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Multiple Breath Washout of Hyperpolarized 129Xe and
3He in Human Lungs With Three-Dimensional Balanced
Steady-State Free-Precession Imaging
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Purpose: To compare quantitative fractional ventilation meas-
urements from multiple breath washout imaging (MBW-I) using
hyperpolarized 3He with both spoiled gradient echo (SPGR)
and balanced steady-state free precession (bSSFP) three-
dimensional (3D) pulse sequences and to evaluate the feasibil-
ity of MBW-I with hyperpolarized 129Xe.
Methods: Seven healthy subjects were scanned using 3He
MBW-I with 3D SPGR and bSSFP sequences. Five also under-
went MBW-I with 129Xe. A dual-tuned coil was used to acquire
MBW-I data from both nuclei in the same subject position,
enabling direct comparison of regional information.
Results: High-quality MBW images were obtained with bSSFP
sequences using a reduced dose (100 mL) of inhaled hyperpo-

larized 3He. 3D MBW-I with 129Xe was also successfully dem-
onstrated with a bSSFP sequence. Regional quantitative
ventilation measures derived from 3He and 129Xe MBW-I corre-

lated well in all subjects (P < 0.001) with mean Pearson’s cor-
relation coefficients of r ¼ 0.61 and r ¼ 0.52 for 3He SPGR-

bSSFP and 129Xe-3He (bSSFP) comparisons. The average
intersubject mean difference (and standard deviation) in frac-
tional ventilation in SPGR-bSSFP and 129Xe-3He comparisons

was 15% (28%) and 9% (38%), respectively.
Conclusions: Improved sensitivity in MBW-I can be achieved
with polarization-efficient bSSFP sequences. Same scan-
session 3D MBW-I with 3He and 129Xe has been demonstrated
using a dual-tuned coil. Magn Reson Med 77:2288–2295,
2017. VC 2016 The Authors Magnetic Resonance in Medi-
cine published by Wiley Periodicals, Inc. on behalf of Inter-
national Society for Magnetic Resonance in Medicine. This
is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribu-
tion and reproduction in any medium, provided the original
work is properly cited.

Key words: hyperpolarized gas; 129Xe; 3He; multiple breath
washout; lung function

INTRODUCTION

Pulmonary function testing based on dynamic monitor-
ing of exhaled tracer gases is becoming increasingly used
in a clinical setting to monitor lung ventilation heteroge-
neity (1). Multiple breath washout (MBW) monitors the
decay in concentration of resident N2 or washed-in SF6

tracer gas at the mouth while subjects breathe oxygen or
air over a period of several minutes. MBW is a sensitive
marker of functional changes in the small airways (<2
mm), and obstructive lung disease is typically reflected
in prolonged washout of tracer gas from the lungs.
MBW-derived parameters of ventilation heterogeneity
have been shown to be more sensitive to early disease
than flow-dependent measures from spirometry in cystic
fibrosis (CF) patients (2,3) was found to be a sensitive
marker of obstructive lung disease (4–6). Multiple theo-
retical approaches have been developed in attempts to
derive regional information about different compart-
ments of the lung from whole-lung MBW signals [e.g.,
(7)], but these are not capable of providing definitive
regional quantitative information about lung ventilation.

MRI of hyperpolarized 3He and 129Xe gases offers
unique insight into pulmonary ventilation and physiol-
ogy (8–10). Various approaches have been proposed to
quantify lung ventilation from imaging as a single num-
ber summarizing the total ventilated volume in the
thorax—for example, percent ventilated volume (11) or
by clustering ventilation into functional compartments
(12). However, the major disadvantage of these methods
is the sacrifice of regional information. An alternative
approach is to directly convert image intensity from
single-breath ventilation-weighted images into regional
volume fraction with knowledge of the inhaled gas vol-
ume (13). Nevertheless, the quantitative interpretation of
lung ventilation by this method is affected by spatial var-
iations in the transmit/receive B1 field of the radiofre-
quency (RF) coil, T1 decay, and weighting of the signal
by RF depolarization.

Dynamic imaging of gas wash-in over multiple breaths
of hyperpolarized 3He MRI was demonstrated as a quan-
titative method for measuring regional ventilation in
guinea pig lungs (14). This method was subsequently
improved and shown to be feasible for use in larger spe-
cies, including humans (15,16). Additionally, in humans,
continuous spectroscopic acquisition during MBW has
been demonstrated using residual 3He gas in the lungs
after ventilation imaging (17). This methodology was
recently extended to an MBW-I technique capable of
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producing quantitative ventilation maps covering the
whole of the lungs (18).

