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Stroke caused by cerebral infarction or hemorrhage can lead to motor dysfunction. The

recovery of motor function is vital for patients with stroke in daily activities. Traditional

rehabilitation of stroke generally depends on physical practice under passive affected

limbs movement. Motor imagery-based brain computer interface (MI-BCI) combined

with functional electrical stimulation (FES) is a potential active neural rehabilitation

technology for patients with stroke recently, which complements traditional passive

rehabilitation methods. As the predecessor of BCI technology, neurofeedback training

(NFT) is a psychological process that feeds back neural activities online to users for self-

regulation. In this work, BCI-based NFT were proposed to promote the active repair

and reconstruction of the whole nerve conduction pathway and motor function. We

designed and implemented a multimodal, training type motor NFT system (BCI-NFT-

FES) by integrating the visual, auditory, and tactile multisensory pathway feedback mode

and using the joint detection of electroencephalography (EEG) and functional near-

infrared spectroscopy (fNIRS). The results indicated that after 4 weeks of training, the

clinical scale score, event-related desynchronization (ERD) of EEG patterns, and cerebral

oxygen response of patients with stroke were enhanced obviously. This study preliminarily

verified the clinical effectiveness of the long-term NFT system and the prospect of motor

function rehabilitation.

Keywords: brain computer interface, neurofeedback training, electroencephalography, functional electrical

stimulation, functional near-infrared spectroscopy, stroke

INTRODUCTION

Stroke is the fifth leading cause of death in the world and one of the major causes of acquired
disability in adults (Benjamin et al., 2019). Stroke has devastating effects on many survivors,
including severe motor and sensory disorders, which hinder their daily activities (Kim et al., 2020).
However, the traditional rehabilitation training methods are mostly single passive treatment, and
the curative effect is not ideal.

In recent years, brain-computer interface (BCI) (Wolpaw et al., 2000; Wolpaw and Wolpaw,
2012) as a new human-computer interaction technology can provide users with a direct way of
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communication between the brain and the external
environment. Motor imagery-based BCI (MI-BCI) can induce
the improvement of motor learning ability and plasticity
rehabilitation according to the principle that motor imagery can
produce the activation characteristics of sensorimotor cortex
similar to motor execution (Várkuti et al., 2013), which is widely
used in the rehabilitation of patients with stroke. Neurofeedback
training (NFT) refers to the user’s control of brain activation
and regulation of brain consciousness (Ang and Guan, 2013).
Its significance is to observe and understand the characteristic
mechanism of the nervous system in order to manipulate some
behavior-related neural processes, especially for patients with
nerve injury (Sitaram et al., 2017). Therefore, the combination of
MI-BCI and NFT is a very potential method for the rehabilitation
of patients with stroke.

Many studies have shown that MI-BCI treatment can
trigger long-term neurological changes in the upper limbs
of patients with stroke and improve their motor function
(Cervera et al., 2018; Lyukmanov et al., 2018; Ramos-
Murguialday et al., 2019). In addition, MI combined with
external mechanical assist devices can make the affected
limb perform corresponding actions, which can produce
corresponding event-related desynchronization/synchronization
(ERD/ERS) and enhance the activity pattern of the brain (Tam
et al., 2011; Yao et al., 2019; Aljalal et al., 2020). Jang et al.
(2016) investigated the effects of BCI combined with functional
electrical stimulation (FES) training on shoulder subluxation of
patients with stroke and demonstrated that BCI-FES training
can effectively improve shoulder subluxation in patients with
stroke by promoting exercise recovery. Biasiucci et al. (2018)
divided patients with stroke into two groups, namely, BCI-FES
group and the sham-FES group. Patients who tried to move
their affected hand in BCI-FES group were given a positive
feedback and random FES stimulation in sham-FES group; the
result showed only BCI-FES groups improved function and
increased functional connectivity between affected hemispheric
motion regions.

