the elderly with reduced 
ghrelin levels.

Fig. 4  The possible causes 
and significance of sarcopenia 
and visceral obesity in poor 
COVID-19 outcomes. Increased 
physical inactivity and stress 
due to home confinement 
strategies during COVID-19 
pandemic may have affected 
older adults in a more rapid and 
irrecoverable manner than the 
young. Along with comorbid 
diseases, stress-related overeat-
ing and age-related hormonal 
alterations may contribute to 
the emergence or worsening 
of visceral fat accumulation, 
sarcopenia/sarcopenic obesity, 
and related cardiometabolic 
disorders. In case of COVID-
19, sarcopenia would further 
aggravate and might be related 
to severe COVID-19 and even 
death. COVID-19: Coronavirus 
disease 2019
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Cortisol secretion increases gradually with advancing age, 
mainly after the age of 60 in both sexes [183]. Studies inves-
tigating the effect of endogenous corticosteroids on muscle 
mass and strength in older adults are controversial [176, 
177, 184]. TNF-α induces the activity of 11β-hydroxysteroid 
dehydrogenase-1 (11βHSD1) [185]. Higher expression of 
11βHSD1 in skeletal muscle was associated with reduced 
muscle strength in older adults [186], insulin resistance, and 
visceral fat accumulation [187]; thus with metabolic distur-
bances and possibly sarcopenic obesity.

Recently, several publications have reported an asso-
ciation between COVID-19 severity and visceral adiposity 
[188–193], which might have been the very missing link 
connecting advanced age, age-related hormonal changes, 
and cardiometabolic disorders together as risk factors for 
COVID-19 severity. Because the shared finding in all these 
conditions is redistribution of fat to intraabdominal vis- 
ceral area. Although women have higher percentage of total 
body fat throughout the lifespan, adipose tissue preferen-
tially accumulates superficially at the subcutaneous intra-
abdominal and gluteo-femoral areas, not at the visceral area. 
Men generally have greater total visceral adipose tissue area 
compared to women [194, 195]. After menopause, redistri- 
bution of body fat from subcutaneous to intra-abdominal 
visceral area occurs [196]. Visceral fat accumulation is 
associated with a characteristic pro-inflammatory and pro-
coagulant state [197, 198]; which may contribute to disease 
severity in COVID-19 [9, 199] (Fig. 3). In addition, the 
expression of ACE2 in the adipose tissue may be important 
regarding COVID-19 [4]. High fat diet-induced obesity in 
mice resulted in upregulation of ACE2 expression in the 
lung epithelium. In vitro experiments in human lung epi-
thelium displayed higher ACE2 expression in obese subjects 
[200], which might increase the susceptibility to SARS-
CoV-2 infection [201], as it did in SARS-CoV [202].

Visceral fat area has been suggested as the best predic-
tor of ICU admission in COVID-19 [193]. A meta-analysis 
(n = 560) revealed that patients requiring ICU or IMV had 
significantly higher visceral fat area while subcutaneous fat 
area was not associated with severe disease [203]. Of note, 
mean age of the subjects was 60–65 years in most of the 
studies [188–190]. None evaluated the patients for sarcope-
nia, yet one reported that patients with increased intramus-
cular fat deposition were more likely to have critical illness 
[191]. Two studies reported that the relationship between 
visceral fat area and COVID-19 severity was preserved after 
adjusting the data for age and gender [189–191].

Overall, late-onset hypogonadism/menopause, somatopause 
and cortisol hypersecretion contribute to age-related changes 
in body composition by mainly generating central obesity, loss 
of skeletal muscle mass and function; which indicate sarco-
penia or sarcopenic obesity. Physical inactivity, overeating or 
undernutrition, stress and sleep deprivation during COVID-19 

restrictions may aggravate sarcopenia. Moreover, older 
patients infected with SARS-CoV-2 may rapidly develop acute 
sarcopenia or worsening of chronic sarcopenia, either might 
result in elongated hospital stay, requirement for ICU and/or 
IMV, and mortality. Besides, MetS, diabetes, cardiovascular 
diseases, pro-inflammatory and procoagulant state in relation 
to visceral obesity may also negatively affect disease outcomes 
(Fig. 4). Recently, publications have implicated visceral obe-
sity as a strong indicator of severe COVID-19. The possible 
significance of visceral adiposity in COVID-19 certainly needs 
more attention, that we believe would attract in future studies.

4  Conclusions

COVID-19 has showed up virtually as an “age-related infec-
tion” since its severe progression was encountered predomi-
nantly in older patients. Senescent cell burden and immunose-
nescence which are furthered in male sex and with presence of 
aging-related comorbidities, increase susceptibility to SARS-
CoV-2 and facilitate its replication and severe progression. 
From innate immune responses and antigen presentation to 
generation of specific cellular and humoral defenses, almost 
every step that is dysregulated via immunosenescence seems to 
be further degenerated with COVID-19 and results in poor out-
comes. Being the gateway for SARS-CoV-2, ACE2 has a piv-
otal role to determine disease progression with its vasoactive 
properties in RAAS and interactions with immune pathways 
during aging. Although the extent to which the observation of 
COVID-19 is more severe in older men is related to the sex 
steroid alterations, it is apparent that changing levels of these 
hormones with aging influences the shaping of immunosenes-
cence differently for two sexes. Somatopause and increasing 
cortisol levels with aging are both inducers of thymic involu-
tion and they cause the change in body composition favoring 
visceral adiposity and causing sarcopenia which is the main 
indication of frailty: decrease in physiological reserves and 
increased vulnerability to stressors, such as SARS-CoV-2. 
Abdominal obesity and related inflammation also constitute 
an important risk factor for severe COVID-19. In summary, 
immune and endocrine systems work interdependently with 
the main drive of achieving homeostasis against any stress/
stimuli. Age-related alterations in both these systems and 
whole organism are shaped with their reciprocal influence.

5  Future perspectives

As we have left a year with COVID-19 behind, there have 
been an abundance of research which shed some light on 
prevention, pathogenesis, immune responses and prognostic 
risk factors of the disease. Increased vulnerability leading 
to severe COVID-19 with poor prognosis in aging popu-
lation requires urgent attention. While global COVID-19 
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vaccination has been continuing, effectiveness of different 
kinds of vaccines in older adults still requires further inves-
tigation. Even though most of the poor prognostic COVID-
19 risk factors such as endothelial dysfunction, pre-existing 
comorbidities, immunosenescence, age-related hormonal 
alterations and change in body composition are unalter-
able in older adults, given the fact that the prognosis has 
been relatively good in some elderly patients, the under-
pins of individual disparities should be addressed. While 
treatment strategies to prevent severe infection have been 
under investigation, more research would be made on agents 
to block the viral S protein-ACE2 interaction since older 
adults are especially vulnerable to the activation of RAAS 
cascade and consecutive series of catastrophic events. More 
research is required on the parameters for deciding which 
patient would improve with a given treatment, and the tim-
ing of cytokine suppressing agents. It would be intriguing 
to examine the possible effects of senolytic agents or IFN 
modulators. Although age-related hormonal alterations play 
an important role on vulnerability to COVID-19, current 
data is not sufficient to suggest hormone replacement strat-
egies. Nevertheless, every possible effort should be made 
to avoid sarcopenia and increased visceral adiposity during 
home confinement, which is only possible with the measures 
to be taken by governments. Long-term monitorization of 
older adults is certainly needed to understand if COVID-19 
has permanent effects.
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