Quantitative methods use either MR signal build up

(gas wash-in) or decay (wash-out) to derive the fractional

ventilation (fraction of gas volume turned over in each

breath) from the amount of signal change in each voxel.

These methods compensate for the effects of hyperpolar-

ized gas T1 decay, RF depolarization, and RF coil sensi-

tivity and thus can provide fully quantitative measures

of regional lung ventilation.
Previously, MBW-I has been implemented using fast

low flip angle spoiled gradient echo (SPGR) sequences

with a single dose of hyperpolarized 3He (18). However,

the scarcity and current high cost of 3He necessitates the

use of reduced gas doses or a different gas isotope. This

work evaluates three-dimensional (3D) MBW-I with bal-

anced steady-state free precession (bSSFP) sequences in

order to maximize the use of the finite available polariza-

tion. Here, quantitative ventilation information derived

from bSSFP sequences (with a 50% reduction in 3He gas

dose) is validated against previously presented SPGR

methods. 3D MBW-I with hyperpolarized 129Xe has been

challenging because of its approximately three-fold lower

Larmor frequency when compared with 3He. Recent

advances in polarizer technology (19,20) and optimized

bSSFP imaging (21) have facilitated high-quality ventila-

tion imaging with 129Xe (22). Here, these gains in polar-

ization and signal efficiency from bSSFP sequences are

also exploited to demonstrate 3D MBW-I with hyperpolar-

ized 129Xe.

METHODS

Subjects

Seven healthy subjects between the ages of 24 and 38

years and with an FEV1 in the range of 82%–126% pre-

dicted (Table 1) were scanned under written informed

consent and agreement of the National Research Ethics

Service (United Kingdom).
This study was divided into two parts. In study 1, all

seven subjects underwent 3He MBW-I with 3D SPGR and

bSSFP sequences. In study 2, five of the seven subjects also

underwent 3He and 129Xe MBW-I using 3D bSSFP sequen-

ces to compare results with the two inert gas isotopes.

Hardware

All MRI examinations were performed on a GE Signa

HDx 1.5T scanner (GE Healthcare, Milwaukee, Wiscon-

sin, USA). 3He was polarized to approximately 25%

using a commercial spin-exchange optical pumping

polarizer (GE Healthcare, Amersham, United Kingdom).
129Xe (comprising approximately 86% of the xenon mix-

ture) was polarized to approximately 25% using a

custom-built spin-exchange optical pumping polarizer

(19). For study 1, a flexible transmit/receive vest coil

(CMRS, Brookfield, Wisconsin, USA) tuned to the 3He

Larmor frequency (48.62 MHz) was used. For study 2, a

custom-built flexible dual-tuned transmit-receive coil

tuned to both 3He and 129Xe Larmor frequencies (48.62

and 17.65 MHz) (23) was used, allowing a direct compar-

ison of quantitative ventilation maps from the two nuclei

without the need for position changes between scans or

image registration techniques. During MBW-I, gas flow at

the mouth was recorded using a RSS 100HR pneumota-

chograph (Hans Rudolph, Shawnee, Kansas, USA).

Imaging

Parameters for the 3D MBW-I sequences for studies 1

and 2 are summarized in Table 2. Hyperpolarized gas

doses were topped up to 1 L with N2 and inhaled from

functional residual capacity (18). Flip angles were con-

siderably lower than the optimum value for a single-

breath-hold 3D bSSFP static ventilation imaging

sequence at the chosen resolution (flip angle � 22�),
because washout is monitored over multiple breaths and

therefore some longitudinal magnetization must be pre-

served. For study 1, two thirds of the optimum flip angle

was chosen (flip angle ¼ 14�) for bSSFP imaging, and for

study 2, a higher gas dose and one third of the optimum

flip angle (flip angle ¼ 7�) was used for both 3He and
129Xe (Table 2).

Table 2
MBW-I Parameters for Study 1 and Study 2.