Electroencephalography (EEG) is the most common
measurement and evaluation tool in BCI. To further evaluate the
activation status and physiological changes of the brain, many
studies have analyzed physiological signals from functional near-
infrared spectroscopy (fNIRS) (Kaiser et al., 2014; Chowdhury
et al., 2019). Simis et al. (2018) demonstrated fNIRS is suitable for
measuring the brain activity of patients with spinal cord injury
during robotic walking. Leamy et al. (2011) combined EEG and
fNIRS signal features to improve the classification accuracy of
MI. Some studies have confirmed the potential of multimodal
EEG/fNIRS technology in monitoring and predicting motor
recovery after stroke (Li et al., 2017, 2020).

In our previous study, we collected EEG and fNIRS of healthy
subjects under NFT to study the mechanism of neural response.
The results showed that MI-BCI combined with FES could
induce stronger brain electrophysiological and hemodynamic
response (Wang et al., 2019). In this study, we designed a BCI-
NFT-FES stroke rehabilitation application system with EEG,
fNIRS joint acquisition and visual, auditory, and tactile feedback
and carried out a long-term clinical trial on typical patients with

stroke to realize the rehabilitation training induced by subjective
motor intention. Through the analysis of clinical scale, brain
electrophysiology, and brain blood oxygen level, the feasibility
and effectiveness of long-term multisensory NFT are verified.

MATERIALS AND METHODS

Participants
We recruited 7 patients with stroke from the rehabilitation
department of Tianjin People’s Hospital (3 males and 4 females,
age range: 40–65 years old, all in stable recovery period). Seven
patients were randomly divided into experimental group (2
males and 2 females) and control group (1 male and 2 females)
according to gender, age, and patients’ conditions. We also
recruited 7 healthy subjects (3 males, right-handed, age range:
27–45 years) from Tianjin University as the healthy control
group. All subjects were double-blinded. The procedure of the
experiment was clearly explained to each subject before data
recording. This study was approved by the ethical committee of
Tianjin University and Tianjin People’s Hospital. Consent form
was obtained from each subject prior to the experiment. The
information of patients with stroke is shown in Table 1.

Design of Experimental Paradigm
The experimental training task flow is shown in Figure 1. Each
patient needs to participate in and complete the exercise training
task of the affected limb for 4 weeks. The experimental group
patients participate in three standard assessment sessions. Before,
during, and after the experimental training process, the Graz
motor imagery-based BCI (Graz MI-BCI) paradigm (Mueller-
Putz et al., 2014) was utilized. Considering that the change of
cerebral blood flow is a slow process, we set the preparation
time before each trial to 30 s to ensure that the blood oxygen
concentration returns to the baseline state. The NFT session
was carried out three times a week (one time every other
day, 12 times in total). During this period, they continued
to receive routine clinical exercise rehabilitation training. The
healthy control group only participated in the Graz MI-BCI and
NFT. Compared with the patients in the experimental group, the
patients in the control group were also given three Graz MI-BCI
but only received the same routine clinical exercise rehabilitation
training as the patients in the experimental group during the
training period.

The specific system integration scheme is designed as follows:
Graz MI-BCI paradigm in the standard assessment session is
shown in Figure 2A, which is divided into two sessions (i.e.,
one calibration session and one online feedback session, 40 trials
each). The offline model is established by using the data in
calibration session. The offline modeling method follows the
classical SVM + CSP method used in our previous research
(Wang et al., 2019). For each trial, the first stage is the preparation
stage. A green cross appears on the LCD screen display for
1 s, and then a red arrow corresponding to the direction of
the affected limb appears on the screen, indicating the MI of
the corresponding upper limb (for the healthy subjects, the
imaginary right hand task mode was used). After 1 s, it turns
into a green cross again, indicating that the subjects need to
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TABLE 1 | Basic information of stroke patients participating in this study.

Gender Age Stroke duration Site of lesion Side of hemiparesis MSA/MBI Group

S1 M 40 5 months BG L 2/50 EG

S2 W 64 3 months CO, BG R 1–2/30 EG

S3 W 56 4 months BG R 2–/40 EG

S4 M 40 6 months BG, CO, Th L 2–/60 EG

S5 W 56 5 months BG R 2/60 CG

S6 M 65 3 months BG, CO L 2–/30 CG

S7 W 55 3 months BG R 2/40 CG

BG, basal ganglia; CO, centrum ovale; Th, thalamus; MSA, Muscle strength assessment; MBI, Modified Barthel Index; EG, Experience group; CG, Control group.

FIGURE 1 | Schematic diagram of long term NFT experiment and control experiment arrangement.

perform the prompted motor imagery task, and the task lasts for
4 s. The subjects are required to imagine the wrist extension of
the corresponding limb and then enter the rest time of 6–8 s. In
online feedback session, the decision results of the imagination
task will be fed back through voice.

The NFT session is shown in Figure 2B, each lasting for
about 15min. Each trial mainly contains a penalty stage and a
reward stage. First is the 30 s baseline period, during which the
data were used to calculate the threshold of NFT initial feature
parameter. Then, there is a one second arrow prompt, which
tells the subjects to perform left-hand or right-hand MI. Next
is the penalty stage (MI stage); there are four moving angles
of virtual hand in the screen, namely, 0◦, 15◦, 30◦, and 45◦

for the real-time feedback training feature parameter level. If
the training parameter was below the threshold (Goal_1, up
to 15◦), the virtual hands changed their angles to get away
from the needles. The angles of the virtual hands increased
whenever the feedback parameter stayed below the threshold
for more than 2 s (Goal_2, up to 30◦) and 3 s (Goal_3, up to
45◦). Thus, the ultimate goal for the subjects was to keep away
from the needles as far as possible. On the contrary, if the
training parameter was above the threshold [the needles touched
the hands (t0), 0

◦], an electrical stimulation would be applied
to left- and right-hand palms (reminding the subject to have a
self-regulation) until the needle moved away from the hand or
this trial ended (ts). The stimulation parameters are shown in
Figure 2C. Here, electrical stimulation is used as real-time tactile

feedback to induce subjects to adopt more effective dynamic
motor imagination strategies. Subjects can appropriately adjust
the imagination strategies to achieve the goal of neurofeedback
as much as possible. Theoretically, a more optimized dynamic
motor imagination strategy can achieve stronger sensory motor
cortex activation characteristics and higher system classification
performance (Mehler et al., 2018). The last is the reward stage, the
subjects only need to keep resting, the system makes a decision
on the penalty stage data according to the previously established
offline model, and the decision result will be notified by voice. If
the decision result is correct, the corresponding limb FES will be
given to induce wrist extension.

Functional electrical stimulation equipment is a self-made
equipment, which has passed the China Food and Drug
Administration (CFDA) registration test. The stimulation
frequency is 30Hz, and the stimulation waveform is 300 µs.
The intensity depends on the specific situation of the subjects.
Stimulation-related muscles include palmaris longus, flexor carpi
ulnaris, and flexor digitorum superficialis. In the stage of nerve
feedback punishment, the electrodes were placed on the palms of
both sides of the subjects. In the stage of nerve feedback reward,
according to the distribution structure of human muscles,
the electrodes were placed on the inside of the forearm (the
distance between the electrodes is about 10 cm) to promote the
corresponding action of the target limb. In addition, all the
experimental paradigm interfaces of this study were compiled
with the special toolbox of MATLAB.
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FIGURE 2 | Experimental paradigm. (A) Standard assessment session. (B) NFT session. (C) Electrical stimulation, SI indicates stimulation intensity individually

determined, ts indicates the end time of current NFT trial or the time when the training feature parameter lower than the threshold again.