Parameter

Study 1 Study 2

SPGR (3He) bSSFP (3He) bSSFP (3He) bSSFP (129Xe)

Pulse repetition time, ms 2.5 1.6 1.4 2.9
Echo time, ms 0.75 0.6 0.4 0.9

Field of view, cm 38 � 30.4 38 � 30.4 38 � 30.4 38 � 30.4
Acquisition matrix, mm 32 � 26 � 26 32 � 26 � 26 32 � 26 � 26 32 � 26 � 26

Voxel size, mm 12 � 12 � 10 12 � 12 � 10 12 � 12 � 10 12 � 12 � 10
Scan time, s 1.7 1.1a 0.9 2.0
Slice thickness, mm 10 10 10 10

Bandwidth, kHz 32.3 166 166 16.1
Flip angle 1� 14� 7� 7�

RF pulse envelope Gaussian Gaussian Hard pulse Hard pulse
Pulse width, mS 500 500 200 200
Dose of hyperpolarized gas, mL 200 100a 200 600

aIn subject 2 3He bSSFP imaging was performed using 200 mL of hyperpolarized 3He to demonstrate the feasibility of acquiring images
with double the in-plane resolution (64 � 51 � 26), resulting in a voxel size of 6 � 6 � 10 mm and an acquisition time of 2.1 s.

2290 Horn et al.



MBW-I Protocol

MBW-I breathing maneuvers and postprocessing of
images was performed as described in detail (18). Briefly,
the main components of the MBW-I protocol were as fol-
lows. First, subjects were trained in the required breath-
ing procedures both outside and inside the scanner
before hyperpolarized gas imaging. Subjects inhaled a
single dose of hyperpolarized gas from functional resid-
ual capacity. Upon inhalation, two sets of volumetric
images were acquired during breath-hold and the signal
decay between corresponding images was analyzed to
calculate a correction factor for compensation of non–
washout-related signal decay, including T1 decay and RF
depolarization. Following the second acquisition, sub-
jects began relaxed tidal breathing, interrupted by short
breath-holds for image acquisitions after each breathing
cycle. All images were acquired with a fixed delay time
of 4 s to allow one breathing cycle between acquisitions.
Major airways were excluded from all calculations
because a fractional ventilation r ¼ 1 can be expected
and no signal is received from the airways after the first
volume turnover. Pneumotachograph recordings were

used to exclude data when a tidal volume change of

more than 615% occurred.
Example washout data from a single slice for all sub-

protocols are shown in Figure 1. A typical time-volume

curve acquired with the flow meter during the protocol

is shown in Figure 1. The resulting signal decay over all

acquisitions was corrected for RF and T1 depolarization

and fitted with an exponential least-squares function to

obtain gas turnover (fractional ventilation) on a voxel-by-

voxel basis, as shown in Figure 1.

Comparison

For both, subjects were not moved between imaging experi-

ments, hence a voxel-by-voxel comparison of derived frac-

tional ventilation maps could be performed without the

need for image registration. We acknowledge that the lungs

themselves do move, but the controlled breathing maneu-

ver allows for a basic pixel-wise comparison without image

registration; to do so, fractional ventilation maps were

masked with the intersection of the two maps. Pearson’s r

coefficient was calculated for the correlation between the

two experiments, and Bland–Altman analysis was

FIG. 1. Representative results from MBW-I. Comparison of 3He MBW-I with SPGR with bSSFP sequences (subject 4) and comparison
of 129Xe and 3He bSSFP MBW-I (subject 3). Schematic lung volume curve during MBW-I as derived from flow recordings at the mouth.

Fractional ventilation maps of the slices shown in panel A. For all acquisitions, the time delay between images was fixed to 4 s to allow
subjects to comfortably complete one breathing cycle.

3D bSSFP Multiple Breath Washout Imaging 2291



performed to determine the intrasubject mean difference

and standard deviation as a percentage of the mean.

RESULTS

The results of this study are summarized in Table 1.

Study 1: 3He MBW-I, SPGR Versus bSSFP

MBW-I with 3He using both SPGR and bSSFP sequences

was performed successfully in all seven subjects, and

image quality was sufficient to generate fractional venti-

lation maps. 3He MBW images acquired from subject 4

with SPGR and bSSFP sequences are shown in Figure 1,

alongside resulting fractional ventilation maps of the cor-

responding slices (Fig. 1). Similar values of fractional
ventilation were found and good visual agreement of
ventilation features was observed when comparing frac-
tional ventilation maps derived from the two imaging
sequences (Fig. 2). An average Pearson’s correlation coef-
ficient over all subjects of r ¼ 0.61 (all P < 0.001) was
determined. The mean intersubject difference (coefficient
of variation) was found to be 15.2%, with a standard
deviation of 27.6%.

To demonstrate the signal benefits associated with

bSSFP sequences, an additional 3He MBW-I dataset was

acquired using a bSSFP sequence with a two-fold

increased spatial resolution (64 � 51 in-plane, subject 2).