Calculation of NFT Feature Parameter
For left-hand MI (LH-MI) or right-hand MI (RH-MI) training,
we proposed and adopted the lateralized relative ERD (lrERD) as

the feature parameter of NFT. In EEG-based BCI research, C3,
C4, and Cz are demonstrated to be optimal for recognizing MI
states (Wang et al., 2007). C3 and C4 are the classic channels for
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the activation of brain areas in motor-related tasks and also the
classic channels for the analysis of ERD/ERS pattern, which are
closely related to the activation state and level of human sensory
motor cortex (Nakayashiki et al., 2014; Meng and He, 2019).
Therefore, first, the average lrERD power (including two typical
frequency bands of C3 and C4 channels, alpha: 8–13Hz and beta:
14–29Hz) of the baseline resting period (30 s) was selected as the
initial threshold, and then the real-time lrERD power between
C3 and C4 channels is calculated in the NFT penalty stage, taking
RH-MI training as an example, as shown in Figure 3.

The calculation formula of RH-MI training parameters is
as follows:

lrERDC3−C4 = RPERD,C3 − RPERD,C4 (1)

The calculation formula of LH-MI training parameters is
as follows:

lrERDC4−C3 = RPERD,C4 − RPERD,C3 (2)

FIGURE 3 | lrERD calculation diagram of RH-MI training.

The relative ERD power (RPERD) is a relative power value,
expressed in percentage. RPERD is calculated by the power of n
trials across task or relax period (Pn) (Nakayashiki et al., 2014),
which is defined as follows:

Prelax =
1

Trelax

∑

n∈Trelax

Pn (3)

Ptask =
1

Ttask

∑

n∈Ttask

Pn (4)

RPERD =
Ptask − Prelax

Prelax
× 100 (5)

where Prelax and Ptask are the average power spectra during
the rest period (Trelax) and the task period (Ttask). Therefore,
it is necessary to calculate the time-frequency characteristic
power related to events and introduce the event-related
spectral perturbation (ERSP) method to calculate the ERD/ERS
characteristic power of different tasks and frequency bands, so
as to calculate Pn, Prelax, and Ptask. Its definition formula is
as follows:

ERSP(f , t) =
1

n

n∑

k=1

(Fk(f , t)) (6)

where Fk (f, t) represents the spectral estimation at frequency f
and time t for the kth trial. The ERSP was computed through
short-time Fourier transform (STFT) with a 256-point Hanning-
tapered window from EEGLAB (Nakayashiki et al., 2014; Yi et al.,
2017).

Multimodal Neural Signal Acquisition
The subjects wore EEG-fNIRS-combined acquisition head cap
(EEG electrophysiology and fNIRS cerebral blood oxygen signals
can be collected at the same time) on the head for the
experimental session. The specific signal acquisition sensor
configuration is shown in Figure 4A. EEG signals were acquired
by a 64-channel SynAmps2 system (Quik Cap, Neuroscan,
USA) with standard Ag/AgCl electrodes placed on the scalp

FIGURE 4 | (A) Signal acquisition sensor configuration (B) Standard assessment session (C) Multimodal NFT session.
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TABLE 2 | Changes of stroke patients with training duration were evaluated by the scale.

ID Group Muscle strength assessment Modified Barthel index

Day 1 Day 14 Day 28 Day 1 Day 14 Day 28

S1 EG 2 2+ 3 50 55 60

S2 EG 1–2 2 2+ 30 30 45

S3 EG 2– 2 3 40 50 55

S4 EG 2– 2+ 3 60 60 70

S5 CG 2 3 3 60 60 65

S6 CG 2– 2 2+ 30 30 40

S7 CG 2 2+ 2+ 40 45 50

FIGURE 5 | Results of EEG time-frequency response under standard assessment session in experimental group during long-term rehabilitation training.

according to the international 10–20 system. The reference
electrode was placed on the nose and the ground electrode was
placed on the forehead. The impedance for all electrodes was
kept below 10 kΩ . The fNIRS signals acquisition: the distance
between the source probe and the detector probe of fNIRS
channel is 3 cm, and the excitation mode of the light source
is a standard three wavelength laser source (i.e., 780, 808, and
850 nm). The two signal acquisition channels cover the left- and
right-hand movement-related sensory motor areas (ROI1 and
ROI2). The standard assessment and NFT scenes are shown in
Figures 4B,C.

Clinical Evaluation Methods
According to the three standard assessment sessions of patients
with stroke in this study, the first step was to evaluate the
classic clinical scale, i.e., (1) muscle strength assessment and (2)
modified Barthel index. The former is based on the antigravity
motion amplitude and antiresistance motion amplitude, and the
muscle strength is graded from 0 to 100% (grades 0–5, the higher
the grade, the closer themuscle strength assessment is to normal).
If the measured muscle strength is slightly stronger than a certain
level, add “+” in the upper right corner, add “–” in the upper
right corner if it is slightly worse. The latter is used to assess
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FIGURE 6 | The results of EEG time-frequency response under standard assessment session in control group during long-term rehabilitation training.

activities of daily living, using the 100-point system (0–20 =

very serious dysfunction, 25–45 = serious dysfunction, 50–70 =
moderate functional defect, 75–95 = mild functional defect, 100
= ADL self-care).

EEG Data Processing and Analysis
In this study, the special EEG processing toolbox EEGLAB of
the MATLAB software was used to preprocess the original EEG
signal. The steps are as follows: (1) data downsampling to 200Hz;
(2) adopting third-order Butterworth band pass filter (5–35Hz);
and (3) defining the appearance time of the imagination prompt
interface as zero time, taking the event code as the signal sign,
and intercepting the data from 2 s before zero time to 5 s after
zero time.

fNIRS Data Processing and Analysis
The preprocessing of cerebral blood oxygen signal uses a
professional software (Homer2) to process and analyze the data.
The specific preprocess includes the following steps. (1) Manual
artifact removal of original data. (2) The original light intensity
signal is converted to optical density (OD). (3) Band pass filter:
Homer2 provides fNIRS data filter because the useful blood
oxygen information is generally about 0.1Hz in the extremely
low frequency, so the band pass is 0.01–0.2Hz, so as to further
remove the interference of respiratory and motion artifacts in
fNIRS signal. (4) Optical density to blood oxygen concentration

(DC): according to the Beer Lambert law, the optical density data
are converted into hemoglobin concentration data.

To quantitatively compare the differences of cerebral blood
oxygen response under different training conditions and to
characterize the activation state of cerebral hemodynamics, the
peak amplitude and integral area of two ROI were extracted
for left- and right-hand motor imagery tasks before and after
training. The general linear model (GLM) method was used to
analyze the activation state of brain regions before and after
training under the condition of left- and right-hand motor
imagery task and draw the functional topological map based on
the characteristics of cerebral blood oxygen.

RESULTS

Clinical Scale Evaluation
All patients were assessed with clinical scales (from the
attending doctors of Rehabilitation Department of Tianjin
People’s Hospital) in three standard assessment tasks. The results
of basic scales are shown in Table 2.

It can be seen from the evaluation results of the basic clinical
scale in Table 2 that after 4 weeks of exercise rehabilitation
training, the muscle strength assessment of all patients with
stroke increased with the time of exercise rehabilitation training,
and the living activity ability was also strengthened, but they
did not reach the level of mild functional defect. It is speculated

Frontiers in Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 884420

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Effect Assessment of Neurofeedback Training

FIGURE 7 | EEG brain mapping results of the experimental group under standard assessment session in long-term rehabilitation training.

that it is related to the individual differences of patients and the
duration of training. Specifically, after 4 weeks of NFT, themuscle
strength assessment of patients in experimental group can be
improved by more than 1 level, and the ability of living activities
can be improved by more than 10 points. The muscle strength
assessment of patients with stroke in the control group can also
be improved by about 1 grade, and the ability of life activity can
be improved by about 10 points. The results evaluated the long-
term effect of NFT in stroke rehabilitation from the perspective
of clinical motor behavior. Combining it with conventional
clinical stroke rehabilitation training method is more effective
than simple conventional training, but the advantage is not very
significant. It is speculated that it is related to the individual
differences of patients and the length of training.