The results of this scan are presented against a lower

FIG. 3. Comparison of fractional ventilation maps derived from subject 2 using low-resolution SPGR and high-resolution bSSFP imaging
sequences with hyperpolarized 3He. The k-space of the SPGR acquisition was zero-filled before reconstruction to mimic the resolution
of the bSSFP images. Fractional ventilation maps from selected slices (anterior to posterior) are shown, along with whole-lung fractional

ventilation histograms. Slight differences in the intensity of the maps from each acquisition result from using the same color map in both
cases. Different average fractional ventilation values were obtained (SPGR average [standard deviation] r ¼ 0.33 [0.10], bSSFP average

[standard deviation] r ¼ 0.28 [0.11]); see also the shift in peak position of the histograms.

FIG. 2. (A, B) Comparative fractional ventilation maps from 3He MBW-I using bSSFP and SPGR sequences (subject 6) (A) and from
129Xe and 3He MBW-I using bSSFP sequences (subject 3) (B). (C) Voxel-by-voxel correlation plots of the datasets in panel A (top, r ¼
0.56) and panel B (bottom, r ¼ 0.81). The solid red line indicates the line of unity, and the color map represents the density of points,

with blue <10 and red >30.

2292 Horn et al.



resolution SPGR scan for that subject in Figure 3. Frac-

tional ventilation maps derived from images acquired at

the two different resolutions showed similar features.

Maps derived from the higher resolution scan appeared

qualitatively slightly noisier than the lower resolution

SPGR images; however, a significant Pearson’s correla-

tion of r ¼ 0.62 (P < 0.001) was determined from a

voxel-by-voxel comparison (after zero-filling SPGR

images to mimic the resolution of the bSSFP images).

Study 2: MBW-I with 129Xe

bSSFP MBW-I with 129Xe was successfully performed in
all investigated subjects and image quality was sufficient
to derive quantitative fractional ventilation maps (mean
values summarized in Table 1). Figure 1 shows raw
images from 129Xe and 3He MBW-I in subject 3, with cor-
responding fractional ventilation maps depicted in Fig-
ure 1. 3He and 129Xe fractional ventilation maps from
slices covering the whole of the lungs are shown in Fig-
ure 2. Comparable values of fractional ventilation were
obtained, with a trend of slightly increased r values for
129Xe, and good qualitative, visual agreement of features
was observed when comparing 3He and 129Xe MBW-I
data, as illustrated in Figure 2 and the corresponding
correlation plot in Figure 2. An average Pearson’s corre-
lation coefficient of r ¼ 0.52 (with P < 0.001 in each
individual case) was calculated. Bland–Altman analysis
resulted in a mean intersubject difference (coefficient of
variation) of 9.2% (biased towards larger values for
129Xe) with a corresponding intersubject standard devia-
tion of 38.4%.

To validate MBW-I, mean fractional ventilation was
compared with the global lung volume turnover calcu-
lated from measurement of the tidal volume at the mouth
and extraction of the lung volume from image segmenta-
tion. In both study 1 and study 2, a highly significant
correlation of both independent measures was found
with a mean Pearson’s coefficient of r ¼ 0.93 (P < 0.001)
and r ¼ 0.81 (P < 0.01), respectively.

DISCUSSION

Study 1: 3He MBW-I, SPGR Versus bSSFP

The comparison of fractional ventilation values derived
from 3He MBW-I with SPGR and bSSFP sequences
showed good agreement between sequences in all sub-
jects. Considering the scarcity and expense of 3He,
bSSFP MBW-I presents a potentially more economically
viable alternative to SPGR MBW-I, requiring a 50%
lower 3He gas dosage for images and fractional ventila-
tion maps of comparable quality at the same spatial reso-
lution. In addition, the 10% 3He: 90% N2 mix used for
bSSFP scans better approximates air in the lungs in
terms of density and diffusion coefficient (24). The feasi-
bility of acquiring images with double the in-plane reso-
lution and the same gas dosage with the bSSFP sequence
when compared with the SPGR sequence was also dem-
onstrated in one subject. The lower resolution SPGR
images in Figure 3 appear smoother than the higher reso-
lution bSSFP images, which might be explained by the
zero-filling of SPGR data required to mimic equivalent

resolutions (3). Nevertheless, the good voxel-by-voxel
correlation between fractional ventilation data at both
resolutions suggests that a voxel size of approximately 1
cm3 is sufficient to fulfill a major assumption of the
washout model; that is, that ventilation is homogeneous
within an image voxel. This assumption may hold in
healthy subjects, but in patients with inhomogeneous
ventilation (e.g., asthma), where ventilation heterogene-
ity begins in the small airways and can result in a patchy
appearance on 3He ventilation images (25), it may be less
applicable (26). Thus, an increase in spatial resolution of
MBW-I data should provide greater insight into the char-
acteristic length scales of ventilation heterogeneity.