Data Processing and Analysis of EEG
In standard assessment session, we collected EEG signals of all
subjects to characterize the change of the characteristic level
induced by MI with the process of training. First, the task time
node division was evaluated according to the standard, and the
ERSP time-frequency diagrams of typical motor-related EEG
channels (C3 and C4) under the basic MI of all subjects were
calculated and drawn. Affected by great individual differences,
the EEG time-frequency response results of all patients with
stroke under the limb MI were given individually, while
the healthy subjects showed their average results. The EEG
time-frequency response results of patients in experimental

group are shown in Figure 5, and the results of the control group
are shown in Figure 6.

It can be seen from Figures 5, 6 that after 4 weeks of training,
the time-frequency response induced by MI in the standard
assessment session changed significantly. In the experimental
group, the ERD characteristic pattern induced by MI was
significantly enhanced along with the process of MI, but the
regularity of enhancement was different, and the distribution
frequency band was scattered. Specifically, the ERD characteristic
pattern of patients S2 and S3 showed bilateral synchronous
activation or even ipsilateral dominance in channels C3 and
C4, which was further enhanced with the process of exercise
rehabilitation training. The ERD characteristic pattern of patients
S1 and S4 showed bilateral synchronous activation in channels
C3 and C4, which was gradually enhanced with the process
of exercise rehabilitation training. Finally, it can be shown
that the contralateral dominance is obvious. In contrast, the
ERD characteristic pattern induced by MI in the control group
was weak, and there was obvious ERS. With the process of
conventional motor rehabilitation training, the two characteristic
patterns changed, and the distribution frequency band was also
scattered. Specifically, patients S5 induced more obvious ERS
characteristics in the process of MI, while the ERD characteristics
were weak, which were further enhanced with the training
process. Patients S6 and S7 showed some ERD characteristics,
which were slightly enhanced with the training process. The
healthy control group showed obvious ERD characteristic pattern

Frontiers in Neuroscience | www.frontiersin.org 8 June 2022 | Volume 16 | Article 884420

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Effect Assessment of Neurofeedback Training

FIGURE 8 | The results of EEG brain topographic map under standard assessment session in long-term rehabilitation training.

with concentrated frequency distribution. With the process of
NFT, this characteristic pattern was significantly enhanced and
showed obvious contralateral dominance.

To further characterize the change of brain topological power
response of all subjects during training, based on the time-
frequency characteristic power of all EEG channels, the ERSP
power of all subjects in typical frequency bands (alpha: 8–13Hz,
beta: 14–29Hz) (Pfurtscheller and Da Silva, 1999; Graimann
et al., 2002) was extracted, and the brain topographic map was
drawn. The time-frequency power distribution of EEG brain
topography in experimental group is shown in Figure 7, and the
time-frequency power distribution of EEG brain topography in
the control group and healthy control group is shown in Figure 8.

It can be seen from Figures 7, 8, after 4 weeks of training,
all subjects had obvious changes in the distribution of brain
topological power induced by MI in the standard assessment
session. By comparing the topological power distribution of the
whole brain, it is found that the ERD characteristic pattern
of S1–S4 sensory motor-related areas in experimental group
is significantly enhanced with the process of rehabilitation
training, but the regularity of enhancement is different, and
the power distribution area is relatively scattered. Specifically,
the ERD characteristic pattern of S3, especially the alpha band
power, showed ipsilateral activation in the whole brain, and
this phenomenon was further enhanced with the process of

rehabilitation training, while the ERD characteristic pattern
of S1, S2, and S4 showed bilateral synchronous activation
or contralateral dominance in the whole brain and gradually
enhanced with the process of rehabilitation training. In contrast,
the ERD characteristic pattern induced by MI in the control
group was weak, and there was obvious ERS. With the process
of conventional rehabilitation training, the two characteristic
patterns changed, and the distribution area was also scattered.
Specifically, in the whole brain of patients S5, the alpha
band ERD characteristic pattern showed bilateral activation or
contralateral dominance in day 1 and 14, but there was no regular
enhancement trend. Patients S6 and S7 showed the coexistence
of ERS and ERD, and the ERD/ERS in some areas (forehead
and temporal lobe) increased with the training process. For the
healthy control group, the ERD characteristic pattern is obvious,
and the distribution area is relatively concentrated.With the NFT
process, the alpha and beta band ERD characteristic patterns are
enhanced and show obvious contralateral dominance.