Study 2: MBW-I with 129Xe

3D MBW-I with 129Xe has been demonstrated for the first
time, made feasible by recent improvements in 129Xe
polarization levels, and the efficient use of induced
polarization afforded by bSSFP sequences. By compari-
son, in our previous preliminary work with SPGR
sequences and lower 129Xe polarizations, image signal-
to-noise ratio (SNR) was insufficient for multiple 3D
acquisitions required for 129Xe MBW-I (27). Here, compa-
rable functional information was derived from MBW-I
datasets from both 3He and 129Xe nuclei, with similar
ventilation heterogeneity observed. The voxel-by-voxel
correlation of regional 3He and 129Xe fractional ventila-
tion values resulted in a slightly lower average Pearson’s
correlation coefficient (r ¼ 0.52, P < 0.001 in all cases)
compared with the correlation between SPGR and bSSFP
sequences for 3He. Only in subject 5 was the correlation
coefficient noticeably lower than in other subjects. In
addition, subject 5 was a former smoker, and some
effects of lung obstruction were observed similar to sub-
ject 3 (Fig. 1A, study 2). It has been reported previously
that xenon has a reduced ability to penetrate less venti-
lated airspaces when compared with helium (28), and
therefore this might be expected to affect the measured
fractional ventilation data. Additionally, xenon is a
much denser (rHe-N2 ¼ 1.143 kg/m3, rXe-N2 ¼ 3.957 kg/
m3) and less diffusive gas (DHe-N2 ¼ 0.85 cm2/s, DXe-N2 ¼
0.10 cm2/s) (29,30) than helium. In the case of 129Xe
MBW-I, the tracer gas itself comprises approximately
15% of the inspired lung volume, compared with
approximately 2.5% for the 3He gas mix. The fact that
129Xe was mixed with nitrogen and not a lighter gas
(such as 4He) to better approximate the physical proper-
ties of air is a limitation of this study. Nevertheless, the
general absence of airway obstruction in the healthy sub-
jects scanned in this study means this is expected to
have a limited impact on the data presented here. Xenon
signal loss by diffusive uptake into the blood and tissue
was not considered when calculating fractional ventila-
tion; it was assumed that the dissolved fraction (approxi-
mately 2%) was small enough to be negligible when
compared with the fraction exhaled by ventilation (31).

The breathing pattern is the major limitation on accu-
racy and repeatability of quantitative fractional ventila-
tion imaging. A trend of 129Xe MBW-I resulting in higher
mean fractional ventilation was observed, which could
be linked to the consistently higher tidal volume
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measured with129Xe when compared with 3He experi-
ments (Table 1). In the absence of ventilation defects,
differences in mean fractional ventilation information
from repeated experiments are likely to arise from an
altered breathing pattern and/or different inspiratory lev-
els. Those could potentially arise from differences in
image acquisition time for 129Xe and 3He MBW-I. The
method also relies upon the subjects’ ability to reproduce
their breathing pattern between experiments. In order to
reduce errors from variation in breathing within an
experiment, images with a tidal and/or lung volume
varying by more than 615% of the mean were excluded.
This rejection criterion resulted in a worst case propa-
gated error in fractional ventilation of 21%. A passive
volume delivery device could also be used to increase
the reproducibility and accuracy of the subjects breath-
ing pattern (32).

In addition, image SNR and the number of images
used in fitting can influence the accuracy of the frac-
tional ventilation parameter. In background work a
Monte-Carlo analysis of errors from MBW-I was per-
formed (33) with an initial SNR of approximately 60
using 3-5 points for fitting. Assuming an average lung
turnover of 0.15–0.35, the results showed an error of
between 4% and 10% in the fractional ventilation
parameter. An even lower error can be expected with
higher image SNR values [see Horn (33) for reference].
Experimental parameters that affect the accuracy of the
fit to fractional ventilation—including the number of
images included in the fit and the respective image
SNR—are provided in Table 1 for the different experi-
ments performed.

In conclusion, bSSFP sequences allow efficient use of
polarization and reduced gas dosage requirements when
compared with SPGR for MBW-I applications in humans.
The achieved gains in SNR can alternatively be used to
improve spatial resolution in MBW-I. The feasibility of
3D MBW-I with 129Xe has also been demonstrated suc-
cessfully for the first time and was validated against 3He
MBW-I. In future work, it may be possible to identify
sensitivity differences in MBW-I with the different gases
to characterize different physiological processes of
obstructive lung diseases.
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