To quantify the activation effect of brain motor function,
we further extracted lrERD characteristics of typical frequency
bands of all patients and took the motor function-related
channels C3 and C4 in the typical frequency band (alpha)_
1:8–10Hz, alpha_ 2:11–13Hz, beta_ 1:15–20Hz, beta_
2. The difference of lrERD characteristics was calculated
according to the imagination of the corresponding limb of

Frontiers in Neuroscience | www.frontiersin.org 9 June 2022 | Volume 16 | Article 884420

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Effect Assessment of Neurofeedback Training

FIGURE 9 | lrERD characteristic pattern results of standard assessment session in long-term training.

the subjects, and then the differences of MI characteristic
response modes of all subjects under the standard
assessment session were compared. The results are shown
in Figure 9.

As shown in Figure 9, corresponding to the results of time-
frequency response and brain topological power distribution, the

lrERD characteristic patterns of all subjects have changed to some

extent with the process of training, and there are great individual

differences in different typical frequency bands. Specifically, the
lrERD of patients S1–S4 in the experimental group changed
consistently in alpha1, and the characteristicmode level increased
with the training process. Among them, patient S3 showed an
obvious positive value, which was consistent with the ipsilateral
activation enhancement phenomenon, indicating the lrERD
characteristic activation level increased continuously with the
training process. In contrast, the lrERD characteristic pattern of
patients in the control group did not show the above consistent
trend, and most of them showed the coexistence of positive
and negative values. After long-term NFT, the characteristic
pattern of lrERD was significantly enhanced in the healthy
control group.

Analysis of Cerebral Blood Oxygen
Response Based on fNIRS
To further characterize the changes of cerebral nerve function,
the near-infrared cerebral blood oxygen information of all
patients under day 1 and 28 standard assessment session was
analyzed. Regions of interest (i.e., ROI1 and ROI2) were divided
according to the corresponding limb movement task, and the
topological structure of cerebral blood oxygen concentration
changes of all patients based on fNIRS was calculated and drawn,
as shown in Figure 10.

According to the topological analysis results of cerebral
blood oxygen response in Figure 10, after 4 weeks of training,
the characteristic response level of cerebral blood oxygen
induced by MI of all patients has changed significantly, and
the individual differences are large, and the change regularity
is not completely consistent with the EEG time-frequency
power response results. Specifically, the topological distribution
of cerebral blood oxygen concentration from S1 to S4 in
the experimental group showed obvious enhancement, and
showed contralateral advantage. The cerebral blood oxygen
level and contralateral advantage of patients in S1 and S4
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FIGURE 10 | Topological distribution of cerebral blood oxygen concentration in patients with fNIRS before and after long-term exercise training.

increased significantly, which was consistent with the EEG
time-frequency response results. The topological distribution
of cerebral blood oxygen concentration from S5 to S7 in
the control group also showed a certain enhancement, but
it did not reach the level of significant improvement in the
experimental group, and S5 and S6 showed a certain contralateral
advantage, while S7 did not show a significant improvement and
contralateral advantage. The results show that the introduction
of multimodal NFT can significantly improve the cerebral blood
oxygen level of patients and strengthen the induction of neural
function rehabilitation.

DISCUSSION

Some studies have shown that the improvements experienced
by the BCI treatment are due to neuroplastic changes in
the central nervous system caused by closed-loop learning

(Wolpaw, 2007; Biasiucci et al., 2018; Cervera et al., 2018).
Closed-loop neurofeedback path refers to the establishment

of information feedback path between the command output
end and the user (Ang et al., 2015). The multimodal NFT
method proposed in this study constructs a closed-loop
neurofeedback path. In penalty stage, electrical stimulation is
applied according to the real-time lrERD to promote the subjects
to continuously improve the way of MI. In the reward stage,
FES is applied according to the recognition results of online
model based on CSP + SVM to promote the remodeling
of neurons.

Under conventional clinical scale evaluation, Villafañe et al.
(2018) verified the effectiveness of robot-assisted mobility in
treating pain and spasticity in hand parallelism after stroke
from the Barthel index, motility index, and other clinical
scales. Biasiucci et al. used BCI-FES mode to help upper limb
motor function recovery training of patients with stroke. After
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6–12 months of follow-up study, the effectiveness of BCI-
FES feedback training method in improving motor function
and inducing neural plasticity rehabilitation was verified from
the perspective of Fugl-Meyer and other clinical scales and
brain electrophysiological functional network (Biasiucci et al.,
2018). We recorded the patients’ muscle strength assessment
and modified Barthel index. The results showed that although
there were large individual differences, the overall muscle
strength level and living ability level were improved to a
certain extent.

For the analysis of brain electrophysiological data, previous
studies have shown that patients with stroke can elicit ERD/ERS
during imagining the affected limb movement (Pfurtscheller
and Aranibar, 1979; Neuper et al., 2006). Benzy et al. (2020)
analyzed ERD/ERS and took phase locking value (PLV) as a
feature to decode the direction of MI of the affected hand
of patients with stroke. In this article, ERD and ERS are
used to characterize the change of feature level induced by
MI with the process of training. Meanwhile, lrERD is used
as the feature parameter of the NFT penalty stage, and the
activation effect of brain motor function is quantified. The
results showed that there are obvious individual differences
and abnormal phenomena, such as the whole brain strong ERS
phenomenon in the beta band of S5 in Figure 8, which may
be due to the high-frequency abnormal discharge of neurons
caused by the disorder of synaptic transmission in patients with
stroke. But overall, the ERD characteristic patterns of patients
with C3 and C4 channels were enhanced in varying degrees,
and the experimental group was better than the control group.
For healthy subjects, the characteristic pattern of ERD was
obvious. With the process of NFT, the characteristic pattern
was significantly enhanced, and the contralateral advantage
was obvious.

For cerebral blood oxygen response based on fNIRS analysis,
previous studies collected EEG and fNIRS at the same time
for joint analysis of brain electrophysiology and cerebral blood
oxygen information. The results showed that after MI training,
the activation degree of motor cortex and the connection level
of related cortical functional network in patients with stroke
were significantly improved (Kaiser et al., 2014; Delorme et al.,
2019; Wang et al., 2019). In this article, multisensory NFT-MI
training was carried out for patients with stroke. The results
showed that the topological distribution of cerebral blood oxygen
concentration in patients after training is significantly enhanced,
and the contralateral advantage is more obvious.

As aforesaid, our goal was to verify the feasibility of long-term
NFT system in assisting the rehabilitation of patients with stroke.
We analyzed it from three aspects, namely, clinical scale, brain
electrophysiology, and cerebral blood oxygen level. The results
show that both the multimodal motor NFT method proposed
in this study and the routine clinical rehabilitation training can
induce the changes of cerebral nerve function, but there are
differences in the specific change rules, that is, the former can
induce the training from the motor center level, which can
synchronously induce the changes of cortex-muscle function,

making it close to the activation mode of motor conduction
pathway in normal people, while the latter emphasizes the
improvement of simple motor function and failure to consider
the induction of synchronous functional rehabilitation of the
central nervous system. However, there are two main limitations
of this study. On the one hand, there are obvious individual
differences in brain activity and change law, especially for patients
with stroke. Because the focus, course of disease and other
factors will affect the changes of nerve activation state and
functional reorganization in the process of training, resulting in
the activation of bilateral, ipsilateral, or contralateral brain areas
in patients with stroke, and gradually form the corresponding
steady-state mode. On the other hand, due to the insufficient
number of patients recruited, we failed to draw statistically
significant conclusions. We can only subjectively analyze the
effects of NFT on brain electrophysiology and cerebral blood
oxygen level. In view of the above limitations, in future research,
we will expand the patient data to conduct more detailed data
analysis and give a more scientific explanation.
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